Mirror couplings of reflecting Brownian motions and applications

Mihai N. Pascu
Transilvania University of Braşov, Romania

May 25, 2010

Queen Dido Conference

on the isoperimetric problem of queen Dido and its mathematical ramifications

$$
24 \text { - } 29 \text { May 2010, Carthage, Tunis }
$$

Abstract

Rodrigo Bañuelos, Krzystoff Burdzy et. al. ([BaBu], [Bu], [AtBu1], [AtBu2], [BuKe]) introduced the mirror coupling of reflecting Brownian motions in a smooth domain $D \subset \mathbb{R}^{d}$ and used it in order to derive properties of Neumann eigenvalues/eigenfunctions of the Neumann Laplaceian on D.

Abstract

Rodrigo Bañuelos, Krzystoff Burdzy et. al. ([BaBu], [Bu], [AtBu1], [AtBu2], [BuKe]) introduced the mirror coupling of reflecting Brownian motions in a smooth domain $D \subset \mathbb{R}^{d}$ and used it in order to derive properties of Neumann eigenvalues/eigenfunctions of the Neumann Laplaceian on D.

In the present talk we will show that the coupling can be extended to the case when the two reflecting Brownian motions live in different domains $D_{1}, D_{2} \subset \mathbb{R}^{d}$.

Abstract

Rodrigo Bañuelos, Krzystoff Burdzy et. al. ([BaBu], [Bu], [AtBu1], [AtBu2], [BuKe]) introduced the mirror coupling of reflecting Brownian motions in a smooth domain $D \subset \mathbb{R}^{d}$ and used it in order to derive properties of Neumann eigenvalues/eigenfunctions of the Neumann Laplaceian on D.

In the present talk we will show that the coupling can be extended to the case when the two reflecting Brownian motions live in different domains $D_{1}, D_{2} \subset \mathbb{R}^{d}$.

As an application of the construction, we will derive a unifying proof of the two most important results on Chavel's conjecture on the domain monotonicity of the Neumann heat kernell ([Ch], [Ke]).

Definitions

Definition

A 1-dimensional Brownian motion starting at $x \in \mathbb{R}$ is a continuous stochastic process $\left(B_{t}\right)_{t \geq 0}$ with $B_{0}=x$ a.s for which $B_{t}-B_{s}$ is a normal random variable $\mathcal{N}(0, t-s)$, independent of the σ-algebra $\mathcal{F}_{s}=\sigma\left(B_{r}: r \leq s\right)$, for all $0 \leq s<t$.

Definitions

Definition

A 1-dimensional Brownian motion starting at $x \in \mathbb{R}$ is a continuous stochastic process $\left(B_{t}\right)_{t \geq 0}$ with $B_{0}=x$ a.s for which $B_{t}-B_{s}$ is a normal random variable $\mathcal{N}(0, t-s)$, independent of the σ-algebra $\mathcal{F}_{s}=\sigma\left(B_{r}: r \leq s\right)$, for all $0 \leq s<t$.

Definition

A d-dimensional Brownian motion starting at $x=\left(x^{1}, \ldots, x^{d}\right) \in \mathbb{R}^{d}$ is a stochastic process $B_{t}=\left(B_{t}^{1}, \ldots, B_{t}^{d}\right)$, where the components B_{t}^{i} are independent 1-dimensional Brownian motions starting at $x^{i}, 1 \leq i \leq d$.

Definitions

Definition

A 1-dimensional Brownian motion starting at $x \in \mathbb{R}$ is a continuous stochastic process $\left(B_{t}\right)_{t \geq 0}$ with $B_{0}=x$ a.s for which $B_{t}-B_{s}$ is a normal random variable $\mathcal{N}(0, t-s)$, independent of the σ-algebra $\mathcal{F}_{s}=\sigma\left(B_{r}: r \leq s\right)$, for all $0 \leq s<t$.

Definition

A d-dimensional Brownian motion starting at $x=\left(x^{1}, \ldots, x^{d}\right) \in \mathbb{R}^{d}$ is a stochastic process $B_{t}=\left(B_{t}^{1}, \ldots, B_{t}^{d}\right)$, where the components B_{t}^{i} are independent 1-dimensional Brownian motions starting at $x^{i}, 1 \leq i \leq d$.

Definition

Reflecting Brownian motion in a smooth domain $D \subset \mathbb{R}^{d}$ starting at $x_{0} \in \bar{D}$ is a solution of the stochastic differential equation

$$
\begin{equation*}
X_{t}=x_{0}+B_{t}+\int_{0}^{t} \nu_{D}\left(X_{s}\right) d L_{s}^{X}, \quad t \geq 0 \tag{1}
\end{equation*}
$$

where B_{t} is a d-dimensional BM starting at $B_{0}=0$ on $\left(\Omega, \mathcal{F},\left(\mathcal{F}_{t}\right)_{t \geq 0}, P\right), L_{t}^{X}$ is the local time of X on the boundary of D, X_{t} is \mathcal{F}_{t}-adapted and almost surely $X_{t} \in \bar{D}$ for all $t \geq 0$.

Skorokhod map

Remark

It can be shown ([LiSz]) that there exists a unique \mathcal{F}_{t}-semimartingale which solves (1). In fact, there exists a map (Skorokhod map)

$$
\Gamma: C\left([0, \infty): \mathbb{R}^{d}\right) \rightarrow C([0, \infty): \bar{D})
$$

such that $X=\Gamma(x+B)$ a.s.
For each $T>0$ fixed, $\left.\Gamma\right|_{[0, T]}$ is Hölder continuous of order $1 / 2$ on compact subsets of $C\left([0, T]: \mathbb{R}^{d}\right)$.

Couplings of Brownian motions

Brownian motion is invariant under translation, rotation/symmetry and scaling (almost).

Couplings of Brownian motions

Brownian motion is invariant under translation, rotation/symmetry and scaling (almost).

This gives rise to:

- Synchronous coupling: $\left(B_{t}, B_{t}+v\right)$

Couplings of Brownian motions

Brownian motion is invariant under translation, rotation/symmetry and scaling (almost).

This gives rise to:

- Synchronous coupling: $\left(B_{t}, B_{t}+v\right)$
- Mirror coupling : $\left(B_{t}, S_{\theta} B_{t}\right)$

Couplings of Brownian motions

Brownian motion is invariant under translation, rotation/symmetry and scaling (almost).

This gives rise to:

- Synchronous coupling: $\left(B_{t}, B_{t}+v\right)$
- Mirror coupling : $\left(B_{t}, S_{\theta} B_{t}\right)$
- Scaling coupling: $\left(B_{t}, c B_{t / c^{2}}\right)$

Couplings of Brownian motions

Brownian motion is invariant under translation, rotation/symmetry and scaling (almost).

This gives rise to:

- Synchronous coupling: $\left(B_{t}, B_{t}+v\right)$
- Mirror coupling : $\left(B_{t}, S_{\theta} B_{t}\right)$
- Scaling coupling: $\left(B_{t}, c B_{t / c^{2}}\right)$

The above can be extended to the case of reflecting Brownian motion.

Couplings of Brownian motions

Brownian motion is invariant under translation, rotation/symmetry and scaling (almost).

This gives rise to:

- Synchronous coupling: (Burdzy, Atar, Kendall)
- Mirror coupling : $\left(B_{t}, S_{\theta} B_{t}\right)$
- Scaling coupling: $\left(B_{t}, c B_{t / c^{2}}\right)$

The above can be extended to the case of reflecting Brownian motion.

Couplings of Brownian motions

Brownian motion is invariant under translation, rotation/symmetry and scaling (almost).

This gives rise to:

- Synchronous coupling: (Burdzy, Atar, Kendall)
- Mirror coupling : (Bañuelos, Burdzy, Atar, Kendall, P.)
- Scaling coupling: $\left(B_{t}, c B_{t / c^{2}}\right)$

The above can be extended to the case of reflecting Brownian motion.

Couplings of Brownian motions

Brownian motion is invariant under translation, rotation/symmetry and scaling (almost).

This gives rise to:

- Synchronous coupling: (Burdzy, Atar, Kendall)
- Mirror coupling : (Bañuelos, Burdzy, Atar, Kendall, P.)
- Scaling coupling: (P.)

The above can be extended to the case of reflecting Brownian motion.

Mirror coupling of Brownian motions

Given a hyperplane \mathcal{H} (the mirror) and a Brownian motion X_{t}, we define the Brownian motion Y_{t} as the mirror image of X_{t} with respect to \mathcal{H} until the coupling time

$$
\xi=\inf \left\{s>0: X_{s}=Y_{s}\right\},
$$

after which the processes X_{t} and Y_{t} evolve together.

Figure: The mirror coupling of Brownian motions.

Equation of the mirror coupling of Brownian motions

If m is a unit normal to \mathcal{H}, then Y_{t} is given explicitly by

$$
\begin{equation*}
Y_{t}=X_{t}-2\left(X_{t} \cdot m\right) m, \quad t \leq \xi \tag{2}
\end{equation*}
$$

Equation of the mirror coupling of Brownian motions

If m is a unit normal to \mathcal{H}, then Y_{t} is given explicitly by

$$
\begin{equation*}
Y_{t}=X_{t}-2\left(X_{t} \cdot m\right) m, \quad t \leq \xi \tag{2}
\end{equation*}
$$

Introducing the $d \times d$ matrix H by

$$
\begin{equation*}
H(m)=I-2 m m^{T}=\left(\delta_{i j}-2 m_{i} m_{j}\right)_{1 \leq i, j \leq d}, \tag{3}
\end{equation*}
$$

(reflection in the hyperplane \mathcal{H} through the origin and perpendicular to m)

Equation of the mirror coupling of Brownian motions

If m is a unit normal to \mathcal{H}, then Y_{t} is given explicitly by

$$
\begin{equation*}
Y_{t}=X_{t}-2\left(X_{t} \cdot m\right) m, \quad t \leq \xi \tag{2}
\end{equation*}
$$

Introducing the $d \times d$ matrix H by

$$
\begin{equation*}
H(m)=I-2 m m^{T}=\left(\delta_{i j}-2 m_{i} m_{j}\right)_{1 \leq i, j \leq d}, \tag{3}
\end{equation*}
$$

(reflection in the hyperplane \mathcal{H} through the origin and perpendicular to m)
since for $t \leq \xi$ we have $m=\frac{Y_{t}-X_{t}}{\left|Y_{t}-X_{t}\right|}$ and for $t \geq \xi$ we have $Y_{t}=X_{t}$,

Equation of the mirror coupling of Brownian motions

If m is a unit normal to \mathcal{H}, then Y_{t} is given explicitly by

$$
\begin{equation*}
Y_{t}=X_{t}-2\left(X_{t} \cdot m\right) m, \quad t \leq \xi \tag{2}
\end{equation*}
$$

Introducing the $d \times d$ matrix H by

$$
\begin{equation*}
H(m)=I-2 m m^{T}=\left(\delta_{i j}-2 m_{i} m_{j}\right)_{1 \leq i, j \leq d}, \tag{3}
\end{equation*}
$$

(reflection in the hyperplane \mathcal{H} through the origin and perpendicular to m)
since for $t \leq \xi$ we have $m=\frac{Y_{t}-X_{t}}{\left|Y_{t}-X_{t}\right|}$ and for $t \geq \xi$ we have $Y_{t}=X_{t}$, the above relation can be written in the form

$$
\begin{equation*}
Y_{t}=G\left(Y_{t}-X_{t}\right) X_{t}, \quad t \geq 0 \tag{4}
\end{equation*}
$$

where

$$
G(u)=\left\{\begin{array}{ll}
H\left(\frac{u}{|u|}\right), & u \neq 0 \tag{5}\\
I, & u=0
\end{array} .\right.
$$

Equation of the mirror coupling of Brownian motions

If m is a unit normal to \mathcal{H}, then Y_{t} is given explicitly by

$$
\begin{equation*}
Y_{t}=X_{t}-2\left(X_{t} \cdot m\right) m, \quad t \leq \xi \tag{2}
\end{equation*}
$$

Introducing the $d \times d$ matrix H by

$$
\begin{equation*}
H(m)=I-2 m m^{T}=\left(\delta_{i j}-2 m_{i} m_{j}\right)_{1 \leq i, j \leq d}, \tag{3}
\end{equation*}
$$

(reflection in the hyperplane \mathcal{H} through the origin and perpendicular to m)
since for $t \leq \xi$ we have $m=\frac{Y_{t}-X_{t}}{\left|Y_{t}-X_{t}\right|}$ and for $t \geq \xi$ we have $Y_{t}=X_{t}$, the above relation can be written in the form

$$
\begin{equation*}
Y_{t}=G\left(Y_{t}-X_{t}\right) X_{t}, \quad t \geq 0 \tag{4}
\end{equation*}
$$

where

$$
G(u)=\left\{\begin{array}{ll}
H\left(\frac{u}{|u|}\right), & u \neq 0 \tag{5}\\
I, & u=0
\end{array} .\right.
$$

Mirror coupling of reflecting Brownian motions

Consider $D_{1,2} \subset \mathbb{R}^{d}$ smooth bounded domains with $\overline{D_{2}} \subset D_{1}$ and D_{2}-convex.

Mirror coupling of reflecting Brownian motions

Consider $D_{1,2} \subset \mathbb{R}^{d}$ smooth bounded domains with $\overline{D_{2}} \subset D_{1}$ and D_{2}-convex.
Given a d-dimensional BM $\left(W_{t}\right)_{t \geq 0}$ with $W_{0}=0$, consider the following system of SDE:

$$
\begin{align*}
X_{t} & =x+W_{t}+\int_{0}^{t} \nu_{D_{1}}\left(X_{s}\right) d L_{s}^{X} \tag{6}\\
Y_{t} & =y+Z_{t}+\int_{0}^{t} \nu_{D_{2}}\left(Y_{s}\right) d L_{s}^{Y} \tag{7}\\
Z_{t} & =\int_{0}^{t} G\left(Y_{s}-X_{s}\right) d W_{s} \tag{8}
\end{align*}
$$

where $\nu_{D_{1}}$ and $\nu_{D_{2}}$ represent the inward unit normal vector fields on ∂D_{1}, respectively ∂D_{2}.

Mirror coupling of reflecting Brownian motions

Consider $D_{1,2} \subset \mathbb{R}^{d}$ smooth bounded domains with $\overline{D_{2}} \subset D_{1}$ and D_{2}-convex.
Given a d-dimensional BM $\left(W_{t}\right)_{t \geq 0}$ with $W_{0}=0$, consider the following system of SDE:

$$
\begin{align*}
X_{t} & =x+W_{t}+\int_{0}^{t} \nu_{D_{1}}\left(X_{s}\right) d L_{s}^{X} \tag{6}\\
Y_{t} & =y+Z_{t}+\int_{0}^{t} \nu_{D_{2}}\left(Y_{s}\right) d L_{s}^{Y} \tag{7}\\
Z_{t} & =\int_{0}^{t} G\left(Y_{s}-X_{s}\right) d W_{s} \tag{8}
\end{align*}
$$

where $\nu_{D_{1}}$ and $\nu_{D_{2}}$ represent the inward unit normal vector fields on ∂D_{1}, respectively ∂D_{2}. Considering Γ and $\tilde{\Gamma}$ the corresponding Skorokhod maps (i.e. $X=\Gamma(x+W)$, $Y=\tilde{\Gamma}(y+Z)$), the above system is equivalent to

$$
\begin{equation*}
Z_{t}=\int_{0}^{t} G\left(\tilde{\Gamma}(y+Z)_{s}-\Gamma(x+W)_{s}\right) d W_{s} \tag{9}
\end{equation*}
$$

Mirror coupling of reflecting Brownian motions

Consider $D_{1,2} \subset \mathbb{R}^{d}$ smooth bounded domains with $\overline{D_{2}} \subset D_{1}$ and D_{2}-convex.
Given a d-dimensional BM $\left(W_{t}\right)_{t \geq 0}$ with $W_{0}=0$, consider the following system of SDE:

$$
\begin{align*}
X_{t} & =x+W_{t}+\int_{0}^{t} \nu_{D_{1}}\left(X_{s}\right) d L_{s}^{X} \tag{6}\\
Y_{t} & =y+Z_{t}+\int_{0}^{t} \nu_{D_{2}}\left(Y_{s}\right) d L_{s}^{Y} \tag{7}\\
Z_{t} & =\int_{0}^{t} G\left(Y_{s}-X_{s}\right) d W_{s} \tag{8}
\end{align*}
$$

where $\nu_{D_{1}}$ and $\nu_{D_{2}}$ represent the inward unit normal vector fields on ∂D_{1}, respectively ∂D_{2}. Considering Γ and $\tilde{\Gamma}$ the corresponding Skorokhod maps (i.e. $X=\Gamma(x+W)$, $Y=\tilde{\Gamma}(y+Z)$), the above system is equivalent to

$$
\begin{equation*}
Z_{t}=\int_{0}^{t} G\left(\tilde{\Gamma}(y+Z)_{s}-\Gamma(x+W)_{s}\right) d W_{s} \tag{9}
\end{equation*}
$$

Remark

In the particular case when $D_{1}=D_{2}$, (6) - (9) above reduces to the case considered by Burdzy et. al. (i.e. mirror coupling of reflecting Brownian motions in D).

Main result

Theorem

Let $D_{1,2} \subset \mathbb{R}^{d}$ be smooth bounded domains with $\overline{D_{2}} \subset D_{1}$ and D_{2} convex domain, and let $x \in \bar{D}_{1}$ and $y \in \bar{D}_{2}$ be arbitrarily fixed points.
Then there exists a strong solution X_{t}, Y_{t} to (6) - (9) above, referred to as a mirror coupling of reflecting Brownian motions in D_{1}, respectively D_{2}, starting from $(x, y) \in \overline{D_{1}} \times \overline{D_{2}}$ with driving Brownian motion W_{t}.

Some remarks

Remark

In the case $D_{1}=D_{2}=D$, the solution to (9) can be essentially constructed by Picard iterations, since outside of the origin G satisfies

$$
\left\|G(u)-G\left(u^{\prime}\right)\right\| \leq c\left|u-u^{\prime}\right|,
$$

where $\left\|\left(g_{i j}\right)_{i, j}\right\|=\left(\sum_{i, j} g_{i j}^{2}\right)^{1 / 2}$.

Some remarks

Remark

In the case $D_{1}=D_{2}=D$, the solution to (9) can be essentially constructed by Picard iterations, since outside of the origin G satisfies

$$
\left\|G(u)-G\left(u^{\prime}\right)\right\| \leq c\left|u-u^{\prime}\right|,
$$

where $\left\|\left(g_{i j}\right)_{i, j}\right\|=\left(\sum_{i, j} g_{i j}^{2}\right)^{1 / 2}$.
It can also be shown that in this case the solution is pathwise unique.

Some remarks

Remark

In the case $D_{1}=D_{2}=D$, the solution to (9) can be essentially constructed by Picard iterations, since outside of the origin G satisfies

$$
\left\|G(u)-G\left(u^{\prime}\right)\right\| \leq c\left|u-u^{\prime}\right|,
$$

where $\left\|\left(g_{i j}\right)_{i, j}\right\|=\left(\sum_{i, j} g_{i j}^{2}\right)^{1 / 2}$.
It can also be shown that in this case the solution is pathwise unique.

Remark

In the general case this method cannot be used. The reason is that once the processes X_{t} and Y_{t} have coupled, it is possible for them to decouple: for example if $X_{t}=Y_{t} \in \partial D_{2}$, the solutions will split.
The behaviour of G at the origin becomes therefore essential - we have to show the existence of a degenerate SDE (G is discontinuous at the origin).
Surprisingly, the existence of the solution comes from the convexity of the smaller domain!

Idea of the proof

- Reduce the problem to the case $D_{1}=\mathbb{R}^{d}$ (hence $X_{t}=X_{0}+W_{t}$)

Idea of the proof

- Reduce the problem to the case $D_{1}=\mathbb{R}^{d}$ (hence $X_{t}=X_{0}+W_{t}$)
- Construct the solution in the case D_{2} is a half space in \mathbb{R}^{d}

Idea of the proof

- Reduce the problem to the case $D_{1}=\mathbb{R}^{d}$ (hence $X_{t}=X_{0}+W_{t}$)
- Construct the solution in the case D_{2} is a half space in \mathbb{R}^{d}
- Extend the construction to the case of when D_{2} is a convex polygonal domain in \mathbb{R}^{d}

Idea of the proof

- Reduce the problem to the case $D_{1}=\mathbb{R}^{d}$ (hence $X_{t}=X_{0}+W_{t}$)
- Construct the solution in the case D_{2} is a half space in \mathbb{R}^{d}
- Extend the construction to the case of when D_{2} is a convex polygonal domain in \mathbb{R}^{d}
- Approximate $D_{2}=D$ by an increasing sequence of convex polygonal domains $D_{n} \nearrow D$

Idea of the proof

- Reduce the problem to the case $D_{1}=\mathbb{R}^{d}$ (hence $X_{t}=X_{0}+W_{t}$)
- Construct the solution in the case D_{2} is a half space in \mathbb{R}^{d}
- Extend the construction to the case of when D_{2} is a convex polygonal domain in \mathbb{R}^{d}
- Approximate $D_{2}=D$ by an increasing sequence of convex polygonal domains $D_{n} \nearrow D$
- Show the solution Y_{t}^{n} for D_{n} converges to the solution Y_{t} for D, that is

$$
\begin{equation*}
Z_{t}^{n}=\int_{0}^{t} G\left(Y_{s}^{n}-X_{s}\right) d W_{s} \underset{n \rightarrow \infty}{\longrightarrow} \int_{0}^{t} G\left(Y_{s}-X_{s}\right) d W_{s}=Z_{t}, \quad t \geq 0 \tag{10}
\end{equation*}
$$

where Z_{t}^{n}, Z_{t} are the driving Brownian motions for Y_{t}^{n}, respectively Y_{t}.

Applications

Consider $D_{1,2} \subset \mathbb{R}^{d}$.

Applications

Consider $D_{1,2} \subset \mathbb{R}^{d}$.
The Dirichlet heat kernel $\tilde{p}_{D}(t, x, y)$ is an increasing function of the domain: if $D_{1} \subset D_{2}$ then

$$
\tilde{p}_{D_{1}}(t, x, y) \leq \tilde{p}_{D_{2}}(t, x, y), \quad t>0 \text { and } x, y \in D_{1}
$$

(one feels warmer in bigger rooms with refrigerated walls than in smaller ones).

Applications

Consider $D_{1,2} \subset \mathbb{R}^{d}$.
The Dirichlet heat kernel $\tilde{p}_{D}(t, x, y)$ is an increasing function of the domain: if $D_{1} \subset D_{2}$ then

$$
\tilde{p}_{D_{1}}(t, x, y) \leq \tilde{p}_{D_{2}}(t, x, y), \quad t>0 \text { and } x, y \in D_{1}
$$

(one feels warmer in bigger rooms with refrigerated walls than in smaller ones).
Isaac Chavel conjectured that the Neumann heat kernel is a decreasing function of the domain:

Conjecture (Chavel, 1986)

If $D_{1} \subset D_{2}$ are convex domains then for all $t>0$ and $x, y \in D_{2}$ we have

$$
p_{D_{1}}(t, x, y) \geq p_{D_{2}}(t, x, y) .
$$

(one feels warmer in smaller insulated rooms than in bigger ones)

Applications

Consider $D_{1,2} \subset \mathbb{R}^{d}$.
The Dirichlet heat kernel $\tilde{p}_{D}(t, x, y)$ is an increasing function of the domain: if $D_{1} \subset D_{2}$ then

$$
\tilde{p}_{D_{1}}(t, x, y) \leq \tilde{p}_{D_{2}}(t, x, y), \quad t>0 \text { and } x, y \in D_{1}
$$

(one feels warmer in bigger rooms with refrigerated walls than in smaller ones).
Isaac Chavel conjectured that the Neumann heat kernel is a decreasing function of the domain:

Conjecture (Chavel, 1986)

If $D_{1} \subset D_{2}$ are convex domains then for all $t>0$ and $x, y \in D_{2}$ we have

$$
p_{D_{1}}(t, x, y) \geq p_{D_{2}}(t, x, y) .
$$

(one feels warmer in smaller insulated rooms than in bigger ones)
Chavel proved the conjecture in the case D_{2} is a ball centered at x (or y) and D_{1} is convex (integration by parts).

Applications

Consider $D_{1,2} \subset \mathbb{R}^{d}$.
The Dirichlet heat kernel $\tilde{p}_{D}(t, x, y)$ is an increasing function of the domain: if $D_{1} \subset D_{2}$ then

$$
\tilde{p}_{D_{1}}(t, x, y) \leq \tilde{p}_{D_{2}}(t, x, y), \quad t>0 \text { and } x, y \in D_{1}
$$

(one feels warmer in bigger rooms with refrigerated walls than in smaller ones).
Isaac Chavel conjectured that the Neumann heat kernel is a decreasing function of the domain:

Conjecture (Chavel, 1986)

If $D_{1} \subset D_{2}$ are convex domains then for all $t>0$ and $x, y \in D_{2}$ we have

$$
p_{D_{1}}(t, x, y) \geq p_{D_{2}}(t, x, y) .
$$

(one feels warmer in smaller insulated rooms than in bigger ones)
Chavel proved the conjecture in the case D_{2} is a ball centered at x (or y) and D_{1} is convex (integration by parts).
Wilfried Kendall proved the conjecture in the case when D_{1} is a ball centered at x or y and D_{2} is convex (coupling arguments).

Applications

Consider $D_{1,2} \subset \mathbb{R}^{d}$.
The Dirichlet heat kernel $\tilde{p}_{D}(t, x, y)$ is an increasing function of the domain: if $D_{1} \subset D_{2}$ then

$$
\tilde{p}_{D_{1}}(t, x, y) \leq \tilde{p}_{D_{2}}(t, x, y), \quad t>0 \text { and } x, y \in D_{1}
$$

(one feels warmer in bigger rooms with refrigerated walls than in smaller ones).
Isaac Chavel conjectured that the Neumann heat kernel is a decreasing function of the domain:

Conjecture (Chavel, 1986)

If $D_{1} \subset D_{2}$ are convex domains then for all $t>0$ and $x, y \in D_{2}$ we have

$$
p_{D_{1}}(t, x, y) \geq p_{D_{2}}(t, x, y) .
$$

(one feels warmer in smaller insulated rooms than in bigger ones)
Chavel proved the conjecture in the case D_{2} is a ball centered at x (or y) and D_{1} is convex (integration by parts).
Wilfried Kendall proved the conjecture in the case when D_{1} is a ball centered at x or y and D_{2} is convex (coupling arguments).
Using the mirror coupling we can give a unifying proof of Chavel conjecture in the case

$$
D_{1} \subset B \subset D_{2}
$$

where B is a ball centered at either x or y.

Geometry of the mirror coupling

Consider a mirror coupling $\left(X_{t}, Y_{t}\right)$ of reflecting Brownian motions in $\left(D_{2}, D_{1}\right)$ starting at $x \in D_{1}$.

The proof of Chavel conjecture

If $D_{1} \subset B(y, r) \subset D_{2}$, then the mirror M_{t} of the coupling cannot separate Y_{t} and y :

$$
\left|Y_{t}-y\right| \leq\left|X_{t}-y\right|, \quad t \geq 0
$$

The proof of Chavel conjecture

If $D_{1} \subset B(y, r) \subset D_{2}$, then the mirror M_{t} of the coupling cannot separate Y_{t} and y :

$$
\left|Y_{t}-y\right| \leq\left|X_{t}-y\right|, \quad t \geq 0 .
$$

We obtain

$$
P^{y}\left(\left|X_{t}-x\right|<\varepsilon\right) \leq P^{y}\left(\left|Y_{t}-x\right|<\varepsilon\right),
$$

The proof of Chavel conjecture

If $D_{1} \subset B(y, r) \subset D_{2}$, then the mirror M_{t} of the coupling cannot separate Y_{t} and y :

$$
\left|Y_{t}-y\right| \leq\left|X_{t}-y\right|, \quad t \geq 0
$$

We obtain

$$
P^{y}\left(\left|X_{t}-x\right|<\varepsilon\right) \leq P^{y}\left(\left|Y_{t}-x\right|<\varepsilon\right)
$$

hence
$p_{D_{2}}(t, x, y)=\lim _{\varepsilon \searrow 0} \frac{1}{|B(y, \varepsilon)|} P^{x}\left(X_{t} \in B(y, \varepsilon)\right) \leq \lim _{\varepsilon \searrow 0} \frac{1}{|B(y, \varepsilon)|} P^{x}\left(Y_{t} \in B(y, \varepsilon)\right)=p_{D_{1}}(t, x, y)$.

Extensions of the mirror coupling

Same arguments can be used in order to construct the mirror coupling in $D_{1}, D_{2} \subset \mathbb{R}^{d}$ if:

- D_{1} and D_{2} have non-tangential boundaries (needed for localization of the construction)
- $D_{1} \cap D_{2}$ is a convex domain (needed for the construction of the solution).

Figure: Generic smooth domains D_{1}, D_{2} for the mirror coupling

Question of uniqueness

The solution is not unique.

Question of uniqueness

The solution is not unique.
In the case $D_{1}=D_{2}=\mathbb{R}$, with the substitution $U_{t}=-\frac{Y_{t}-X_{t}}{2}$, we obtain the singular SDE:

$$
\begin{equation*}
U_{t}=\int_{0}^{t} \sigma\left(U_{s}\right) d W_{s} \tag{11}
\end{equation*}
$$

where

$$
\sigma(u)=\left\{\begin{array}{ll}
1, & u \neq 0 \\
0, & u=0
\end{array} .\right.
$$

Question of uniqueness

The solution is not unique.
In the case $D_{1}=D_{2}=\mathbb{R}$, with the substitution $U_{t}=-\frac{Y_{t}-X_{t}}{2}$, we obtain the singular SDE:

$$
\begin{equation*}
U_{t}=\int_{0}^{t} \sigma\left(U_{s}\right) d W_{s} \tag{11}
\end{equation*}
$$

where

$$
\sigma(u)=\left\{\begin{array}{ll}
1, & u \neq 0 \\
0, & u=0
\end{array} .\right.
$$

The above has the solutions $U_{t} \equiv 0$ and $U_{t}=W_{t}$, and a whole range of intermediate solutions (sticky Brownian motion).

Question of uniqueness

The solution is not unique.
In the case $D_{1}=D_{2}=\mathbb{R}$, with the substitution $U_{t}=-\frac{Y_{t}-X_{t}}{2}$, we obtain the singular SDE:

$$
\begin{equation*}
U_{t}=\int_{0}^{t} \sigma\left(U_{s}\right) d W_{s} \tag{11}
\end{equation*}
$$

where

$$
\sigma(u)=\left\{\begin{array}{ll}
1, & u \neq 0 \\
0, & u=0
\end{array} .\right.
$$

The above has the solutions $U_{t} \equiv 0$ and $U_{t}=W_{t}$, and a whole range of intermediate solutions (sticky Brownian motion).
The original equation has solutions $Y_{t}=X_{t}=W_{t}$ (sticky mirror coupling), $Y_{t}=-X_{t}=-W_{t}$ (non-sticky mirror coupling), and a whole range of intermediate solutions (weak/mild sticky mirror coupling).

Question of uniqueness

The solution is not unique.
In the case $D_{1}=D_{2}=\mathbb{R}$, with the substitution $U_{t}=-\frac{Y_{t}-X_{t}}{2}$, we obtain the singular SDE:

$$
\begin{equation*}
U_{t}=\int_{0}^{t} \sigma\left(U_{s}\right) d W_{s} \tag{11}
\end{equation*}
$$

where

$$
\sigma(u)=\left\{\begin{array}{ll}
1, & u \neq 0 \\
0, & u=0
\end{array} .\right.
$$

The above has the solutions $U_{t} \equiv 0$ and $U_{t}=W_{t}$, and a whole range of intermediate solutions (sticky Brownian motion).
The original equation has solutions $Y_{t}=X_{t}=W_{t}$ (sticky mirror coupling), $Y_{t}=-X_{t}=-W_{t}$ (non-sticky mirror coupling), and a whole range of intermediate solutions (weak/mild sticky mirror coupling).

References

R. Atar and K. Burdzy, On Neumann eigenfunctions in lip domains, J. Amer. Math. Soc. 17 (2004) , pp. 243-265.
R. Atar, K. Burdzy, Mirror couplings and Neumann eigenfunctions, Indiana Univ. Math. J. 57 (2008), No. 3, pp. 1317 - 1351.
R. Bañuelos and K. Burdzy, On the "Hot Spots" conjecture of J. Rauch, J. of Funct. Ann. 164 (1999), pp. 1 - 33 .
R. Bañuelos, T. Kulczycki, B. Siudeja, Neumann heat kernel monotonicity, Potential Anal. 30 (2009), No. 1, pp. 65 - 83.
K. Burdzy, Krzysztof, Neumann eigenfunctions and Brownian couplings, Potential theory in Matsue, 11-23, Adv. Stud. Pure Math. 44, Math. Soc. Japan, Tokyo, 2006.
K. Burdzy and W. Kendall, Efficient Markovian couplings: Examples and counterexamples, Ann. Appl. Probab. 10 (2000), No. 2, pp. $362-409$.
B. Kawohl, Rearrangements and convexity of level sets in PDE, Lecture Notes in Mathematics, Vol. 1150, Springer-Verlag (1985).
I. Chavel, Heat diffusion in insulated convex domains, J. London Math. Soc. (2) 34 (1986), No. 3, pp. 473 - 478.
W. S. Kendall, Coupled Brownian motions and partial domain monotonicity for the Neumann heat kernel, J. Funct. Anal. 86 (1989), No. 2, pp. 226-236.
P. L. Lions, A. S. Sznitman, Stochastic differential equations with reflecting boundary conditions, Comm. Pure Appl. Math. 37 (1984), No. 4, pp. 511 - 537.

