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Introduction
Let Ω be an open smooth subset of Rm+1, m ≥ 2.
We are interested in the existence of embedded constant mean
curvature hypersurfaces Σ into Ω with non empty boundary such
that

∂Σ ⊂ ∂Ω (1)

and which

intersect ∂Ω at a constant angle γ ∈ (0, π). (2)

Such hypersurfaces are called Capillary hypersurfaces in Ω.



Physical motivations
Capillary surfaces correspond to the physical problem of the
behavior of an incompressible liquid in a container Ω in the
absence of gravity.

They are critical points of an energy functional under two
constraints:

Crit (P(E ,Ω) − cos(γ)Area(ΛE ))
E ∈ C

|E | = v ,

where C is the class of sets E ⊂ Ω such that ∂E divides Ω in two
connected components with ∂∂E ⊂ ∂Ω and ΛE ⊂ ∂Ω the
boundary of one of these components.



Isoperimetric Problem

Let Ω be an open subset of Rm+1, the Isoperimetric Problem is
the minimum problem:

min P(E ,Ω)
E ⊂ Ω
|E | = v



Variational Consideration

Let {Ψt}t be a one parameter family of diffeomorphisms defined
on R

m+1. Denote

ζ =
∂Ψt

∂t |t=0
.

If E ∈ C, let Σ := ∂E ∩ Ω.

A variation is called admissible if

Ψt(intΣ) ⊂ intΩ and Ψt(∂Σ) ⊂ ∂Ω for any t

and volume-preserving if

|Ψt(E )| = |E | for every t.



An admissible variation induces Et = Ψt(E ) ⊂ Ω and ΛEt
⊂ ∂Ω.

We consider the total energy:

E(t) := P(Et ,Ω)− cos(γ)Area(ΛEt
). (3)

Definition
We say that a set E ∈ C is critical (or stationary) for the total
energy:

E = E(0) = P(E ,Ω) − cos(γ)Area(ΛE ). (4)

If E ′(0) = 0 for any admissible volume-preserving variation.

If E is critical, we call the hypersurface Σ := ∂E ∩ Ω a Capillary
hypersurface.



First variation
The first variation of area and volume yields (Σ = ∂E ∩ Ω):

d P(Et ,Ω)

dt

∣

∣

∣

t=0
= −

∫

Σ
mHΣ〈ζ,NΣ〉dA+

∮

∂Σ
〈ζ,NΣ

∂Σ〉ds;(5)

d Area(ΛEt
)

dt

∣

∣

∣

t=0
=

∮

∂Σ
〈ζ,N∂Ω

∂Σ 〉ds; (6)

where

◮ HΣ is the mean curvature of Σ,
◮ NΣ is the unit outer normal vector-field along Σ,
◮ NΣ

∂Σ(resp. N
∂Ω
∂Σ ) is the unit normal vector-field along ∂Σ in Σ

(resp. ∂Ω) (see figure...).



Consequences

From the above, we deduce that

E ′(0) = −

∫

Σ
nHΣ〈ζ,NΣ〉dA+

∮

∂Σ
〈ζ,NΣ

∂Σ〉ds−cos(γ)

∮

∂Σ
〈ζ,N∂Ω

∂Σ 〉ds = 0

(7)
while

d |Et |

dt

∣

∣

∣

t=0
=

∫

Σ
〈ζ,NΣ〉dA = 0. (8)

◮ Choosing interior normal variations: ζ = ωNΣ together with
volume preserving (

∫

Σ ω dA = 0) implies that

HΣ ≡ Const. in Σ.

◮ Choosing boundary normal variations: ζ = ωN∂Ω
∂Σ implies that

〈N∂Ω
∂Σ ,N

Σ
∂Σ − cos(γ)N∂Ω

∂Σ 〉 = 0 on ∂Σ ⊂ ∂Ω. (9)



At the equilibrium

A hypersurface Σ ⊂ Ω is Capillary if it has constant mean
curvature and intersect ∂Ω with an angle γ along its boundary in
the sense that

◮ 〈NΣ
∂Σ,N

Ω
∂Σ〉 = cos(γ) or equivalently

◮ 〈NΣ,NΩ〉 = cos(γ), where NΩ is the normal of ∂Ω.

◮ Conclusion
We conclude that the Euler-Lagrange equations reads:



















HΣ = Const. Σ

∂Σ ⊂ ∂Ω

〈NΣ
∂Σ,N

∂Ω
∂Σ 〉 = cos(γ) ∂Σ.

(10)



Even thought the direct method of the calculus of variation gives
existence of minimizers, the complete description of geometry,
topology of these surfaces is far from being complete. One can see
for instance
Ros-Vergasta or Ros-Souam where they give the geometric
structures of stable Capillary hypersurfaces

Ros A. and Souam R., On stability of capillary surfaces in a
ball, Pacific J. Math. 178 (1997) 345- 361.

Ros A. and Vergasta E., Satability for hypersurfaces of
constant mean curvature with free boundary, Geom. Dedicata
56 (1995), no. 1, 19-33.



Some Examples

◮ For any angle γ ∈ (0, π), there is a Capillary spherical cap Sn
γ

with mean curvature H = 1 in R
n+1
+ + cos γEn+1. We can

parameterize it by the inverse of the stereographic projection
Θ : Rn → Sn by

Θ(z) =

(

2 z1

1 + |z |2
, . . . ,

2 zn

1 + |z |2
,
1− |z |2

1 + |z |2

)

.

The restriction of Θ
∣

∣

∣

B(0, 1−cos γ
1+cos γ

)
parameterize the spherical

cap Sn
γ .

◮ If Ω = R
m
+ with 1 ≤ k < m then the cylindrical cap rSn

γ × R
k

around R
k is a Capillary hypersurface, where n := m − k with

constant mean curvature H = n
rm

.



The Problem as a Geometric one

We can reformulate the question of finding critical point of E to a
prescribed mean curvature free boundary problem:
for a given real number H and an angle γ, find a hypersurface Σ
(with prescribed topology) satisfying the following conditions:

(GMP)



















HΣ ≡ H in Σ,

∂Σ ⊂ ∂Ω,

〈NΣ
∂Σ,N

Ω
∂Σ〉 = cos γ on ∂Σ,

A more general one is to prescribe a non-constant mean curvature
function H(p) and angle γ(σ).



One related PDE problem
A particular case when prescribing the topology of a disc is the
Free Boundary Plateau Problem for H-surfaces.

◮ Suppose Σ is parameterized by a map
u ∈ C 2(B ;R3) ∩ C 1(B̄ ;R3) over the unit disc

B := {(x , y) ∈ R
2 : x2 + y2 < 1}.

The above (GMP) then is equivalent to the problem:

◮

{

∆u = 2Hux ∧ uy in B, (mc equation)

|ux |
2 − |uy |

2 = 0 = ux · uy in B , (conformality)

(11)

◮

{

u(∂B) ⊂ ∂Ω,
∂u
∂n
(σ) ⊥ Tu(σ)∂Ω ∀σ ∈ ∂B.

(free boundary)

(12)



Invariance with the conformal group of the disc

One of the main features in the study of the variational problem
associated to the (FBPP), is the lack of compactness due to the
invariance under the action of the non-compact group of conformal
transformations of the unit disc: The Möbius Group

G =

{

gθ,a(X ) = e iθ
X − a

1− āX
, θ ∈ [−π, π), a = (a1, a2) ∈ B

}

.

(13)
One needs new tools for the study of this problem.



Results obtained on the study of (FBPP)

◮ M.Struwe [13] proved existence of minimal (H=0) solutions
(not necessarily embedded).

◮ M.Struwe [14] proved existence of solutions (not necessarily
embedded) for almost every H bounded.

◮ W.Bürger and E. Kuwert [3] proved that inf-minimums are
always achieved and they are union of finitely many discs.

◮ We have obtained a result somehow complementary to
Struwe’s own: proving that there exits a family of solutions
concentrating at a non-degenerate minimal submanifold of ∂Ω
as H → ∞. (When K = Q a point of ∂Ω, ∃ uH converging to
Q ∈ ∂Ω provided Q is a stable critical point of the mean
curvature of ∂Ω).



When K = Q a point of ∂Ω the result can be proved by adopting
a variational perturbation method, see [5]. The technique goes
back to Ambrosetti-Badiale [1] and successfully used by many
authors in a nearly context. Notably one can see the works of
Caldiroli-Musina [4] and Felli [7] in the following perturbed
H-Bubble problem







∆u = 2(H0 + εH1(u)) ux ∧ uy in R
2,

∫

B

|∇u|2 < ∞.



Second Variation

Let Σ be capillary hypersurface and denote by BΣ its second
fundamental form. The Jacobi operator (or the linearized mean
curvature operator about Σ) is given by the second variation of the
total energy functional E .
For any volume-preserving admissible variation, we have

E ′′(0) = −

∫

Σ

(

ω∆Σω + |BΣ|
2ω2

)

dA+

∮

∂Σ

(

ω
∂ω

∂η
−q ω2

)

ds, (14)

where η = NΣ
∂Σ and ω = 〈ζ, NΣ〉 and

q =
1

sin(γ)
B∂Ω(N

∂Ω
∂Σ ,N

∂Ω
∂Σ )− cot(γ)B∂Σ(η, η). (15)



The Jacobi Operator

By Barbosa-Do Carmo [2], for any smooth ω with
∫

Σ ωdA = 0
there exits an admissible, volume-preserving variation with
variation vector field ωN as a normal part.
The Jacobi operator about Σ is defined for any ω, ω′ ∈ H1(Σ) by

〈Lγ ω, ω
′〉 :=

∫

Σ

{

∇ω∇ω′ − |BΣ|
2ω ω′

}

dA−

∮

∂Σ
q ω ω′ds, (16)

where

q =
1

sin(γ)
B∂Ω(N

∂Ω
∂Σ ,N

∂Ω
∂Σ )− cot(γ)B∂Σ(η, η). (17)



The hemisphere Sn
+ ( γ = π

2
)

In R
n+1
+ = Ω, the Jacobi operator of the Capillary spherical cap is

〈LSn
+
ω, ω′〉 = −

∫

Sn
+

(

∆Sn
+
ω + nω

)

ω′ dσ +

∮

Sn
+

∂ω

∂η
ω′ ds. (18)



The hemisphere Sn
+ ( γ = π

2
)

In R
n+1
+ = Ω, the Jacobi operator of the Capillary spherical cap is

〈LSn
+
ω, ω′〉 = −

∫

Sn
+

(

∆Sn
+
ω + nω

)

ω′ dσ +

∮

Sn
+

∂ω

∂η
ω′ ds. (18)

Let Θ = (Θ1, · · · ,Θn,Θn+1) : Bn → Sn
+ be a parametrization of

Sn
+.

By spectral decomposition of ∆Sn
+
(with zero Neumann) we have

that
KerLSn

+
= span {Θ1; · · · ; Θn}.



The Cylinder Cr := rSn
+ × R

k

In R
m+1
+ = Ω, with ∂Ω = R

m × {0} = R
n × R

k × {0}.

The Jacobi operator of the Capillary cylindrical cup
Cr := rSn

+ × R
k around K := R

k :

r2−n〈LCr ω, ω
′〉 = −r2−n

∫

Sn
+×K

(

r2∆Kω +∆Sn
+
ω + nω

)

ω′ dσdy

+

∮

Sn
+×K

∂ω

∂η
ω′ ds.

(19)



Concentration at points

◮ Letting p ∈ ∂Ω, consider

Σ̄p,r := {q ∈ Ω̄ : d(q, p) = r}. (20)

◮ Our goal is to perturb Σ̄p,r to a set satisfying our Geometric
problem.

◮ Notice, hopefully, that Σ̄p,r satisfies almost the E-L for the
Capillary problem with

r HΣ̄p,r
= n +O(r) in Σ̄p,r ,

∂Σ̄p,r ⊂ ∂Ω,

〈NΣ̄
∂Σ̄p,r

,N∂Ω
∂Σ̄p,r

〉 = 0 on ∂Σ̄p,r .

(21)



Perturbed hemisphere

As before let Θ = (Θ1, . . . ,Θn,Θn+1) : Bn → Sn
+ parametrizing Sn

+

and Θ̃ := (Θ1, . . . ,Θn, 0).
All surfaces nearby Σ̄p,r can be parameterized by a parametric
function ω : Sn

+ → R:

Σp,r ,ω := exp∂Ωp (r(1 + ω)Θ̃)− r(1 + ω)Θn+1N∂Ω(·) (22)

in particular

∂Σp,r ,ω ⊂ ∂Ω because Θn+1 = 0 on ∂Sn
+ (23)

and the initial hypersurface is

Σ̄p,r = Σp,r ,0. (24)



Expansions of the mean curvature

The expansions of the mean curvature H(p, r , ω) of the
hypersurface Σp,r ,ω in terms of r and ω yields

◮

rH(p, r , ω) = n+ rU(Θ) +O(r2) (25)

−
(

∆Sn
+
ω + nω

)

+ r L(ω) + Q(ω) in Σp,r ,ω;

where U(Θ) ⊥ KerLSn
+
;

◮ The orthogonality condition is equivalent to

〈NΣ
∂Σp,r,ω

,N∂Ω
∂Σp,r,ω

〉 = −
∂ω

∂η
+ r2 L(ω) + Q(ω) on ∂Σp,r ,ω.

(26)



Adjusting the geodesic half-sphere Σ̄p,r

◮ Find ω̄p such that

r HΣp,r,rω̄p = n+O(r2) in Σp,r ,r ω̄p ,

∂Σp,r ,r ω̄p ⊂ ∂Ω,

〈NΣ
∂Σp,r,rω̄p

,N∂Ω
∂Σp,r,rω̄p

〉 = O(r2) on ∂Σp,r ,r ω̄p .

(27)

◮ This is equivalent to solve

LSn
+
[ω̄p] = U(Θ). (28)

which is possible by Fredholm alternative theorem since
U(Θ) ⊥ KerLSn

+
.

◮ Moreover

ω̄p =
1

n

∫

Sn
+

U(Θ) dσ. (29)



Fixed point argument
We want to find ω̂p,r and a vector Υp,r ∈ Tp∂Ω such that

rH(p, r , r ω̄p + ω̂) = n in Σp,r ,r ω̄p+ω̂;

〈NΣ
∂Σp,r,rω̄p+ω̂

,N∂Ω
∂Σp,r,rω̄p+ω̂

〉 = 〈Υ, Θ̃〉 on ∂Σp,r ,r ω̄p+ω̂.

(30)

◮ Denote by Π the L2 projection on
KerLSn

+
= span{Θ1; . . . ; Θn}, we have that

LSn
+
: Π⊥ C2,α(S̄n

+) → Π⊥ C0,α(S̄n
+) (31)

is invertible.

◮ Identifying KerLSn
+
with T∂Ω, by a standard fixed point

theorem, one can find a unique

(ω̂p,r ,Υp,r ) ∈ Π⊥ C2,α(S̄n
+)× Tp∂Ω (32)

in a ball of radius Cr2 solving (30).



◮ The fixed point argument yields a hypersurface
Σp,r ,r ω̄p+ω̂p,r =: Σp,r which is C2,α close to Sn

+ and C1,α close
to Σ̄p,r we may assume that Σp,r is embedded into Ω if r is
small.

◮ Furthermore it satisfies

HΣp,r
= n

r
in Σp,r ;

∂Σp,r ⊂ ∂Ω;

〈NΣ
∂Σp,r

,N∂Ω
∂Σp,r

〉 = 〈Υp,r , Θ̃〉 on ∂Σp,r .

(33)

◮ We define the constraint functional on ∂Ω by

ϕ(p) = P(Ep,r ,Ω)−
n

r
|Ep,r | , (34)

where Ep,r is the set bounded by Σp,r and ∂Ω.
Our Goal now is to show that ϕ′(p0) = 0 ⇒ Υp0,r = 0.



Variational argument

If q := exp∂Ωp (tΥ), then for t sufficiently small the surface ∂Σq,r is
a graph over ∂Σp,r for some smooth function wp,r ,Υ,t satisfying

ζp,r ,Υ :=

(

∂wp,r ,Υ,t

∂t

∣

∣

∣

t=0

)

N∂Ω
∂Σp,r

on ∂Σp,r ⊂ ∂Ω. (35)

Suppose that p is a critical point of ϕ then the first variation of
area and volume yields

0 = dϕ(p)[Υ]

=

∫

Σp,r

(

HΣp,r
−

n

r

)

〈ζp,r ,Υ,NΣp,r
〉dσ +

∮

∂Σp,r

〈ζp,r ,Υ,N
Σ
∂Σp,r

〉ds

we conclude that
∮

∂Σp,r

〈ζp,r ,Υ,N
∂Ω
∂Σp,r

〉〈Υp,r , Θ̃〉ds = 0 ∀Υ ∈ Tp∂Ω. (36)



From the expansion of the metric and normals of Σp,r we can
deduce

|〈ζp,r ,Υ,N
∂Ω
∂Σp,r

〉+ 〈Υ, Θ̃〉| ≤ cr‖Υ‖. (37)

This implies that

∮

∂Σp,r

〈Υp,r , Θ̃〉〈Υ, Θ̃〉ds ≤ cr‖Υ‖

∮

∂Σp,r

〈Υp,r , Θ̃〉ds. (38)

Using the expansion of the metric of small perturbed geodesic balls
in ∂Ω we find that

1

2
Area(Sn−1)rn−1‖Υ‖2 ≤ n

∮

∂Σp,r

|〈Υ, Θ̃〉|2ds. (39)

And, finally setting Υ = Υp,r and using Hölder inequality we obtain

∮

∂Σp,r

|〈Υp,r , Θ̃〉|2ds ≤ cr2
∮

∂Σp,r

|〈Υp,r , Θ̃〉|2. (40)

Consequently there must be Υp,r = 0 for r small.



The area and volume expansions of Σp,r yields

r−nP(Ep,r ,Ω) = P(Bn+1,Rn+1
+ ) + r(n + 2)

∫

Sn
+

〈B∂Ω(p)Θ̃, Θ̃〉Θn+1

+O(r2);

r−1−n|Ep,r | =
1

n+ 1
P(Bn+1,Rn+1

+ ) +
r(n + 3)

n

∫

Sn
+

〈B∂Ω(p)Θ̃, Θ̃〉

−
r

n(n + 2)
〈B∂Ω(p)Ei ,Ei 〉

∫

Sn
+

Θn+1dσ + O(r2),

where B∂Ω is the second fundamental form of ∂Ω. Hence

r−nϕ(p) =
1

n + 1
P(Bn+1,Rn+1

+ )− c1n rH∂Ω(p) + O(r2) (41)

with

c1n =

∫

Sn
+

(

2

n+ 2
− (Θi)2

)

Θn+1dσ, (42)



Setting

f (r , p) :=
1

r

(

r−nϕ(p)−
1

n + 1
P(Bn+1,Rn+1

+ )

)

(43)

= −c1nH∂Ω(p) + O(r), (44)

we have proved the following

Theorem
There exist r0 > 0 and a smooth function f : (0, r0)× ∂Ω → R

such that for every r ∈ (0, r0), if p is a critical point of f (r , ·) then
Σ̄p,r can be perturbed to a smooth Capillary hypersurface Σp,r

with contact angle γ = π
2 . Furthermore

‖f (r , ·) + c1n H∂Ω‖C1 ≤ c r , (45)



A result similar to ours was first obtained by Ye [15] in the case
where Ω is a compact manifold (without boundary) and partially
generalized by Pacard and Xu [12]. It turns out that critical points
of the scalar curvature of Ω determine the location for existence of
CMC hypersurfaces.
As we observe here if Ω has a boundary, the mean curvature of
∂Ω is more relevant.
We emphasize that this result generalizes also to any constant
contact angle γ ∈ (0, π).



Concentrations at higher dimensional sets

If K is a k-dimensional smooth submanifold of ∂Ω, we let
n := m − k . Consider the “half”-geodesic tube:

Σ̄K ,r := {q ∈ Ω̄ : d(q,K ) = r}. (46)

Notice that Σ̄K ,r satisfies almost the E-L for the Capillary problem
with

r HΣ̄K ,r
= n +O(r) in Σ̄K ,r ,

∂Σ̄K ,r ⊂ ∂Ω,

〈NΣ̄K ,r
,N∂Ω〉 = 0 on ∂Σ̄K ,r .

(47)

Our goal is to perturb Σ̄K ,r to a set close to it and satisfying our
Geometric problem.



Perturbed tube

◮ All surfaces nearby K in ∂Ω can be parameterized by a
parametric function: Φ : K → NK∂Ω in the following way:

K ∋ p −→ exp∂Ωp (Φ) (48)

◮ All surfaces nearby Σ̄K ,r in Ω can be parameterized by two
parametric function:

ω : K × Sn
+ → R and Φ : K → NK∂Ω (49)

in the following way:

Sn
+ × K ∋ (Θ, p) → exp∂Ωp (r(1 + ω)Θ̃ + Φ) + (r(1 + ω)Θn+1)N∂Ω

(50)

◮ We will call Σ(r , ω,Φ) the image of this map. Note that in
particular

∂Σ(r , ω,Φ) ⊂ ∂Ω and Σ(r , 0, 0) = Σ̄K ,r . (51)



Assume that K is a minimal submanifold of ∂Ω, then the mean
curvature of Σ(r , ω,Φ) can be expanded as

rmH(r , ω,Φ) = n + rU(Θ) +O(r2)

− Lr ω − r 〈JΦ, Θ̃〉+ rLω + rJ (Φ, Θ̃) +Q(Φ, Θ̃, Θ̃)

+ r2 L(ω,Φ) + Q(ω) + r Q(ω,Φ)

and

〈NΣ,N∂Ω〉 = −
∂ω

∂η
+ r2L(ω) + rQ(ω) on ∂Σ(r , ω,Φ), (52)

where

◮ U(Θ) ⊥ KerLSn
+

◮ Lr = r2∆Kω +∆Sn
+
ω + nω

◮ 〈J(·), Θ̃〉 ∈ KerLSn
+
is the Jacobi operator of K while

J (Φ, Θ̃) ⊥ KerLSn
+
is a linear map in Φ.



Let us analyze the main operator appearing in the mean curvature
expansions:
for any ω ∈ Π⊥L2(Sn

+ × K ) 〈Φ, Θ̃〉 ∈ ΠL2(Sn
+ × K ), let

Lr (ω,Φ) := r2∆Kω +∆Sn
+
ω + nω + 〈JΦ, Θ̃〉 (53)

so that the tube Σ(r , ω,Φ) satisfies

r H(r , ω,Φ) = n
m

〈NΣ,N∂Ω〉 = 0
(54)

is equivalent to solve a non-linear PDE in the form:

Lr (ω,Φ) + rL(ω,Φ) = rU(Θ) + O(r2) + Q(ω,Φ). (55)



The non-linear PDE we want to solve is:

Tr (ω,Φ) := Lr (ω,Φ) + rL(ω,Φ) = rU(Θ) + O(r2) + Q(ω,Φ)
(56)

We want to do this by a fixed point argument in the following way:

◮ if Tr is invertible we have a fixed point problem:

(ω,Φ) = −(Tr )
−1

{

rU(Θ) + O(r2) +Q(ω,Φ)
}

:= Fr (ω,Φ).
(57)

◮ Since (ω,Φ) are assumed to be small perturbations, we need
Fr to be defined from a ball B(0, δ(r)) into itself for some
δ(r) → 0 as r → 0.
So we have to estimate ‖(Tr )

−1‖ which again has to be
controlled by the error rU(Θ) + O(r2).

◮ These two facts are what we are going to check now.



The spectrum of Lr is the union of

{Λij = λi +
1

r2
(µj − n)}

and the spectrum of J.
Here 0 ≤ λi and 0 ≤ µj are respectively the eigenvalues of ∆K and
∆Sn

+
(with zero Neumann).

• K non-degenerate =⇒ 0 /∈ spectrum(J).
• A new difficulty arises since

Λi0 := λi −
n

r2
= 0 when r =

√

n

λi

.

Nevertheless when r /∈ {
√

n
λi
, , i ≥ 1} formal estimates of

‖Lr‖
−1 show that the error rU(Θ) +O(r2) is too large if we want

to apply a fixed point argument. Hence we need to improve it.



For that, letting i ≥ 1 be an integer and setting

ωi =
i

∑

d

rdωd and Φi =
i−1
∑

d

rdΦd ,

◮ we have to solve

m r H(ωi ,Φi ) = n +O(r i+1) in Σ(ωi ,Φi ),

〈NΣ,N∂Ω〉 = Ō(r i+2) on ∂Σ(ωi ,Φi).
(58)

◮ This is equivalent to the iterative scheme:

LSn
+
ωd + 〈JΦd , Θ̃〉 = rU(Θ) +O(r2) + rL(ωd−1,Φd−1)(59)

−r2∆ωd−1 + Q(ωd−1,Φd−1).

◮ We can achieve (58) if K is non-degenerate buy noticing that
〈JΦ, Θ̃〉 is invertible and is acting on the Kernel of LSn

+
.



Now we estimate the distance from 0 to the spectrum of the
selfadjoint Jacobi operator about Σ(ωi ,Φi):

Lr ,i(ω,Φ) := r2∆ω + LSn
+
ω + 〈JΦ, Θ̃〉+ rLi (ω,Φ). (60)

Following the idea of Malchiodi Montenegro [10], we want
quantitative estimates of the inverse of this operator. For that we
have to:
∗ Estimate the number of negative eigenvalues using the Weyl’s
asymptotic formula:

♯{j ∈ N : λj ≤ λ} ∼ cK λ
k
2 . (61)

∗ Estimate the derivative of its small eigenvalues λ(r): dλ(r)
dr

by
means of Kato’s theorem.



We have

◮ The Morse Index (it is decreasing):

Nr := Ind Lr ,i ∼ cr−k (62)

◮ The small eigenvalues λ(r) are strictly monotone:

∂λ(r)

∂r
=

1

r
(2n − or (1)). (63)

◮ Hence letting rℓ = 2−ℓ the number of eigenvalues which cross
0, when r decreases from rℓ to rℓ+1 is

Nrℓ+1
− Nrℓ ≃ cr−k

ℓ (64)

◮ From this we deduce that the set

Bℓ := {r ∈ (rℓ+1, rℓ) : KerLr = ∅} (65)

contains an interval Iℓ with |Iℓ| ≥ rk+1
ℓ . Moreover for any

r ∈ Iℓ, we have

‖L−1
r ,i ‖H1 ≤ cr−k . ∀i ≥ 1.



The fixed point problem can now be solved yielding the following
result:

Theorem
Let Ω be a smooth bounded domain of Rm+1, m ≥ 2. Suppose
that K is a non-degenerate minimal submanifold of ∂Ω. Then,
there exist a sequence rℓ ց 0 such that the “half” geodesic tube
Σ̄rℓ,K may be perturbed to a Capillary hypersurface Σrℓ,K with
contact angle γ = π

2 and mean curvature HΣrℓ,K
≡ n

m
if ℓ is

sufficiently large.



A result similar to ours was obtained by M-Mazzeo-Pacard [9] in
the case where Ω is a compact manifold (without boundary). We
have concentrations along non-degenerate minimal submanifold in
Ω.

The minimality conditions is somehow necessary for the existence,
as shown by Mazzeo-Pacard [11].

We emphasize that this result generalizes also to any constant
contact angle γ ∈ (0, π).
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