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Basic definitions

-(M, g) 3-dim Riemannian Manifold

-(N, g) — M isometrically immersed closed oriented
surface

- H mean curvatured := A;;¢" = ki + ko

- The Willmore functionall is defined as

I(N) = / H*dY.
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Applications

- Rellly Theorem:

2
N) < H*dY,
M(N) < Area(N) /N
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Applications

- Rellly Theorem:

2
M\ (N) < H*dY,
1(N) < Area(N) /N

- General Relativity: Hawking mass

Mass(N) = \/ ArfngN )1 1(; /N H2dY)

- Biology: Hellfrich Energy
- String Theory: Polyakov extrinsic action
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Problem: find critical points

- (N,g) — (M, g) is a critical point of/ if for all
¢ € C*(N), calledv the unit normal vector to&v
and

N(t) .= expn(tor) “= N +tov”

one has:I(N(t)) = 0
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Problem: find critical points

- (N, g) — (M, g) is a critical point of/ if for all
¢ € C*(N), calledv the unit normal vector to&v
and

N(t) .= expn(tor) “= N +tov”

one has:I(N(t)) = 0
- Critical points: called “Willmore Surfaces”
- N 1s a Willmore surface if and only If satisfies

2ANH + H(H® — 4kiks 4+ 2Ricy (v, v)) = 0
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Known Results in Euclidean Space

- Conformal InvariancgBlaschke and Thomsen
'30)
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Known Results in Euclidean Space

- Conformal InvariancgBlaschke and Thomsen
'30)

- Strict global minimum on standard sphergs
(Willmore '60):

I[(N) > 16m andI(N) = 167 <= N = S/

- For each genus the infimun¥ (167) is reached:
L.Simon (1993) and M.Bauer, E.Kuwert (2003)

- Divergence structure of the PDE: Riviére (2008)
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In Manifold?

- Closed minimal surfacedd = 0), the only
general result in general manifold

The Willmore Functional: a nperturbative anoroach — n. 6/21



In Manifold?

- Closed minimal surfacedd = 0), the only
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In Manifold?

- Closed minimal surfacedd = 0), the only
general result in general manifold

- In Space forms: Chen (1974),Weiner (1978), LI
(2004), Guo(2007)

- GOAL: Say something about existence of
Willmore surfaces in (non constantly) curved
manifold
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Which tecnic?
Geometrical properties of the functional:
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Which tecnic?

Geometrical properties of the functional:

- Invariance under isometries of ambient manifold
(useful for multiplicity results)

- Invariance under dilationg; — Ag, A > 0
= loss of compactness

USE A PERTURBATIVE METHOD
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| Ne perturpative metnoda: general set-
ting
H Hilbert space
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with Iy, G : H — R of classC? such that
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| Ne perturpative metnoda: general set-
ting
H Hilbert space

]€:]0+€G

with Iy, G : H — R of classC? such that

I, possesses a finite dimensional manifglof
critical points:Z = {z € H : [|(z) = 0}. With
(ND)T.Z = Ker[l!(2)], Vze Z

(FN)Vz € Z, I[(z) is Fredholm map of indef
AIM: find critical points of I, I.e. findu € H s.t

I'(u) = 0.
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The reduced functional

CRUCIAL FACT: there exist a function ianitely
manyvariables callededuced fuctional

b - R

such that
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The reduced functional
CRUCIAL FACT: there exist a function ianitely
manyvariables callededuced fuctional
b - R

such that

-fixed a compact subset. CC 7

-there exist a neighborhodd of Z. such that for
e > 0 small enough
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The reduced functional

CRUCIAL FACT: there exist a function ianitely
manyvariables callededuced fuctional

b - R

such that

-fixed a compact subset. CC 7

-there exist a neighborhodd of Z. such that for
e > 0 small enough

{critical points of/.|y } < {critical points of®.| 7.}

bijection
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Who Is ¢_7
With a Taylor expansion

D.(2) = I.(2) + o(e)
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Who Is ¢_7
With a Taylor expansion

D.(2) = I.(2) + o(e)

= to study the reduced functionél is enough to
know thel.|,
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The Willmore functional in metric ¢.

-ConsiderR? with the metricg. = 6 + €h, h a
symmetric bilinear form
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The Willmore functional in metric ¢.

-ConsiderR? with the metricg. = 6 + €h, h a
symmetric bilinear form

- I. = Willmore functional in ambient manifold
(R3, go): I.(N) := fN H?dY...

-1y = functional in euclidean metric

-Critical manifold

Z={S,:peR’p>0} 2R°PR"
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Perturbed spheres

-look for critical points of the formb? (w),
parametrized by

O > p+ p(1 — w(©))O
with w € O (S2).
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Perturbed spheres

-look for critical points of the fornb? (w),
parametrized by

O p+ p(l—w(©)O

with w € C**(5%).

-]6’(35)[10] — %Agz(ﬁsa -+ 2)w

—

-Ker[Ij(S?)] = costantst affine functions= Tg, Z
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Perturbed spheres

-look for critical points of the fornb? (w),
parametrized by

O p+ p(l—w(©)O

with w € C*%(S5?).
-15 (S9)|w] = %Agz(ﬁsa + 2)w
=

-Ker[Ij(S?)] = costantst affine functions= Tg, Z
-Fredholm condition

= [, satisfies the assumptions of the abstract method
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Perturbed spheres

-look for critical points of the fornb? (w),
parametrized by

O p+ p(l—w(©)O

with w € C+2(S?).

-15 (S9)|w] = %ASQ(Asﬂ + 2)w

=—

-Ker[Ij(S?)] = costantst affine functions= Tg, Z
-Fredholm condition

= [, satisfies the assumptions of the abstract method
AIM : give hypothesys oh to get thatdSf (w) critical
point.
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Expansions on standard spheres

-recall®.(S?) = I.(S) + o(e)
= do computations on standard spheres.
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Expansions on standard spheres

-recall®.(S?) = I.(S) + o(e)
= do computations on standard spheres.
LemmaThe following expansion fo®. in € holds

3.(S0) = 167+ 2 /5 [Th— 300, 0)
A0 = pAuN0"0 O dSy + ofe)

with A,Lw)\ = [D,uh)\z/ -+ D)\hylu — Dyh,u)\].
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Expansion for small radius

LemmakFor small radius spheres

. (S)) = 167 — 8§R1 (p)pe + o(p?)e + o(€)

whereR; := ZW D, h,, — ATrh.
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Expansion for small radius

LemmakFor small radius spheres

. (S)) = 167 — 8§R1 (p)pe + o(p?)e + o(€)

whereR; := ZW D, h,, — ATrh.
RemarkThe scalar curvaturg, of g. Is

Rge — €R1 + 0(6)
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Existence Theorem
TheoremAssume
- Jdp € R? such thatR, (p) # 0,
- Said||h(p) || := supj =y |hp(v,v)
0y im0 |h(p)]| = 0.
1) 3C' > 0 anda > 2 s.t.
|Dyh,o(p)| < & YA\ p,v=1...3.

[p|*
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Existence Theorem
TheoremAssume
- Jdp € R? such thatR, (p) # 0,
- Said||h(p)]| := supy—1 |hp(v, )]
t) limy, 00 [|R(P)|| = 0.
1) 3C' > 0 anda > 2 s.t.
|Dyh(p)| < ﬁ Y\ puv=1...3.
Then, fore small enough, there exist
(pe, pe) € R? @ RT+ andw,(p., pc) € C+*(S?)+ s.t
the perturbed spher&: (w.(p., p.)) Is critical point of
the Willmore functionall..
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Perturbed geodesic sphere

-(M, g) 3-dim ambient Riemannian manifold.
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Perturbed geodesic sphere

-(M, g) 3-dim ambient Riemannian manifold.
-fixedp € M, thegeodesic spherg, , of radiusp Is

the image o® € S* C T,M — Exp,(pO)
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Perturbed geodesic sphere

-(M, g) 3-dim ambient Riemannian manifold.
-fixedp € M, thegeodesic spherg, , of radiusp Is

the image o® € S* C T,M — Exp,(pO)
- fix a functionw € C*%(S?), theperturbed geodesic
sphereS,, ,(w) is defined as the image of

© € S* C T,M — Exp,(p(1 —w(O))O)
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Expansion of the Willmore functional

The Willmore functional/ H*dX on S, ,(w) can be
expanded as

I(Spp(w)) = 16#—8%3(19)/)2

" / Q2 (w) + P Ly(w))dO + O, (p).
SZ

whereR I1s the scalar curvature of the ambient
manifold (M, g).
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W IS constricted

LemmaFor smallp andw, if S, ,(w) is a critical
point then
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W IS constricted

LemmaFor smallp andw, if S, ,(w) is a critical
point then

i) wis aC* function in(p, p),
i) [lw] = O(p?) for p — 0,
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W IS constricted

LemmaFor smallp andw, if S, ,(w) is a critical
point then

i) wis aC* function in(p, p),

ii) lwll = O(p?) for p — 0,

011 a%w(p, p) is bounded ag — 0

— £ 1[S,,(w(p.p)] = R+ O

#+ 0if R(p) # 0andp << 1
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Non Existence

THEOREM Assume that at the poipte M the
scalar curvature is non null:

R(p) # 0.

Then, for radiug and perturbatiom ¢ C**(S?)
small enough, the surfaceés§ ,(w) arenotcritical
points of the Willmore functional.
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Thank you
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