Stability and Absence of Binding for Multi-Polaron Systems

Rupert Frank
Department of Mathematics
Princeton University

Joint work with E. Lieb, R. Seiringer and L. Thomas

Bi-polaron and N-polaron binding energies, Phys. Rev. Lett. (2010), to appear Stability and absence of binding for multi-polaron systems, arXiv:1004.4892

Tunis, May 29, 2010

The Polaron Model

Introduced by Fröhlich in 1937, as a model of an electron interacting with the quantized optical modes of a polar crystal. It is described by the Hamiltonian

$$
H=-\Delta+\frac{\sqrt{\alpha}}{2 \pi} \int_{\mathbb{R}^{3}} \frac{d k}{|k|}\left(e^{i k x} a(k)+e^{-i k x} a^{\dagger}(k)\right)+\int_{\mathbb{R}^{3}} d k a^{\dagger}(k) a(k)
$$

acting on $L^{2}\left(\mathbb{R}^{3}\right) \otimes \mathcal{F}$, with \mathcal{F} the bosonic Fock space on \mathbb{R}^{3}.
In the large coupling limit $\alpha \rightarrow \infty$ its ground state energy behaves asymptotically like the minimum of the Pekar functional

$$
E=\inf \left\{\mathcal{E}[\psi]: \psi \in H^{1}\left(\mathbb{R}^{3}\right),\|\psi\|_{2}=1\right\}
$$

where

$$
\mathcal{E}[\psi]=\int_{\mathbb{R}^{3}} d x|\nabla \psi(x)|^{2}-\frac{\alpha}{2} \iint_{\mathbb{R}^{3} \times \mathbb{R}^{3}} d x d x^{\prime} \frac{|\psi(x)|^{2}\left|\psi\left(x^{\prime}\right)\right|^{2}}{\left|x-x^{\prime}\right|}
$$

(Donsker/Varadhan 1983, Lieb/Thomas 1997)

The non-Linear eigenvalue problem

Some known results (Lieb 1976) about

$$
E=\inf _{\|\psi\|_{2}=1}\left\{\int_{\mathbb{R}^{3}} d x|\nabla \psi(x)|^{2}-\frac{\alpha}{2} \iint_{\mathbb{R}^{3} \times \mathbb{R}^{3}} d x d x^{\prime} \frac{|\psi(x)|^{2}\left|\psi\left(x^{\prime}\right)\right|^{2}}{\left|x-x^{\prime}\right|}\right\} .
$$

The infimum is attained and the optimizer can be chosen as a symmetric decreasing function. It is unique up to translations and a phase. The Euler-Lagrange equation reads

$$
\left(-\Delta-\alpha \psi^{2} *|x|^{-1}\right) \psi=-e \psi .
$$

Should be compared with linear Schrödinger equations, e.g., for the hydrogen atom

$$
\left(-\Delta-\alpha|x|^{-1}\right) \psi=-\frac{\alpha^{2}}{4} \psi
$$

or for a mean-field model with charge density ρ

$$
\left(-\Delta-\alpha \rho *|x|^{-1}\right) \psi=\lambda \psi .
$$

The Multi-Polaron Problem

For N electrons, the functional becomes
$\mathcal{E}_{U}^{(N)}[\psi]=\sum_{j=1}^{N} \int_{\mathbb{R}^{3 N}} d x\left|\nabla_{j} \psi\right|^{2}+U \sum_{j<k} \int_{\mathbb{R}^{3 N}} d x \frac{|\psi(x)|^{2}}{\left|x_{j}-x_{k}\right|}-\frac{\alpha}{2} \iint_{\mathbb{R}^{3} \times \mathbb{R}^{3}} d x d x^{\prime} \frac{\rho_{\psi}(x) \rho_{\psi}\left(x^{\prime}\right)}{\left|x-x^{\prime}\right|}$
with the density

$$
\rho_{\psi}(x)=\sum_{j=1}^{N} \int_{\mathbb{R}^{3}(N-1)} \widehat{d x_{j}}\left|\psi\left(\hat{x}_{j}\right)\right|^{2} .
$$

The parameter U is the Coulomb repulsion strength. In the physical regime one has $U>\alpha$.

We are interested in the ground state energy

$$
E^{(N)}(U)=\inf \left\{\mathcal{E}_{U}^{(N)}[\psi]: \psi \in H^{1}\left(\mathbb{R}^{3 N}\right),\|\psi\|_{2}=1\right\} .
$$

We do not impose symmetry restrictions.

Two possible scenarios for $\boldsymbol{N}=\mathbf{2}$

(1) The two electrons will form a bound pair, a bipolaron. This happens for small U.
(2) The two electrons will move away from each other (two polarons). Does this happen for large U ???

Properties of $E^{(2)}(U)$:

- $E^{(2)}(U)$ is a concave, increasing function of U
- $E^{(2)}(U) \leq 2 E$ for all U
- $E^{(2)}(0)=8 E<2 E$ for $U=0$

If scenario (2) occurs, then $E^{(2)}(U)=2 E$.
Conversely, if $E^{(2)}(U)<2 E$, then one can prove existence of a minimizer, that is, scenario (1) occurs.

Hence the question, whether scenario (2) occurs, is the same as whether $E^{(2)}(U)=2 E$ for large U.

Absence of Binding

Theorem 1 (Absence of binding for N polarons). There is a finite constant ν_{c} such that for $U \geq \nu_{c} \alpha$ one has

$$
E^{(N)}(U)=N E \quad \text { for all } N \geq 2
$$

Our proof gives the explicit bound $\nu_{c}<14.7$. By computations with trial functions Verbist et al. (1992) showed that $\nu_{c}>1.15$ (in particular, $\nu_{c}>1$). There is room for improvement!

It costs energy to bring two or more particles together!

$$
\mathcal{E}_{U}^{(N)}[\psi] \geq N E+\left(U-\nu_{c} \alpha\right) \sum_{j<k} \int_{\mathbb{R}^{3 N}} d x \frac{|\psi(x)|^{2}}{\left|x_{j}-x_{k}\right|}
$$

In particular, for $U>\nu_{c} \alpha$ there is no minimizer. Is there one for $U=\nu_{c} \alpha$?
Related result in linear case by Hoffmann-Ostenhof ${ }^{2}$ and Simon.

Thermodynamic Stability

Theorem 2 (Stability for $U>\alpha$). For any $\nu>1$, there is a constant $C(\nu)$ such that for all $U \geq \nu \alpha$

$$
E^{(N)}(U) \geq-C(\nu) \alpha^{2} N \quad \text { for all } N \geq 2
$$

Since $E^{(N)}(U)$ is also subadditive, i.e., $E^{(N+M)}(U) \leq E^{(N)}(U)+E^{(M)}(U)$, we get
Corollary 3 (Existence of the thermodynamic limit). For $U>\alpha$ the limit

$$
\lim _{N \rightarrow \infty} \frac{1}{N} E^{(N)}(U) \quad \text { exists. }
$$

The restriction $U>\alpha$ is (almost) sharp. In the non-physical regime $U<\alpha$, Griesemer and Schach Møller (2010) have shown that $E^{(N)}(U) \approx-N^{2}$. What happens at $U=\alpha$?
For fermions (anti-symmetric ψ 's) they have shown that $E^{(N)}(U) \approx-N^{7 / 3}$ for $U<\alpha$ and $E^{(N)}(\alpha) \approx-N$ for $U=\alpha$.

Ideas of the proofs: Absence of binding for $N=2$

Step 0. Linearizing the problem

$$
E^{(2)}(U)=\inf \left\{\left\langle\psi, H_{U, \sigma} \psi\right\rangle:\|\psi\|_{2}=1, \sigma \geq 0\right\}
$$

with the Hamiltonian

$$
H_{U, \sigma}=\sum_{j=1}^{2}\left(-\Delta_{j}-\alpha \sigma *\left|x_{j}\right|^{-1}\right)+\frac{U}{\left|x_{1}-x_{2}\right|}+\frac{\alpha}{2} \iint_{\mathbb{R}^{3} \times \mathbb{R}^{3}} d x d x^{\prime} \frac{\sigma(x) \sigma\left(x^{\prime}\right)}{\left|x-x^{\prime}\right|}
$$

Follows from Schwarz, since $D\left[\rho_{\psi}, \rho_{\psi}\right]=\sup _{\sigma}\left(2 D\left[\sigma, \rho_{\psi}\right]-D[\sigma, \sigma]\right)$.
Step 1. Localization according to particle distance For $\ell>0$, divide configuration space into shells

$$
2^{k-1} \ell \leq\left|x_{1}-x_{2}\right| \leq 2^{k} \ell \quad, \quad k \geq 1
$$

The localization cost is $\sim \ell^{-2} 4^{-k}$, which is dominated by part of the Coulomb repulsion, $U /\left|x_{1}-x_{2}\right| \geq U 2^{-k} / \ell$.

Ideas of the proofs: Absence of binding for $\boldsymbol{N}=\mathbf{2}$

Step 2. Further localization for well-separated particles
For $k \geq 1$, we further localize each particle into its own box, of side length $c \ell 2^{k}$, with c small so that the boxes do not overlap.
Key idea: Each particle is localized to a box the size of which is comparable to the distance between the two boxes.
We delinearize and find the same minimization problem as before but now for ψ 's with support in $Q_{1} \times Q_{2}$. For $\rho_{\psi}=\rho_{1}+\rho_{2}$ with $\operatorname{supp} \rho_{j} \subset Q_{j}$,

$$
D\left[\rho_{\psi}, \rho_{\psi}\right] \leq D\left[\rho_{1}, \rho_{1}\right]+D\left[\rho_{2}, \rho_{2}\right]+\frac{\alpha}{2 \operatorname{dist}\left(Q_{1}, Q_{2}\right)}
$$

Each of the terms $D\left[\rho_{j}, \rho_{j}\right], j=1,2$ contributes to one single-polaron energy.
Since $\operatorname{dist}\left(Q_{1}, Q_{2}\right) \approx 2^{k} \ell$, the contribution to the total energy from $k \geq 1$ is

$$
\geq \underbrace{2 E}_{\text {wanted }}+\underbrace{U 2^{-k} \ell^{-1}}_{\text {Coulomb repulsion }}-\underbrace{c_{1} \alpha 2^{-k} \ell^{-1}}_{\text {attraction }}-\underbrace{c_{2} \ell^{-2} 4^{-k}}_{\text {localization }}
$$

Ideas of the proofs: Absence of binding for $\boldsymbol{N}=\mathbf{2}$

Step 3. Particles without minimal separation
It remains to study $k=0$, i.e., the region $\left|x_{1}-x_{2}\right| \leq \ell$. Here the Coulomb repulsion is huge. To estimate the attraction we use that for $U=0$

$$
E^{(2)}(0)=8 E=2 E-6 \cdot(0.109)(\alpha / 2)^{2} .
$$

Hence the contribution to the total energy from $k=0$ is

$$
\geq \underbrace{2 E}_{\text {wanted }}+\underbrace{U \ell^{-1}}_{\text {Coulomb repulsion }}-\underbrace{6 \cdot(0.109)(\alpha / 2)^{2}}_{\text {attraction }}-\underbrace{c_{3} \ell^{-2}}_{\text {localization }}
$$

Recall from the previous slide the bound for $k \geq 1$,

$$
\geq \underbrace{2 E}_{\text {wanted }}+\underbrace{U 2^{-k} \ell^{-1}}_{\text {Coulomb repulsion }}-\underbrace{c_{1} \alpha 2^{-k} \ell^{-1}}_{\text {attraction }}-\underbrace{c_{2} \ell^{-2} 4^{-k}}_{\text {localization }}
$$

Both bounds are $\geq 2 E$, provided we choose $\ell=c_{4} \alpha^{-1}$ and assume that $U / \alpha \geq c_{5}$.

Ideas of the proofs: Linear lower bound

We want to bound $N^{-1} E^{(N)}(U)$ from below by a constant.
The Hoffmann-Ostenhof ${ }^{2}$ inequality tells us that

$$
\sum_{i=1}^{N} \int_{\mathbb{R}^{3 N}} d x\left|\nabla_{i} \psi\right|^{2} \geq \int_{\mathbb{R}^{3}} d x\left|\nabla \sqrt{\rho_{\psi}}\right|^{2}
$$

and the Lieb-Oxford inequality tells us that

$$
\sum_{i<j} \int_{\mathbb{R}^{3 N}} d x \frac{|\psi(x)|^{2}}{\left|x_{i}-x_{j}\right|} \geq \frac{1}{2} \iint_{\mathbb{R}^{3} \times \mathbb{R}^{3}} d x d x^{\prime} \frac{\rho_{\psi}(x) \rho_{\psi}\left(x^{\prime}\right)}{\left|x-x^{\prime}\right|}-(1.68) \int_{\mathbb{R}^{3}} d x \rho_{\psi}(x)^{4 / 3}
$$

Hence, for $U=\alpha+\delta$ and abbreviating $\phi:=\sqrt{\rho_{\psi} / N}$,

$$
\frac{1}{N} \mathcal{E}_{U}^{(N)}[\psi] \geq \int_{\mathbb{R}^{3}} d x\left(|\nabla \phi|^{2}-(1.68) U N^{1 / 3} \phi^{8 / 3}\right)+\delta N \iint_{\mathbb{R}^{3} \times \mathbb{R}^{3}} d x d x^{\prime} \frac{\phi(x)^{2} \phi\left(x^{\prime}\right)^{2}}{\left|x-x^{\prime}\right|}
$$

IDEAS OF THE PROOFS: LINEAR LOWER BOUND

To bound the $\phi^{8 / 3}$ term we use a new Sobolev-type inequality. By Schwarz

$$
\begin{aligned}
\left(\int d x \phi^{3}\right)^{2} & =\left\langle(-\Delta)^{-1 / 2} \phi^{2} \mid(\Delta)^{1 / 2} \phi\right\rangle^{2} \\
& \leq \frac{1}{4 \pi} \iint d x d x^{\prime} \frac{\phi(x)^{2} \phi\left(x^{\prime}\right)^{2}}{|x-y|} \int d x|\nabla \phi|^{2}
\end{aligned}
$$

and hence by Hölder

$$
\begin{aligned}
\int d x \phi^{8 / 3} & \leq\left(\int d x \phi^{3}\right)^{2 / 3}\left(\int d x \phi^{2}\right)^{1 / 3} \\
& \leq \frac{1}{(4 \pi)^{1 / 3}}\left(\iint d x d x^{\prime} \frac{\phi(x)^{2} \phi\left(x^{\prime}\right)^{2}}{\left|x-x^{\prime}\right|}\right)^{1 / 3}\left(\int d x|\nabla \phi|^{2}\right)^{1 / 3}\left(\int d x \phi^{2}\right)^{1 / 3}
\end{aligned}
$$

Linearizing this bound and plugging it into the lower bound on $N^{-1} \mathcal{E}_{U}^{(N)}[\psi]$ we find

$$
E^{(N)}(U) \geq-\left((1.68)^{3} / 54 \pi\right)\left(U^{3} /(U-\alpha)\right) N, \quad \text { as claimed }
$$

THANK YOU FOR YOUR ATTENTION!

