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The Polaron Model

Introduced by Fröhlich in 1937, as a model of an electron interacting with the quantized
optical modes of a polar crystal. It is described by the Hamiltonian

H = −∆ +
√
α

2π

∫

R3

dk

|k|
(
eikxa(k) + e−ikxa†(k)

)
+

∫

R3
dk a†(k)a(k)

acting on L2(R3)⊗F , with F the bosonic Fock space on R3.

In the large coupling limit α→∞ its ground state energy behaves asymptotically like
the minimum of the Pekar functional

E = inf
{E [ψ] : ψ ∈ H1(R3), ‖ψ‖2 = 1

}

where

E [ψ] =
∫

R3
dx |∇ψ(x)|2 − α

2

∫∫

R3×R3
dx dx′

|ψ(x)|2|ψ(x′)|2
|x− x′|

(Donsker/Varadhan 1983, Lieb/Thomas 1997)
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The non-linear eigenvalue problem

Some known results (Lieb 1976) about

E = inf
‖ψ‖2=1

{∫

R3
dx |∇ψ(x)|2 − α

2

∫∫

R3×R3
dx dx′

|ψ(x)|2|ψ(x′)|2
|x− x′|

}
.

The infimum is attained and the optimizer can be chosen as a symmetric decreasing
function. It is unique up to translations and a phase. The Euler-Lagrange equation
reads (−∆− αψ2 ∗ |x|−1

)
ψ = −eψ .

Should be compared with linear Schrödinger equations, e.g., for the hydrogen atom

(−∆− α|x|−1
)
ψ = −α2

4 ψ

or for a mean-field model with charge density ρ

(−∆− αρ ∗ |x|−1
)
ψ = λψ .
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The Multi-Polaron Problem

For N electrons, the functional becomes

E(N)
U [ψ] =

N∑

j=1

∫

R3N

dx|∇jψ|2 +U
∑

j<k

∫

R3N

dx
|ψ(x)|2
|xj − xk| −

α

2

∫∫

R3×R3
dxdx′

ρψ(x)ρψ(x′)
|x− x′|

with the density

ρψ(x) =
N∑

j=1

∫

R3(N−1)
d̂xj |ψ(x̂j)|2 .

The parameter U is the Coulomb repulsion strength. In the physical regime one has
U > α.

We are interested in the ground state energy

E(N)(U) = inf
{
E(N)
U [ψ] : ψ ∈ H1(R3N ), ‖ψ‖2 = 1

}
.

We do not impose symmetry restrictions.
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Two possible scenarios for N = 2

(1) The two electrons will form a bound pair, a bipolaron. This happens for small U .

(2) The two electrons will move away from each other (two polarons). Does this
happen for large U???

Properties of E(2)(U):

• E(2)(U) is a concave, increasing function of U

• E(2)(U) ≤ 2E for all U

• E(2)(0) = 8E < 2E for U = 0

If scenario (2) occurs, then E(2)(U) = 2E.
Conversely, if E(2)(U) < 2E, then one can prove existence of a minimizer, that is, scenario
(1) occurs.
Hence the question, whether scenario (2) occurs, is the same as whether E(2)(U) = 2E
for large U .
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Absence of Binding

Theorem 1 (Absence of binding for N polarons). There is a finite constant νc
such that for U ≥ νcα one has

E(N)(U) = NE for all N ≥ 2.

Our proof gives the explicit bound νc < 14.7. By computations with trial functions
Verbist et al. (1992) showed that νc > 1.15 (in particular, νc > 1). There is room for
improvement!

It costs energy to bring two or more particles together!

E(N)
U [ψ] ≥ NE + (U − νcα)

∑

j<k

∫

R3N

dx
|ψ(x)|2
|xj − xk|

In particular, for U > νcα there is no minimizer. Is there one for U = νcα?
Related result in linear case by Hoffmann-Ostenhof2 and Simon.
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Thermodynamic Stability

Theorem 2 (Stability for U > α). For any ν > 1, there is a constant C(ν) such
that for all U ≥ να

E(N)(U) ≥ −C(ν)α2N for all N ≥ 2.

Since E(N)(U) is also subadditive, i.e., E(N+M)(U) ≤ E(N)(U) + E(M)(U), we get

Corollary 3 (Existence of the thermodynamic limit). For U > α the limit

lim
N→∞

1
N
E(N)(U) exists.

The restriction U > α is (almost) sharp. In the non-physical regime U < α, Griesemer
and Schach Møller (2010) have shown that E(N)(U) ≈ −N2. What happens at U = α?

For fermions (anti-symmetric ψ’s) they have shown that E(N)(U) ≈ −N7/3 for U < α
and E(N)(α) ≈ −N for U = α.
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Ideas of the proofs: Absence of binding for N = 2

Step 0. Linearizing the problem

E(2)(U) = inf {〈ψ,HU,σψ〉 : ‖ψ‖2 = 1, σ ≥ 0}

with the Hamiltonian

HU,σ =
2∑

j=1

(−∆j − ασ ∗ |xj |−1
)

+
U

|x1 − x2| +
α

2

∫∫

R3×R3
dx dx′

σ(x)σ(x′)
|x− x′| .

Follows from Schwarz, since D[ρψ, ρψ] = supσ (2D[σ, ρψ]−D[σ, σ]) .

Step 1. Localization according to particle distance
For ` > 0, divide configuration space into shells

2k−1` ≤ |x1 − x2| ≤ 2k` , k ≥ 1 .

The localization cost is ∼ `−24−k, which is dominated by part of the Coulomb repulsion,
U/|x1 − x2| ≥ U2−k/`.
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Ideas of the proofs: Absence of binding for N = 2

Step 2. Further localization for well-separated particles
For k ≥ 1, we further localize each particle into its own box, of side length c`2k, with c
small so that the boxes do not overlap.
Key idea: Each particle is localized to a box the size of which is comparable
to the distance between the two boxes.
We delinearize and find the same minimization problem as before but now for ψ’s with
support in Q1 ×Q2. For ρψ = ρ1 + ρ2 with suppρj ⊂ Qj ,

D[ρψ, ρψ] ≤ D[ρ1, ρ1] +D[ρ2, ρ2] +
α

2 dist(Q1, Q2)
.

Each of the terms D[ρj , ρj ], j = 1, 2 contributes to one single-polaron energy.

Since dist(Q1, Q2) ≈ 2k`, the contribution to the total energy from k ≥ 1 is

≥ 2E︸︷︷︸
wanted

+ U2−k`−1︸ ︷︷ ︸
Coulomb repulsion

− c1α2−k`−1

︸ ︷︷ ︸
attraction

− c2`−24−k︸ ︷︷ ︸
localization

.
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Ideas of the proofs: Absence of binding for N = 2

Step 3. Particles without minimal separation
It remains to study k = 0, i.e., the region |x1 − x2| ≤ `. Here the Coulomb repulsion is
huge. To estimate the attraction we use that for U = 0

E(2)(0) = 8E = 2E − 6 · (0.109)(α/2)2 .

Hence the contribution to the total energy from k = 0 is

≥ 2E︸︷︷︸
wanted

+ U`−1︸ ︷︷ ︸
Coulomb repulsion

− 6 · (0.109)(α/2)2︸ ︷︷ ︸
attraction

− c3`
−2

︸ ︷︷ ︸
localization

.

Recall from the previous slide the bound for k ≥ 1,

≥ 2E︸︷︷︸
wanted

+ U2−k`−1︸ ︷︷ ︸
Coulomb repulsion

− c1α2−k`−1

︸ ︷︷ ︸
attraction

− c2`−24−k︸ ︷︷ ︸
localization

.

Both bounds are ≥ 2E, provided we choose ` = c4α
−1 and assume that U/α ≥ c5.
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Ideas of the proofs: Linear lower bound

We want to bound N−1E(N)(U) from below by a constant.

The Hoffmann-Ostenhof2 inequality tells us that

N∑

i=1

∫

R3N

dx |∇iψ|2 ≥
∫

R3
dx |∇√ρψ|2 ,

and the Lieb-Oxford inequality tells us that

∑

i<j

∫

R3N

dx
|ψ(x)|2
|xi − xj | ≥

1
2

∫∫

R3×R3
dx dx′

ρψ(x) ρψ(x′)
|x− x′| − (1.68)

∫

R3
dx ρψ(x)4/3 .

Hence, for U = α+ δ and abbreviating φ :=
√
ρψ/N ,

1
N
E(N)
U [ψ] ≥

∫

R3
dx

(
|∇φ|2 − (1.68)UN1/3φ8/3

)
+ δN

∫∫

R3×R3
dx dx′

φ(x)2 φ(x′)2

|x− x′| .
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Ideas of the proofs: Linear lower bound

To bound the φ8/3 term we use a new Sobolev-type inequality. By Schwarz

(∫
dxφ3

)2

=
〈
(−∆)−1/2φ2 | (∆)1/2φ

〉2

≤ 1
4π

∫∫
dx dx′

φ(x)2 φ(x′)2

|x− y|
∫
dx |∇φ|2 ,

and hence by Hölder
∫
dxφ8/3 ≤

(∫
dxφ3

)2/3 (∫
dxφ2

)1/3

≤ 1
(4π)1/3

(∫∫
dx dx′

φ(x)2 φ(x′)2

|x− x′|
)1/3 (∫

dx |∇φ|2
)1/3 (∫

dxφ2

)1/3

.

Linearizing this bound and plugging it into the lower bound on N−1E(N)
U [ψ] we find

E(N)(U) ≥ − (
(1.68)3/54π

) (
U3/(U − α)

)
N , as claimed .
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THANK YOU FOR YOUR ATTENTION!
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