The Willmore Functional: a perturbative approach

Andrea Mondino

Carthage, May 2010

The Willmore Functional: a perturbative approach -p. 1/21

-(M,g) 3-dim Riemannian Manifold

- -(M,g) 3-dim Riemannian Manifold
- $-(N, \mathring{g}) \hookrightarrow M$ isometrically immersed closed oriented surface

- -(M,g) 3-dim Riemannian Manifold
- $-(N, \mathring{g}) \hookrightarrow M$ isometrically immersed closed oriented surface
- *H* mean curvature, $H := A_{ij} \mathring{g}^{ij} = k_1 + k_2$

- -(M,g) 3-dim Riemannian Manifold
- $-(N, \mathring{g}) \hookrightarrow M$ isometrically immersed closed oriented surface
- H mean curvature, $H := A_{ij} \mathring{g}^{ij} = k_1 + k_2$
- The Willmore functional I is defined as

$$I(N) := \int H^2 d\Sigma$$

- Reilly Theorem:

 $\lambda_1(N) \le \frac{2}{Area(N)} \int_N H^2 d\Sigma$

- Reilly Theorem:

$$\lambda_1(N) \le \frac{2}{Area(N)} \int_N H^2 d\Sigma$$

- General Relativity: Hawking mass

$$Mass(N) := \sqrt{\frac{Area(N)}{16\pi}} \left(1 - \frac{1}{16\pi} \int_N H^2 d\Sigma\right)$$

- Reilly Theorem:

$$\lambda_1(N) \le \frac{2}{Area(N)} \int_N H^2 d\Sigma$$

- General Relativity: Hawking mass

$$Mass(N) := \sqrt{\frac{Area(N)}{16\pi}} \left(1 - \frac{1}{16\pi} \int_N H^2 d\Sigma\right)$$

- Biology: Hellfrich Energy

The Willmore Functional: a perturbative approach -p. 3/21

- Reilly Theorem:

$$\lambda_1(N) \le \frac{2}{Area(N)} \int_N H^2 d\Sigma$$

- General Relativity: Hawking mass

$$Mass(N) := \sqrt{\frac{Area(N)}{16\pi}} \left(1 - \frac{1}{16\pi} \int_N H^2 d\Sigma\right)$$

- Biology: Hellfrich Energy
- String Theory: Polyakov extrinsic action

 \mathbf{O}

Problem: find critical points

at

- $(N, \mathring{g}) \hookrightarrow (M, g)$ is a critical point of I if for all $\phi \in C^{\infty}(N)$, called ν the unit normal vector to N and

$$N(t) := exp_N(t\phi\nu) \quad `` = N + t\phi\nu''$$

ne has $\frac{d}{dt}I(N(t)) = 0$

Problem: find critical points

- $(N, \mathring{g}) \hookrightarrow (M, g)$ is a critical point of I if for all $\phi \in C^{\infty}(N)$, called ν the unit normal vector to N and

$$N(t) := exp_N(t\phi\nu) \quad `` = N + t\phi\nu''$$

one has $\frac{d}{dt}I(N(t)) = 0$

- Critical points: called "Willmore Surfaces"

Problem: find critical points

- $(N, \mathring{g}) \hookrightarrow (M, g)$ is a critical point of I if for all $\phi \in C^{\infty}(N)$, called ν the unit normal vector to N and

 $N(t) := exp_N(t\phi\nu) \quad `` = N + t\phi\nu''$

one has $\frac{d}{dt}I(N(t)) = 0$

- Critical points: called "Willmore Surfaces"
- N is a Willmore surface if and only if satisfies

 $2\triangle_N H + H(H^2 - 4k_1k_2 + 2Ric_M(\nu,\nu)) = 0$

Conformal Invariance (Blaschke and Thomsen '30)

- *Conformal Invariance* (Blaschke and Thomsen '30)
- Strict global minimum on standard spheres S^ρ_p
 (Willmore '60):

 $I(N) \ge 16\pi$ and $I(N) = 16\pi \iff N = S_p^{\rho}$

- *Conformal Invariance* (Blaschke and Thomsen '30)
- Strict global minimum on standard spheres S_p^{ρ} (Willmore '60):

 $I(N) \ge 16\pi$ and $I(N) = 16\pi \iff N = S_p^{\rho}$

- For each genus the infimum ($\geq 16\pi$) is reached: L.Simon (1993) and M.Bauer, E.Kuwert (2003)

- *Conformal Invariance* (Blaschke and Thomsen '30)
- Strict global minimum on standard spheres S_p^{ρ} (Willmore '60):

 $I(N) \ge 16\pi$ and $I(N) = 16\pi \iff N = S_p^{\rho}$

- For each genus the infimum ($\geq 16\pi$) is reached: L.Simon (1993) and M.Bauer, E.Kuwert (2003)
- Divergence structure of the PDE: Riviére (2008)

In Manifold?

- Closed minimal surfaces (H = 0), the only general result in general manifold

In Manifold?

- Closed minimal surfaces (H = 0), the only general result in general manifold
- In Space forms: Chen (1974),Weiner (1978), Li (2004), Guo(2007)

In Manifold?

- Closed minimal surfaces (H = 0), the only general result in general manifold
- In Space forms: Chen (1974),Weiner (1978), Li (2004), Guo(2007)
- GOAL: Say something about existence of Willmore surfaces in (non constantly) curved manifold

Geometrical properties of the functional:

Geometrical properties of the functional:

- Invariance under isometries of ambient manifold (useful for multiplicity results)

Geometrical properties of the functional:

- Invariance under isometries of ambient manifold (useful for multiplicity results)
- Invariance under dilations: $g \mapsto \lambda g, \lambda > 0$

Geometrical properties of the functional:

- Invariance under isometries of ambient manifold (useful for multiplicity results)
- Invariance under dilations: $g \mapsto \lambda g, \lambda > 0$

 \Rightarrow loss of compactness

Geometrical properties of the functional:

- Invariance under isometries of ambient manifold (useful for multiplicity results)
- Invariance under dilations: $g \mapsto \lambda g, \lambda > 0$

 \Rightarrow loss of compactness

USE A PERTURBATIVE METHOD

H Hilbert space

H Hilbert space

 $I_{\epsilon} = I_0 + \epsilon G$

with $I_0, G: H \to \mathbb{R}$ of class C^2 such that

H Hilbert space

 $I_{\epsilon} = I_0 + \epsilon G$

with $I_0, G: H \to \mathbb{R}$ of class C^2 such that I_0 possesses a finite dimensional manifold Z of critical points: $Z = \{z \in H : I'_0(z) = 0\}$. With

H Hilbert space

$$I_{\epsilon} = I_0 + \epsilon G$$

with $I_0, G : H \to \mathbb{R}$ of class C^2 such that I_0 possesses a finite dimensional manifold Z of critical points: $Z = \{z \in H : I'_0(z) = 0\}$. With (ND) $T_z Z = Ker[I''_0(z)], \quad \forall z \in Z$

H Hilbert space

$$I_{\epsilon} = I_0 + \epsilon G$$

with $I_0, G : H \to \mathbb{R}$ of class C^2 such that I_0 possesses a finite dimensional manifold Z of critical points: $Z = \{z \in H : I'_0(z) = 0\}$. With (ND) $T_z Z = Ker[I''_0(z)], \quad \forall z \in Z$ (Fr) $\forall z \in Z, I''_0(z)$ is Fredholm map of index 0

H Hilbert space

$$I_{\epsilon} = I_0 + \epsilon G$$

with $I_0, G : H \to \mathbb{R}$ of class C^2 such that I_0 possesses a finite dimensional manifold Z of critical points: $Z = \{z \in H : I'_0(z) = 0\}$. With (ND) $T_z Z = Ker[I''_0(z)], \quad \forall z \in Z$ (Fr) $\forall z \in Z, I''_0(z)$ is Fredholm map of index 0 **AIM: find critical points** of I_ϵ i.e. find $u \in H$ s.t

 $I_{\epsilon}'(u) = 0.$

CRUCIAL FACT: there exist a function in *finitely many* variables called *reduced fuctional*

$$\Phi_{\epsilon}: Z \to \mathbb{R}$$

such that

CRUCIAL FACT: there exist a function in *finitely many* variables called *reduced fuctional*

$$\Phi_{\epsilon}: Z \to \mathbb{R}$$

such that -fixed a compact subset $Z_c \subset \subset Z$

CRUCIAL FACT: there exist a function in *finitely many* variables called *reduced fuctional*

$$\Phi_{\epsilon}: Z \to \mathbb{R}$$

such that -fixed a compact subset $Z_c \subset \subset Z$ -there exist a neighborhood V_c of Z_c such that for $\epsilon > 0$ small enough

CRUCIAL FACT: there exist a function in *finitely many* variables called *reduced fuctional*

$$\Phi_{\epsilon}: Z \to \mathbb{R}$$

such that -fixed a compact subset $Z_c \subset \subset Z$ -there exist a neighborhood V_c of Z_c such that for $\epsilon > 0$ small enough

{critical points of $I_{\epsilon}|_{V_c}$ } \leftrightarrow {critical points of $\Phi_{\epsilon}|Z_c$ } bijection

Who is Φ_{ϵ} ? With a Taylor expansion

$$\Phi_{\epsilon}(z) = I_{\epsilon}(z) + o(\epsilon)$$

Who is Φ_{ϵ} ? With a Taylor expansion

$$\Phi_{\epsilon}(z) = I_{\epsilon}(z) + o(\epsilon)$$

 \Rightarrow to study the reduced functional Φ_{ϵ} is enough to know the $I_{\epsilon}|_{Z}$

-Consider \mathbb{R}^3 with the metric $g_{\epsilon} = \delta + \epsilon h$, h a symmetric bilinear form

-Consider \mathbb{R}^3 with the metric $g_{\epsilon} = \delta + \epsilon h$, h a symmetric bilinear form

- I_{ϵ} = Willmore functional in ambient manifold $(\mathbb{R}^3, g_{\epsilon})$: $I_{\epsilon}(N) := \int_N H_{\epsilon}^2 d\Sigma_{\epsilon}$.

-Consider \mathbb{R}^3 with the metric $g_{\epsilon} = \delta + \epsilon h$, h a symmetric bilinear form

- I_{ϵ} = Willmore functional in ambient manifold $(\mathbb{R}^3, g_{\epsilon})$: $I_{\epsilon}(N) := \int_N H_{\epsilon}^2 d\Sigma_{\epsilon}$.
- $-I_0 =$ functional in euclidean metric

-Consider \mathbb{R}^3 with the metric $g_{\epsilon} = \delta + \epsilon h$, h a symmetric bilinear form

- I_{ϵ} = Willmore functional in ambient manifold $(\mathbb{R}^3, g_{\epsilon})$: $I_{\epsilon}(N) := \int_N H_{\epsilon}^2 d\Sigma_{\epsilon}$.

 $-I_0 =$ functional in euclidean metric

-Critical manifold

 $Z = \{S_p^{\rho} : p \in \mathbb{R}^3, \rho > 0\} \simeq \mathbb{R}^3 \oplus \mathbb{R}^+$

-look for critical points of the form $S_p^{\rho}(w)$, parametrized by

 $\Theta \mapsto p + \rho(1 - w(\Theta))\Theta$

with $w \in C^{4,\alpha}(S^2)$.

-look for critical points of the form $S_p^{\rho}(w)$, parametrized by

 $\Theta \mapsto p + \rho(1 - w(\Theta))\Theta$

with $w \in C^{4,\alpha}(S^2)$. $-I_0''(S_p^{\rho})[w] = \frac{2}{\rho^3} \triangle_{S^2}(\triangle_{S^2} + 2)w$

-look for critical points of the form $S_p^{\rho}(w)$, parametrized by

 $\Theta \mapsto p + \rho(1 - w(\Theta))\Theta$

with $w \in C^{4,\alpha}(S^2)$. $-I_0''(S_p^{\rho})[w] = \frac{2}{\rho^3} \triangle_{S^2}(\triangle_{S^2} + 2)w$ \Rightarrow $-Ker[I_0''(S_p^{\rho})] = \text{costants} + \text{affine functions} = T_{S_p^{\rho}}Z$

-look for critical points of the form $S_p^{\rho}(w)$, parametrized by

$$\Theta \mapsto p + \rho(1 - w(\Theta))\Theta$$

with $w \in C^{4,\alpha}(S^2)$. $-I_0''(S_p^{\rho})[w] = \frac{2}{\rho^3} \triangle_{S^2}(\triangle_{S^2} + 2)w$ \Rightarrow $-Ker[I_0''(S_p^{\rho})] = \text{costants} + \text{affine functions} = T_{S_p^{\rho}}Z$ -Fredholm condition

-look for critical points of the form $S_p^{\rho}(w)$, parametrized by

$$\Theta \mapsto p + \rho(1 - w(\Theta))\Theta$$

with $w \in C^{4,\alpha}(S^2)$. $-I_0''(S_p^{\rho})[w] = \frac{2}{\rho^3} \triangle_{S^2}(\triangle_{S^2} + 2)w$ \Rightarrow $-Ker[I_0''(S_p^{\rho})] = \text{costants} + \text{affine functions} = T_{S_p^{\rho}}Z$ -Fredholm condition $\Rightarrow I_0$ satisfies the assumptions of the abstract method

-look for critical points of the form $S_p^{\rho}(w)$, parametrized by

$$\Theta \mapsto p + \rho(1 - w(\Theta))\Theta$$

with $w \in C^{4,\alpha}(S^2)$. $-I_0''(S_p^{\rho})[w] = \frac{2}{\rho^3} \triangle_{S^2}(\triangle_{S^2} + 2)w$ \Rightarrow

 $-Ker[I_0''(S_p^{\rho})] = \text{costants} + \text{affine functions} = T_{S_p^{\rho}}Z$ -Fredholm condition

 $\Rightarrow I_0$ satisfies the assumptions of the abstract method **AIM**: give hypothesys on *h* to get that $\exists S_p^{\rho}(w)$ critical point.

Expansions on standard spheres

-recall $\Phi_{\epsilon}(S_p^{\rho}) = I_{\epsilon}(S_p^{\rho}) + o(\epsilon)$

 \Rightarrow do computations on standard spheres.

Expansions on standard spheres

-recall $\Phi_{\epsilon}(S_{p}^{\rho}) = I_{\epsilon}(S_{p}^{\rho}) + o(\epsilon)$ \Rightarrow do computations on standard spheres. Lemma The following expansion for Φ_{ϵ} in ϵ holds

$$\Phi_{\epsilon}(S_{p}^{\rho}) = 16\pi + 2\epsilon \int_{S^{2}} \left[\operatorname{Tr}h - 3h(\Theta, \Theta) + \rho A_{\mu\mu\lambda} \Theta^{\lambda} - \rho A_{\mu\nu\lambda} \Theta^{\mu} \Theta^{\nu} \Theta^{\lambda} \right] d\Sigma_{0} + o(\epsilon)$$

with $A_{\mu\nu\lambda} := [D_{\mu}h_{\lambda\nu} + D_{\lambda}h_{\nu\mu} - D_{\nu}h_{\mu\lambda}].$

Expansion for small radius

Lemma For small radius spheres

$$\Phi_{\epsilon}(S_p^{\rho}) = 16\pi - \frac{8\pi}{3}R_1(p)\rho^2\epsilon + o(\rho^2)\epsilon + o(\epsilon)$$

where $R_1 := \sum_{\mu\nu} D_{\mu\nu} h_{\mu\nu} - \triangle \text{Tr}h$.

Expansion for small radius

Lemma For small radius spheres

$$\Phi_{\epsilon}(S_p^{\rho}) = 16\pi - \frac{8\pi}{3}R_1(p)\rho^2\epsilon + o(\rho^2)\epsilon + o(\epsilon)$$

where $R_1 := \sum_{\mu\nu} D_{\mu\nu} h_{\mu\nu} - \triangle \text{Tr}h$. Remark The scalar curvature $R_{g_{\epsilon}}$ of g_{ϵ} is

$$R_{g_{\epsilon}} = \epsilon R_1 + o(\epsilon)$$

Existence Theorem

Theorem Assume $\exists \bar{p} \in \mathbb{R}^{3} \text{ such that } R_{1}(\bar{p}) \neq 0, \\
 - \text{Said } ||h(p)|| := \sup_{|v|=1} |h_{p}(v, v)| \\
 i) \lim_{|p| \to \infty} ||h(p)|| = 0. \\
 ii) \exists C > 0 \text{ and } \alpha > 2 \text{ s.t.} \\
 |D_{\lambda}h_{\mu\nu}(p)| < \frac{C}{|p|^{\alpha}} \quad \forall \lambda, \mu, \nu = 1 \dots 3. \\
 \end{cases}$

Existence Theorem

Theorem Assume $\exists \bar{p} \in \mathbb{R}^3$ such that $R_1(\bar{p}) \neq 0$, - Said $||h(p)|| := \sup_{|v|=1} |h_p(v, v)|$ *i*) $\lim_{|p|\to\infty} ||h(p)|| = 0.$ ii) $\exists C > 0$ and $\alpha > 2$ s.t. $|D_{\lambda}h_{\mu\nu}(p)| < \frac{C}{|p|^{\alpha}} \quad \forall \lambda, \mu, \nu = 1 \dots 3.$ Then, for ϵ small enough, there exist $(p_{\epsilon}, \rho_{\epsilon}) \in \mathbb{R}^3 \oplus \mathbb{R}^+ + \text{ and } w_{\epsilon}(p_{\epsilon}, \rho_{\epsilon}) \in C^{4, \alpha}(S^2)^{\perp} \text{ s.t.}$ the perturbed sphere $S_{p_{\epsilon}}^{\rho_{\epsilon}}(w_{\epsilon}(p_{\epsilon},\rho_{\epsilon}))$ is critical point of the Willmore functional I_{ϵ} .

Perturbed geodesic sphere

-(M,g) 3-dim ambient Riemannian manifold.

Perturbed geodesic sphere

-(M,g) 3-dim ambient Riemannian manifold. -fixed $p \in M$, the *geodesic sphere* $S_{p,\rho}$ of radius ρ is the image of $\Theta \in S^2 \subset T_pM \mapsto Exp_p(\rho\Theta)$

Perturbed geodesic sphere

-(M, g) 3-dim ambient Riemannian manifold. -fixed $p \in M$, the *geodesic sphere* $S_{p,\rho}$ of radius ρ is the image of $\Theta \in S^2 \subset T_pM \mapsto Exp_p(\rho\Theta)$ - fix a function $w \in C^{4,\alpha}(S^2)$, the *perturbed geodesic sphere* $S_{p,\rho}(w)$ is defined as the image of

 $\Theta \in S^2 \subset T_p M \mapsto Exp_p(\rho(1 - w(\Theta))\Theta)$

Expansion of the Willmore functional The Willmore functional $\int H^2 d\Sigma$ on $S_{p,\rho}(w)$ can be expanded as

$$I(S_{p,\rho}(w)) = 16\pi - \frac{8\pi}{3}R(p)\rho^{2} + \int_{S^{2}} (Q_{p}^{(2)}(w) + \rho^{2}L_{p}(w))d\Theta + O_{p}(\rho^{3}),$$

where R is the scalar curvature of the ambient manifold (M, g).

Lemma For small ρ and w, if $S_{p,\rho}(w)$ is a critical point then

Lemma For small ρ and w, if $S_{p,\rho}(w)$ is a critical point then

i) w is a C^1 function in (p, ρ) ,

Lemma For small ρ and w, if $S_{p,\rho}(w)$ is a critical point then

i) w is a C^1 function in (p, ρ) , ii) $||w|| = O(\rho^2)$ for $\rho \to 0$,

Lemma For small ρ and w, if $S_{p,\rho}(w)$ is a critical point then

i) w is a C^1 function in (p, ρ) , ii) $||w|| = O(\rho^2)$ for $\rho \to 0$, iii) $\frac{\partial}{\partial \rho} w(p, \rho)$ is bounded as $\rho \to 0$

$$\implies \frac{\partial}{\partial \rho} I[S_{p,\rho}(w(p,\rho))] = -\frac{16\pi}{3} R(\bar{p})\rho + O(\rho^2)$$

$$\neq 0 \text{ if } R(\bar{p}) \neq 0 \text{ and } \rho << 1$$

Non Existence

THEOREM: Assume that at the point $\bar{p} \in M$ the scalar curvature is non null:

 $R(\bar{p}) \neq 0.$

Then, for radius ρ and perturbation $w \in C^{4,\alpha}(S^2)$ small enough, the surfaces $S_{\overline{p},\rho}(w)$ are not critical points of the Willmore functional I.

References

-About the method: A. Ambrosetti, A. Malchiodi, "Perturbation methods and semilinear elliptic problems in \mathbb{R}^n ", Progress in mathematics, Birkhauser (2006).

-The results: A. Mondino, "Some results about the existence of critical points for the Willmore functional", Math. Zeit. (2009, in press).

Thank you