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Abstract

Rodrigo Bañuelos, Krzystoff Burdzy et. al. ([BaBu], [Bu], [AtBu1], [AtBu2], [BuKe])
introduced the mirror coupling of reflecting Brownian motions in a smooth domain D ⊂ Rd

and used it in order to derive properties of Neumann eigenvalues/eigenfunctions of the
Neumann Laplaceian on D.

In the present talk we will show that the coupling can be extended to the case when the two
reflecting Brownian motions live in different domains D1,D2 ⊂ Rd.

As an application of the construction, we will derive a unifying proof of the two most
important results on Chavel’s conjecture on the domain monotonicity of the Neumann heat
kernell ([Ch], [Ke]).
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Definitions

Definition

A 1-dimensional Brownian motion starting at x ∈ R is a continuous stochastic process (Bt)t≥0
with B0 = x a.s for which Bt − Bs is a normal random variableN (0, t − s), independent of the
σ-algebra Fs = σ (Br : r ≤ s), for all 0 ≤ s < t.

Definition

A d-dimensional Brownian motion starting at x =
(
x1, . . . , xd) ∈ Rd is a stochastic process

Bt =
(
B1

t , . . . ,B
d
t
)
, where the components Bi

t are independent 1-dimensional Brownian
motions starting at xi, 1 ≤ i ≤ d.

Definition

Reflecting Brownian motion in a smooth domain D ⊂ Rd starting at x0 ∈ D̄ is a solution of the
stochastic differential equation

Xt = x0 + Bt +

∫ t

0
νD (Xs) dLX

s , t ≥ 0, (1)

where Bt is a d-dimensional BM starting at B0 = 0 on (Ω,F , (Ft)t≥0,P), LX
t is the local time

of X on the boundary of D, Xt is Ft-adapted and almost surely Xt ∈ D for all t ≥ 0.
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Skorokhod map

Remark

It can be shown ([LiSz]) that there exists a unique Ft-semimartingale which solves (1).
In fact, there exists a map (Skorokhod map)

Γ : C
(

[0,∞) : Rd
)
→ C ([0,∞) : D̄)

such that X = Γ (x + B) a.s.
For each T > 0 fixed, Γ|[0,T] is Hölder continuous of order 1/2 on compact subsets of
C
(
[0, T] : Rd).
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Couplings of Brownian motions

Brownian motion is invariant under translation, rotation/symmetry and scaling (almost).

This gives rise to:

Synchronous coupling: (Bt,Bt + v)

Mirror coupling : (Bt, SθBt)

Scaling coupling: (Bt, cBt/c2 )

The above can be extended to the case of reflecting Brownian motion.
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Mirror coupling of Brownian motions
Given a hyperplaneH (the mirror) and a Brownian motion Xt, we define the Brownian motion
Yt as the mirror image of Xt with respect toH until the coupling time

ξ = inf {s > 0 : Xs = Ys} ,

after which the processes Xt and Yt evolve together.

Yt

Xt

H

0

Xξ = Yξ

Xt = Yt

m

Figure: The mirror coupling of Brownian motions.
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Equation of the mirror coupling of Brownian motions

If m is a unit normal toH, then Yt is given explicitly by

Yt = Xt − 2 (Xt · m) m, t ≤ ξ. (2)

Introducing the d × d matrix H by

H (m) = I − 2m mT = (δij − 2mimj)1≤i,j≤d , (3)

(reflection in the hyperplaneH through the origin and perpendicular to m)

since for t ≤ ξ we have m = Yt−Xt
|Yt−Xt| and for t ≥ ξ we have Yt = Xt,

the above relation can be written in the form

Yt = G (Yt − Xt) Xt, t ≥ 0, (4)

where

G (u) =

{
H
(

u
|u|

)
, u 6= 0

I, u = 0
. (5)
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Mirror coupling of reflecting Brownian motions
Consider D1,2 ⊂ Rd smooth bounded domains with D2 ⊂ D1 and D2-convex.

Given a d-dimensional BM (Wt)t≥0 with W0 = 0, consider the following system of SDE:

Xt = x + Wt +

∫ t

0
νD1 (Xs) dLX

s (6)

Yt = y + Zt +

∫ t

0
νD2 (Ys) dLY

s (7)

Zt =

∫ t

0
G (Ys − Xs) dWs (8)

where νD1 and νD2 represent the inward unit normal vector fields on ∂D1, respectively ∂D2.
Considering Γ and Γ̃ the corresponding Skorokhod maps (i.e. X = Γ (x + W),
Y = Γ̃ (y + Z)), the above system is equivalent to

Zt =

∫ t

0
G
(

Γ̃ (y + Z)s − Γ (x + W)s

)
dWs (9)

Remark

In the particular case when D1 = D2, (6) – (9) above reduces to the case considered by Burdzy
et. al. (i.e. mirror coupling of reflecting Brownian motions in D).
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Main result

Theorem

Let D1,2 ⊂ Rd be smooth bounded domains with D2 ⊂ D1 and D2 convex domain, and let
x ∈ D̄1 and y ∈ D̄2 be arbitrarily fixed points.
Then there exists a strong solution Xt, Yt to (6) – (9) above, referred to as a mirror coupling of
reflecting Brownian motions in D1, respectively D2, starting from (x, y) ∈ D1 × D2 with
driving Brownian motion Wt.
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Some remarks

Remark

In the case D1 = D2 = D, the solution to (9) can be essentially constructed by Picard
iterations, since outside of the origin G satisfies∣∣∣∣G (u)− G

(
u′
)∣∣∣∣ ≤ c

∣∣u− u′
∣∣ ,

where || (gij)i,j || =
(∑

i,j g2
ij

)1/2
.

It can also be shown that in this case the solution is pathwise unique.

Remark

In the general case this method cannot be used. The reason is that once the processes Xt and Yt

have coupled, it is possible for them to decouple: for example if Xt = Yt ∈ ∂D2, the solutions
will split.
The behaviour of G at the origin becomes therefore essential – we have to show the existence
of a degenerate SDE (G is discontinuous at the origin).
Surprisingly, the existence of the solution comes from the convexity of the smaller domain!
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Idea of the proof

Reduce the problem to the case D1 = Rd (hence Xt = X0 + Wt)

Construct the solution in the case D2 is a half space in Rd

Extend the construction to the case of when D2 is a convex polygonal domain in Rd

Approximate D2 = D by an increasing sequence of convex polygonal domains Dn ↗ D

Show the solution Yn
t for Dn converges to the solution Yt for D, that is

Zn
t =

∫ t

0
G (Yn

s − Xs) dWs −→
n→∞

∫ t

0
G (Ys − Xs) dWs = Zt, t ≥ 0, (10)

where Zn
t , Zt are the driving Brownian motions for Yn

t , respectively Yt.
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Applications
Consider D1,2 ⊂ Rd.

The Dirichlet heat kernel p̃D (t, x, y) is an increasing function of the domain: if D1 ⊂ D2 then

p̃D1 (t, x, y) ≤ p̃D2 (t, x, y) , t > 0 and x, y ∈ D1

(one feels warmer in bigger rooms with refrigerated walls than in smaller ones).
Isaac Chavel conjectured that the Neumann heat kernel is a decreasing function of the domain:

Conjecture (Chavel, 1986)

If D1 ⊂ D2 are convex domains then for all t > 0 and x, y ∈ D2 we have

pD1 (t, x, y) ≥ pD2 (t, x, y) .

(one feels warmer in smaller insulated rooms than in bigger ones)
Chavel proved the conjecture in the case D2 is a ball centered at x (or y) and D1 is convex
(integration by parts).
Wilfried Kendall proved the conjecture in the case when D1 is a ball centered at x or y and D2

is convex (coupling arguments).
Using the mirror coupling we can give a unifying proof of Chavel conjecture in the case

D1 ⊂ B ⊂ D2

where B is a ball centered at either x or y.
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Geometry of the mirror coupling
Consider a mirror coupling (Xt, Yt) of reflecting Brownian motions in (D2,D1) starting at
x ∈ D1.

y

D1 D2

B(y, r)

M˙t

Xt

Yt
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The proof of Chavel conjecture

If D1 ⊂ B(y, r) ⊂ D2, then the mirror Mt of the coupling cannot separate Yt and y:

|Yt − y| ≤ |Xt − y| , t ≥ 0.

We obtain
Py (|Xt − x| < ε) ≤ Py (|Yt − x| < ε) ,

hence

pD2 (t, x, y) = lim
ε↘0

1
|B (y, ε)|P

x (Xt ∈ B (y, ε)) ≤ lim
ε↘0

1
|B (y, ε)|P

x (Yt ∈ B (y, ε)) = pD1 (t, x, y) .
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Extensions of the mirror coupling
Same arguments can be used in order to construct the mirror coupling in D1,D2 ⊂ Rd if:

D1 and D2 have non-tangential boundaries (needed for localization of the construction)
D1 ∩ D2 is a convex domain (needed for the construction of the solution).

D1

D2

Figure: Generic smooth domains D1,D2 for the mirror coupling
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Question of uniqueness

The solution is not unique.

In the case D1 = D2 = R, with the substitution Ut = − Yt−Xt
2 , we obtain the singular SDE:

Ut =

∫ t

0
σ (Us) dWs, (11)

where

σ (u) =

{
1, u 6= 0
0, u = 0 .

The above has the solutions Ut ≡ 0 and Ut = Wt, and a whole range of intermediate solutions
(sticky Brownian motion).
The original equation has solutions Yt = Xt = Wt (sticky mirror coupling), Yt = −Xt = −Wt

(non-sticky mirror coupling), and a whole range of intermediate solutions (weak/mild sticky
mirror coupling).
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