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THE POLARON MODEL

Introduced by Frohlich in 1937, as a model of an electron interacting with the quantized
optical modes of a polar crystal. It is described by the Hamiltonian

A+ \F (ezkwa(k)+6—ikxaT(k))+/ dkaT(k)a(k)

2T R3 |]€‘ R3

acting on L?(R%) ® F, with F the bosonic Fock space on R?.

In the large coupling limit @ — oo its ground state energy behaves asymptotically like
the minimum of the Pekar functional

= inf {€[Y]: ¢ € H'®®), [[9]l2 = 1)

5[¢]=/RS dx |Vip(x __//Rsst dz da’ P ‘y—’@i(/ff’)P

(Donsker/Varadhan 1983, Lieb/Thomas 1997)

where
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'1T'HE NON-LINEAR EIGENVALUE PROBLEM

Some known results (Lieb 1976) about

. e , [Y(@)] [y ()|
E = |I¢1HI12{;1 {/R?» dr |V (x //]R3XR3 dx dx p— } .

The infimum is attained and the optimizer can be chosen as a symmetric decreasing
function. It is unique up to translations and a phase. The Euler-Lagrange equation
reads

(—A — at)? % |x|_1) Y = —et).

Should be compared with linear Schrodinger equations, e.g., for the hydrogen atom

(—A — alz|” )w = -2

or for a mean-field model with charge density p

(A —apx|z| ") Y= \p.
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THE MULTI-POLARON PROBLEM

For N electrons, the functional becomes

N
o 2 a 0@
Ey Y] _;/st dz|V 9| +UZ/ —le‘k| //R3><IR{3 drd |z — 2|

with the density

N ——
_ Z/RS(ND do (&)
j=1

The parameter U is the Coulomb repulsion strength. In the physical regime one has
U > a.

We are interested in the ground state energy
EMU) =int {0 v € HARY), |[o =1} -

We do not impose symmetry restrictions.
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TWO POSSIBLE SCENARIOS FOR IN = 2

(1) The two electrons will form a bound pair, a bipolaron. This happens for small U.

(2) The two electrons will move away from each other (two polarons). Does this
happen for large U?7?7?

Properties of £(?)(U):
e E@)(U) is a concave, increasing function of U
e E?)(U) < 2E forall U
e E2)(0)=8E <2EforU =0

If scenario (2) occurs, then E?)(U) = 2F.

Conversely, if E(?)(U) < 2E, then one can prove existence of a minimizer, that is, scenario
(1) occurs.

Hence the question, whether scenario (2) occurs, is the same as whether E(2>(U) = 2F
for large U.
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ABSENCE OF BINDING

Theorem 1 (Absence of binding for N polarons). There is a finite constant v,
such that for U > v.a one has

EWN)(U)=NE forall N > 2.

Our proof gives the explicit bound v, < 14.7. By computations with trial functions
Verbist et al. (1992) showed that v, > 1.15 (in particular, v. > 1). There is room for
improvement!

It costs energy to bring two or more particles together!

W] > NE + (U - vea Z/ dr; i)l
R3N

1<k L _xk‘

In particular, for U > v.a there is no minimizer. Is there one forU = v.a?
Related result in linear case by Hoffmann-Ostenhof? and Simon.
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THERMODYNAMIC STABILITY

Theorem 2 (Stability for U > «). For any v > 1, there is a constant C(v) such
that for all U > va

EMN(U) > —-C(w)a®N  for all N > 2.

Since EWV)(U) is also subadditive, i.e., ENTM)(U) < EN)(U) + EM)(U), we get
Corollary 3 (Existence of the thermodynamic limit). For U > « the limit

1
]\}1_{1’(1)0 ~ EY(U) exists.

The restriction U > « is (almost) sharp. In the non-physical regime U < «, Griesemer
and Schach Mgller (2010) have shown that EN)(U) ~ —N2. What happens at U = o7

For fermions (anti-symmetric v's) they have shown that EV)(U) ~ —N7/3 for U < «
and EWV) (o) = =N for U = q.
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IDEAS OF THE PROOFS: ABSENCE OF BINDING FOR IN = 2

Step 0. Linearizing the problem

E®(U) = inf {(¢), Hyo®) : |¢]l2 =1, ¢ > 0}

with the Hamiltonian

2
:Z — a0 * |z;| ) + // dwd:c’a z)o( )
=1 [z1 — fE2| R3 x R3 |z — 2’|

Follows from Schwarz, since D|py, py| = sup,, (2D|o, py| — Do, 0]) .

Step 1. Localization according to particle distance
For ¢ > 0, divide configuration space into shells

Rl <oy —mo| <280, k>1.

—24—k

The localization cost is ~ ¢ , which is dominated by part of the Coulomb repulsion,

U/‘lel —5132’ > U2_k/€
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IDEAS OF THE PROOFS: ABSENCE OF BINDING FOR IN = 2

Step 2. Further localization for well-separated particles
For k > 1, we further localize each particle into its own box, of side length cf2k  with ¢

small so that the boxes do not overlap.
Key idea: Each particle is localized to a box the size of which is comparable

to the distance between the two boxes.
We delinearize and find the same minimization problem as before but now for ¥'s with

support in ()1 X Q2. For py, = p1 4+ p2 with suppp,; C @,

0%

* 2 diSt(Ql, Qg) .

Each of the terms D|p;, p;], j = 1,2 contributes to one single-polaron energy.

D[ﬂ¢>ﬂw] < D[m,pl] + D[ﬂmﬂz]

Since dist(Q1,Q2) ~ 2%/, the contribution to the total energy from k > 1 is

> 2F + UQ:’jﬁ_lj —gla2_k€_1 —\(:26_24_’“c .

7 7

TV TV
wanted Coulomb repulsion attraction localization

R. Frank — Stability and Binding of Polarons — Tunis, May 29, 2010 Nr. 9




IDEAS OF THE PROOFS: ABSENCE OF BINDING FOR IN = 2

Step 3. Particles without minimal separation
It remains to study k£ = 0, i.e., the region |x; — x2| < £. Here the Coulomb repulsion is
huge. To estimate the attraction we use that for U =0

E®(0)=8F =2E — 6 - (0.109)(/2)? .

Hence the contribution to the total energy from k=0 is

> 2E + UL —6-(0.109)(a/2)" — cgl™?
. 6-(0109)(/2 ~ ¢t 2
wanted  Coulomb repulsion attraction localization

Recall from the previous slide the bound for k£ > 1,

> 9F 27kl a2 ke — o247k
Lo+ &2 f ao &

7 7

VO TV
wanted Coulomb repulsion attraction localization

Both bounds are > 2F, provided we choose ¢ = c4a~! and assume that Ula > cs. ]
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IDEAS OF THE PROOFS: LINEAR LOWER BOUND

We want to bound N~'EW)(U) from below by a constant.

The Hoffmann-Ostenhof? inequality tells us that

N
S [ dnlVisk = [ delvymil,
— JraN R3

and the Lieb-Oxford inequality tells us that

Z/RSN W_ ;1;]\ //RSXR3 dzx dz’ P@b'(x)_ g;(‘ z') (1.68) /Rg dz py (z)4/3.

1 <]

Hence, for U = o« + ¢ and abbreviating ¢ := \/p@b/N,

1
NSI(JN) ] > /

R

dx <|V¢|2 (1. 68)UN1/3¢8/3 —|—5N// dx dx’ P(x)” H(x')7 .

R3 x R3 [z — 2|
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IDEAS OF THE PROOFS: LINEAR LOWER BOUND

To bound the ¢%/3 term we use a new Sobolev-type inequality. By Schwarz

( / dx ¢3)2 = <<—A>—1/2¢2 | <A>1/2¢>2

1 2 1\ 2
A x —y
and hence by Holder

/da: 553 < (/ dz ¢3>2/3 (/ . ¢2>1/3
: (47r1)1/3 (// t dx/qj(x:z%g/)z)lm ( / cla:|V¢|2)l/3 ( / dx ¢2)1/3.

Linearizing this bound and plugging it into the lower bound on N_lc‘f((JN) (4] we find

EWI(U) > — ((1.68)%/547) (U /(U — a)) N, as claimed.
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THANK YOU FOR YOUR ATTENTION!
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