Outline	Basic Ingredients	Sasaki-type metrics	Riemannian versus Metric properties	Isoholonomy	Possible Application
	00000000	00 000 0			00 0

An isoholonomic approach to Riemannian Geometry "From Carthage to the World"

> Pedro Solórzano Stony Brook University

> > May 26, 2010 Carthage, Tunisia

> > > (日) (同) (三) (

Pedro Solórzano Stony Brook University

Outline	Basic Ingredients	Sasaki-type metrics	Riemannian versus Metric properties	Isoholonomy	Possible Application
	00000000	00 000 0			00 0

Outline

Basic Ingredients

Riemannian Metrics and Connections Holonomic spaces

Sasaki-type metrics

Vector bundles Horizontal and vertical lifts Definitions

Riemannian versus Metric properties

Isoholonomy

Possible Application

Outline	Basic Ingredients	Sasaki-type metrics	Riemannian versus Metric properties	Isoholonomy	Possible Application			
Riemannian Metrics and Connections								

Riemannian Metrics

Definition

A Riemannian manifold is a smooth manifold together with a symmetric (0, 2)-tensor g that at every tangent space T_pM is a positive definite inner product $\langle \cdot, \cdot \rangle$.

Outline	Basic Ingredients ○●○○○○○○ ○○○○○○	Sasaki-type metrics	Riemannian versus Metric properties	lsoholonomy 0000	Possible Application 00 0			
Riemannian Metrics and Connections								

By way of the fundamental theorem of Riemannian Geometry, given a Riemannian Manifold (M, g) there exists a unique torsion free metric connection ∇ on *TM* compatible with *g*; i.e. that satisfies that for any vector fields *X*, *Y*, *Z* on *M*,

$$X\langle Y,Z\rangle = \langle
abla_X Y,Z
angle + \langle Y,
abla_X Z
angle$$

(日) (同) (三) (三)

Pedro Solórzano Stony Brook University

Outline	Basic Ingredients ○○●○○○○○ ○○○○○○	Sasaki-type metrics	Riemannian versus Metric properties	lsoholonomy 0000	Possible Application				
Riemanni	Riemannian Metrics and Connections								

More over, if a one considers a curve with parameter t on M and a vector field X defined along such curve, there is a covariant derivative $\frac{D}{\partial t}X$ of X along the curve. Also satisfying that for any such vectors X, Y,

$$rac{\partial}{\partial t}\langle X,Y
angle = \langle rac{D}{\partial t}X,Y
angle + \langle X,rac{D}{\partial t}Y
angle$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日

Remark

We will denote $\frac{D}{\partial t}X$ simply by X'.

Pedro Solórzano Stony Brook University

Outline	Basic Ingredients ○○○●○○○○ ○○○○○○	Sasaki-type metrics	Riemannian versus Metric properties	Isoholonomy 0000	Possible Application		
Riemannian Metrics and Connections							

Definition The solutions to ODE given by

$$\begin{cases} X'(t) = 0\\ X(0) = v \end{cases}$$

along a curve with parameter t are called *parallel vector fields*, and their images *parallel translate* of v. Clearly, by Leibniz rule, for any two parallel vector fields we have that

$$\langle X, Y \rangle' = 0,$$

and hence the name.

Pedro Solórzano Stony Brook University

Outline	Basic Ingredients	Sasaki-type metrics	Riemannian versus Metric properties	Isoholonomy	Possible Application		
	00000000						
	0000000	000					
Riemannian Metrics and Connections							

Figure: Parallel tangent field

メロト メポト メヨト メヨト 二日

Pedro Solórzano Stony Brook University

	0							
Riemannian Metrics and Connections								

For a given curve α on M, we will denote the parallel translation along α by

$$P_t^{\alpha}: T_{\alpha(s)}M \mapsto T_{\alpha(s+t)}M,$$

for s and t + s in the domain of α .

It is well-known that these maps are linear isometries and that they don't depend on the parametrization of α . Because of this, we shall henceforward assume that all curves have domain equal to the interval [0,1]

Outline	Basic Ingredients ○○○○○○●○ ○○○○○○	Sasaki-type metrics	Riemannian versus Metric properties	lsoholonomy 0000	Possible Application 00 0			
Riemannian Metrics and Connections								

Holonomy

If one considers only loops based at any given point of $p \in M$ then one has the following

Definition

The collection $\{P_1^{\alpha}\}$ over all loops α is a subgroup of the orthogonal group of the fiber $T_{\alpha(0)}M$ is called *holonomy group* of the connection at *p*, and is denoted by

$$\operatorname{Hol}_{\rho} = \operatorname{Hol}_{\rho} M = \operatorname{Hol}_{\rho}(g) = \operatorname{Hol}_{\rho}(\nabla).$$

イロト イヨト イヨト イヨト

Pedro Solórzano Stony Brook University

Outline	Basic Ingredients 0000000 0000000	Sasaki-type metrics	Riemannian versus Metric properties	Isoholonomy 0000	Possible Application
Diamann	ion Motrics and Cor	o			

On the 2-sphere

Figure: The holonomy group is all rotations

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

Pedro Solórzano Stony Brook University

Outline	Basic Ingredients ○○○○○○○ ●○○○○○○	Sasaki-type metrics	Riemannian versus Metric properties	Isoholonomy 0000	Possible Application 00 0
Holonom	nic spaces				

Definition

Let G be any group. A group-norm on G is a function $N : G \to \mathbb{R}$ that satisfies the following properties.

- 1. Positivity: $N(A) \ge 0$
- 2. Non-degeneracy: N(A) = 0 iff $A = id_V$
- 3. Symmetry: $N(A^{-1}) = N(A)$
- 4. Subadditivity ("Triangle inequality"): $N(AB) \le N(A) + N(B)$.

<ロ> < ()</p>

Outline	Basic Ingredients ○○○○○○○ ●○○○○○○	Sasaki-type metrics	Riemannian versus Metric properties	Isoholonomy 0000	Possible Application 00 0
Holonom	nic spaces				

Definition

Let G be any group. A group-norm on G is a function $N : G \to \mathbb{R}$ that satisfies the following properties.

- 1. Positivity: $N(A) \ge 0$
- 2. Non-degeneracy: N(A) = 0 iff $A = id_V$
- 3. Symmetry: $N(A^{-1}) = N(A)$
- 4. Subadditivity ("Triangle inequality"): $N(AB) \le N(A) + N(B)$.

Example

Let *V* be a normed vector space and let *G* be a subgroup of the group of norm preserving automorphisms of *V*. Then $N(A) = \|id_V - A\|$ is a group-norm.

Outline	Basic Ingredients ○○○○○○○ ○●○○○○○	Sasaki-type metrics	Riemannian versus Metric properties	Isoholonomy 0000	Possible Application 00 0
Holonom	nic spaces				

Proposition

A group G together with a group-norm N becomes a topological group with the left invariant metric induced by

$$d(A,B) = N(A^{-1}B).$$
 (2.1)

イロト イヨト イヨト イヨト

æ

Pedro Solórzano Stony Brook University

Outline	Basic Ingredients ○○○○○○○ ○●○○○○○	Sasaki-type metrics	Riemannian versus Metric properties	Isoholonomy 0000	Possible Application 00 0		
Holonom	Holonomic spaces						

Proposition

A group G together with a group-norm N becomes a topological group with the left invariant metric induced by

$$d(A,B) = N(A^{-1}B).$$
 (2.1)

(日) (同) (三) (三)

Definition

Given a group-norm N on a group G, the topology generated by N will be called *the* N-topology on G.

Outline	Basic Ingredients ○○○○○○○ ○●○○○○○	Sasaki-type metrics	Riemannian versus Metric properties	Isoholonomy 0000	Possible Application 00 0			
Holonom	Holonomic spaces							

Proposition

A group G together with a group-norm N becomes a topological group with the left invariant metric induced by

$$d(A,B) = N(A^{-1}B).$$
 (2.1)

Definition

Given a group-norm N on a group G, the topology generated by N will be called *the* N-topology on G.

Proposition

With the N-topology on G, the group-norm N is continuous.

Pedro Solórzano Stony Brook University An isoholonomic approach to Riemannian Geometry

Outline	Basic Ingredients ○○○○○○○ ○●○○○○	Sasaki-type metrics	Riemannian versus Metric properties	Isoholonomy 0000	Possible Application 00 0
Helenew					

Definition

Let $(V, \|\cdot\|)$ be a normed vector space, $H \leq Aut(V)$ a subgroup of norm preserving linear isomorphisms, and $L: H \to \mathbb{R}$ a group-norm on H. The triplet (V, H, L) will be called a *holonomic space* if it further satisfies the following convexity property:

(P) For all $u \in V$ there exists $r = r_u > 0$ such that for all $v, w \in V$ with ||v - u|| < r, ||w - u|| < r, and for all $A \in H$,

$$\|v - w\|^2 - \|v - Aw\|^2 \le L^2(A).$$
 (2.2)

<ロ> < ()</p>

Pedro Solórzano Stony Brook University

Outline	Basic Ingredients	Sasaki-type metrics	Riemannian versus Metric properties	Isoholonomy	Possible Application
	0000000	00	00000	0000	00
	000000				
Holonom	ic spaces				

Lemma

Given a holonomic space (V, H, L) as above, there exists r > 0 such that for $u \in V$, |u| < r, and for any $B \in H$,

$$\|u-Bu\|\leq L(B). \tag{2.3}$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

2

Pedro Solórzano Stony Brook University

Outline	Basic Ingredients ○○○○○○○ ○○○○●○○	Sasaki-type metrics	Riemannian versus Metric properties	Isoholonomy 0000	Possible Application 00 0	
Holonom						

Theorem Let (V, H, L) be a holonomic space.

$$d_{L}(u,v) = \inf_{a \in H} \left\{ \sqrt{L^{2}(a) + \|u - av\|^{2}} \right\}, \qquad (2.4)$$

is a metric on V.

▲ロ▶ ▲圖▶ ▲画▶ ▲画▶ ▲画 ● の Q @

Pedro Solórzano Stony Brook University

Outline	Basic Ingredients ○○○○○○○ ○○○○●○○	Sasaki-type metrics	Riemannian versus Metric properties	Isoholonomy 0000	Possible Application 00 0
Holonom	ic spaces				

Theorem Let (V, H, L) be a holonomic space.

$$d_{L}(u,v) = \inf_{a \in H} \left\{ \sqrt{L^{2}(a) + \|u - av\|^{2}} \right\}, \qquad (2.4)$$

is a metric on V.

Definition

Given a holonomic space (V, H, L). The metric given by (2.4) will be called *associated holonomic metric* and V together with this metric will be denoted by V_L .

Outline	Basic Ingredients ○○○○○○○ ○○○○○●○	Sasaki-type metrics	Riemannian versus Metric properties	Isoholonomy 0000	Possible Application 00 0	
Holonom	nic spaces					

Theorem A triplet (V, H, L) is a holonomic space if and only if $id : V \rightarrow V_L$ is a locally isometry.

メロト メポト メヨト メヨト

2

Pedro Solórzano Stony Brook University

Outline	Basic Ingredients ○○○○○○○ ○○○○○○●	Sasaki-type metrics	Riemannian versus Metric properties	Isoholonomy 0000	Possible Application
Ennnnnn					

Definition

Let (V, H, L) be a holonomic space. The *holonomy radius* of a point $u \in V$ is the supremum of the radii r > 0 satisfying the convexity property (P) given by (2.2). It will be denoted by HolRad(u). It may be infinite.

Outline	Basic Ingredients ○○○○○○○ ○○○○○○●	Sasaki-type metrics	Riemannian versus Metric properties	Isoholonomy 0000	Possible Application
Ennnnnn					

Definition

Let (V, H, L) be a holonomic space. The *holonomy radius* of a point $u \in V$ is the supremum of the radii r > 0 satisfying the convexity property (P) given by (2.2). It will be denoted by HolRad(u). It may be infinite.

Remark

The holonomy radius is also the radius of the largest ball so that the restricted d_L -metric is Euclidean.

Outline	Basic Ingredients	Sasaki-type metrics ●○ ○○○ ○	Riemannian versus Metric properties	lsoholonomy 0000	Possible Application 00 0			
Vector bundles								

Introduction

The starting point for studying the metric geometric properties of bundles over Riemannian manifolds is to consider their total spaces as Riemannian manifolds such that the projection is a Riemannian submersion. Existence and naturality of such metrics has been addressed and extensively studied from a purely differential geometric viewpoint.

One procedure to view a vector bundle as a Riemannian submersion is to endow the base with a Riemannian metric and to require that the bundle be equipped with a bundle metric and any compatible bundle connection. These two ingredients provide a plethora of metrics on the total space of the bundle, perhaps the simplest of which is the Sasaki-type metric, introduced for the tangent bundle by Sasaki.

Outline	Basic Ingredients	Sasaki-type metrics	Riemannian versus Metric properties	Isoholonomy	Possible Application
	00000000	○ ● ○○○ ○			00 0

Vector bundles

These constructions generalize

Remark

Given a vector bundle with metric and connection, (E, h, C, ∇) , parallel translation is by isometries.

Definition

Given a bundle with metric and connection, parallel translation yields a map from the space of piecewise smooth loops at a point $p \in M$, Ω_p , to the group $GL(E_p)$ by

$$\alpha \in \Omega_{\rho} \mapsto H(\alpha) = P_1^{\alpha}. \tag{3.1}$$

The holonomy group Hol_p at the point p on the base manifold is then defined as the continuous image of H.

Pedro Solórzano Stony Brook University

Outline	Basic Ingredients	Sasaki-type metrics	Riemannian versus Metric properties	Isoholonomy 0000	Possible Application 00 0
Horizont	al and vertical lifts				

Vertical lift

Definition

Given a (normed) vector space V, there is a canonical isomorphism between $V \times V$ and TV, given by

$$\mathfrak{I}_{\nu}(w)f = \mathfrak{I}(\nu, w)f = \frac{d}{dt}\Big|_{t=0}f(\nu + tw). \tag{3.2}$$

イロト イポト イヨト イヨト

That is, $\mathfrak{I}_{v}w$ is the directional derivative at v in the direction w.

Remark

Given any vector bundle (E, π) , (3.2) yields a bundle isomorphism between $\oplus^2 E := E \oplus E$ and the vertical distribution $\mathcal{V} = \ker \pi_* \subseteq TE$, in a natural way.

Outline	Basic Ingredients	Sasaki-type metrics	Riemannian versus Metric properties	lsoholonomy 0000	Possible Application 00 0
Horizonta	al and vertical lifts				

Horizontal lift

Proposition

A connection on (E, π, M) can be interpreted as a splitting C of the following short exact sequence of bundles over the the total space E.

$$0 \longrightarrow \pi^* E \xrightarrow{\mathfrak{I}} TE \xrightarrow{\psi} \pi^* TM \longrightarrow 0 \tag{3.3}$$

イロト イヨト イヨト イヨト

where $\psi = (\pi_E, \pi_*)$, by regarding C(e, u) as the horizontal lift of the vector $x \in M_{\pi e}$ to e.

Pedro Solórzano Stony Brook University

Outline	Basic Ingredients	Sasaki-type metrics ○○ ○○● ○	Riemannian versus Metric properties	Isoholonomy 0000	Possible Application	
Horizont	al and vertical lifts					
~						

Summary

Given a section σ on E, the vertical lift σ^{v} is the vector field such that at any $f \in E$,

 $\sigma^{\mathsf{v}}(f) := \mathfrak{I}_f(\sigma(\pi(f))).$

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲圖 - のへで

Outline	Basic Ingredients	Sasaki-type metrics ○○ ○○● ○	Riemannian versus Metric properties	Isoholonomy 0000	Possible Application 00 0
Horizont	al and vertical lifts				

Summary

Given a section σ on E, the vertical lift σ^{v} is the vector field such that at any $f \in E$,

 $\sigma^{\mathsf{v}}(f) := \mathfrak{I}_f(\sigma(\pi(f))).$

Given a vector field X on M, the horizontal lift X^h is the vector field such that at any $f \in E$,

$$X^h := C(f, X(\pi(f)))$$

(日) (同) (日) (日)

Pedro Solórzano Stony Brook University

Outline	Basic Ingredients	Sasaki-type metrics	Riemannian versus Metric properties	Isoholonomy 0000	Possible Application
Definitio					

Sasaki-type metrics

Definition

Given a vector bundle with metric and compatible connection (E, π, h, ∇^E) over a Riemannian manifold (M, g), the *Sasaki-type* metric $G = G(g, h, \nabla^E)$ is defined as follows

$$G(e^{v}, f^{v}) = h(e, f),$$
 (3.4)

$$G(e^{v}, x^{h}) = 0,$$
 (3.5)

$$G(x^{h}, y^{h}) = g(x, y).$$
 (3.6)

イロト イ部ト イヨト イヨト 三日

Pedro Solórzano Stony Brook University

Outline	Basic Ingredients	Sasaki-type metrics	Riemannian versus Metric properties ••••••	Isoholonomy 0000	Possible Application 00 0

Riemannian

The Riemannian geometric properties of G are very rigid. Musso and Tricerri observed early on that this metric is a space-form metric iff g is flat.

Outline	Basic Ingredients	Sasaki-type metrics	Riemannian versus Metric properties ••••••	Isoholonomy 0000	Possible Application 00 0

Riemannian

The Riemannian geometric properties of G are very rigid. Musso and Tricerri observed early on that this metric is a space-form metric iff g is flat.

Also, the metric on the fibers is totally geodesic and flat.

Pedro Solórzano Stony Brook University

Outline	Basic Ingredients	Sasaki-type metrics	Riemannian versus Metric properties	Isoholonomy 0000	Possible Application
Met	ric				

The aim is to determine the metric-space structure. Recall that for any Riemannian manifold, the length distance is given by the infimum of lengths over curves.

$$d(u,v) = \inf \ell(\gamma),$$

where γ is a curve from u to v.

Pedro Solórzano Stony Brook University

Outline	Basic Ingredients	Sasaki-type metrics	Riemannian versus Metric properties ○○●○○	lsoholonomy 0000	Possible Application 00 0	
Met	ric					

Parallel transport along a curve gives a metric trivialization of the bundle along the curve, so that the metric on the restricted bundle is given by

$$\alpha^* \mathbf{G} = \ell(\alpha)^2 dt^2 + \alpha^* h_p,$$

where $p = \alpha(0)$, and ℓ denotes the length of α .

Pedro Solórzano Stony Brook University

Outline	Basic Ingredients	Sasaki-type metrics	Riemannian versus Metric properties	Isoholonomy	Possible Application
	00000000	00 000 0	00000		00

Result

Theorem

The length distance on (E, G) is expressed as follows. Let $u, v \in E$

$$d_E(u,v) = \inf \sqrt{\ell(\alpha)^2 + \|P_1^{\alpha}u - v\|^2}, \qquad (4.1)$$

・ロン ・四 ・ ・ ヨン

over all $\alpha : [0, 1] \rightarrow M, \alpha(0) = \pi u, \alpha(1) = \pi$. Furthermore, if $\pi u = \pi v$ then

$$d_{E}(u,v) = \inf\{\sqrt{L(a)^{2} + \|au - v\|^{2}} : a \in Hol_{p}\},$$
(4.2)

with L being the infimum of lengths of loops yielding a given holonomy element.

Pedro Solórzano Stony Brook University An isoholonomic approach to Riemannian Geometry

Outline	Basic Ingredients	Sasaki-type metrics	Riemannian versus Metric properties ○○○○●	Isoholonomy 0000	Possible Application 00 0

Result

Theorem

The length distance on (E, G) is expressed as follows. Let $u, v \in E$

$$d_E(u,v) = \inf \sqrt{\ell(\alpha)^2 + \|P_1^{\alpha}u - v\|^2}, \qquad (4.3)$$

・ロン ・四 ・ ・ ヨン

over all $\alpha : [0, 1] \rightarrow M, \alpha(0) = \pi u, \alpha(1) = \pi$. Furthermore, if $\pi u = \pi v$ then

$$d_{E}(u,v) = \inf\{\sqrt{L(a)^{2} + \|au - v\|^{2}} : a \in Hol_{p}\}, \quad (4.4)$$

with L being the infimum of lengths of loops yielding a given holonomy element.

Pedro Solórzano Stony Brook University An isoholonomic approach to Riemannian Geometry

Outline	Basic Ingredients	Sasaki-type metrics	Riemannian versus Metric properties	Isoholonomy	Possible Application
	00000000	00 000 0		0000	00 0

Theorem

Let Hol_p be the holonomy group over a point $p \in M$ of a bundle with metric and connection and suppose that M is Riemannian. Then the function $L_p : Hol_p \to \mathbb{R}$,

$$L_{\rho}(A) = \inf\{\ell(\alpha) | \alpha \in \Omega_{\rho}, P_{1}^{\alpha} = A\},$$
(5.1)

(日) (同) (三) (三)

is a group-norm for Holp.

Pedro Solórzano Stony Brook University

Outline	Basic Ingredients	Sasaki-type metrics	Riemannian versus Metric properties	Isoholonomy	Possible Application
	00000000	00 000 0		0000	00 0

Proof.

 Positivity is immediate from the fact that it is defined as an infimum of positive numbers.

Outline	Basic Ingredients	Sasaki-type metrics	Riemannian versus Metric properties	Isoholonomy	Possible Application
	00000000	00 000 0		0000	00

Proof.

- Positivity is immediate from the fact that it is defined as an infimum of positive numbers.
- The length of the inverse of any holonomy element is the same because the infimum is taken essentially over the same set.

Outline	Basic Ingredients	Sasaki-type metrics	Riemannian versus Metric properties	Isoholonomy	Possible Application
	00000000	00 000 0		0000	00

Proof.

- Positivity is immediate from the fact that it is defined as an infimum of positive numbers.
- The length of the inverse of any holonomy element is the same because the infimum is taken essentially over the same set.
- ► To establish the triangle inequality, note that the loops that generate AB contains the concatenation of loops generating A ∈ Hol_p with loops generating B ∈ Hol_p.

Outline	Basic Ingredients	Sasaki-type metrics	Riemannian versus Metric properties	Isoholonomy	Possible Application
	00000000	00 000 0		0000	00

Proof.

- Positivity is immediate from the fact that it is defined as an infimum of positive numbers.
- The length of the inverse of any holonomy element is the same because the infimum is taken essentially over the same set.
- ► To establish the triangle inequality, note that the loops that generate AB contains the concatenation of loops generating A ∈ Hol_p with loops generating B ∈ Hol_p.

(日) (同) (三) (

Outline	Basic Ingredients	Sasaki-type metrics	Riemannian versus Metric properties	Isoholonomy	Possible Application
	00000000	00 000 0		0000	00 0

Proof (continued).

▶ To prove non-degeneracy suppose that an element $A \neq I$, but L(A) = 0.

・ロト ・聞 ト ・ 臣 ト ・ 臣 ト … 臣

Outline	Basic Ingredients	Sasaki-type metrics	Riemannian versus Metric properties	Isoholonomy	Possible Application
	00000000	00 000 0		0000	00

Proof (continued).

► To prove non-degeneracy suppose that an element A ≠ I, but L(A) = 0. There exists u ∈ E_p such that ||Au - u|| > 0; thus by choosing a = A we have that

$$d(u, Au) \leq \sqrt{L(A)^2 + \|Au - Au\|^2} = 0.$$

イロト イ部ト イヨト イヨト 三日

Pedro Solórzano Stony Brook University

Outline	Basic Ingredients	Sasaki-type metrics	Riemannian versus Metric properties	Isoholonomy	Possible Application
	00000000	00 000 0		0000	00

Proof (continued).

► To prove non-degeneracy suppose that an element A ≠ I, but L(A) = 0. There exists u ∈ E_p such that ||Au - u|| > 0; thus by choosing a = A we have that

$$d(u, Au) \leq \sqrt{L(A)^2 + ||Au - Au||^2} = 0.$$

A contradiction!

Pedro Solórzano Stony Brook University

Outline	Basic Ingredients	Sasaki-type metrics	Riemannian versus Metric properties	Isoholonomy	Possible Application
	00000000	00 000 0		0000	00 0

Holonomy space revisited

Definition

The function L_p , defined by (5.1) will be called *length norm* of the holonomy group induced by the Riemannian metric at p.

Outline	Basic Ingredients	Sasaki-type metrics	Riemannian versus Metric properties	Isoholonomy	Possible Application
	00000000	00 000 0		0000	00 0

Holonomy space revisited

Definition

The function L_p , defined by (5.1) will be called *length norm* of the holonomy group induced by the Riemannian metric at p.

Theorem

Let E_p be the fiber of a vector bundle with metric and connection E over a Riemannian manifold M at a point p. Let Hol_p denote the associated holonomy group at p and let L_p be the group-norm given by (5.1). Then (E_p, Hol_p, L_p) is a holonomic space.

Outline	Basic Ingredients	Sasaki-type metrics	Riemannian versus Metric properties	Isoholonomy	Possible Application
	00000000	00 000 0		0000	00 0

Holonomy space revisited

Definition

The function L_p , defined by (5.1) will be called *length norm* of the holonomy group induced by the Riemannian metric at p.

Theorem

Let E_p be the fiber of a vector bundle with metric and connection E over a Riemannian manifold M at a point p. Let Hol_p denote the associated holonomy group at p and let L_p be the group-norm given by (5.1). Then (E_p, Hol_p, L_p) is a holonomic space. More importantly, if E is endowed with the corresponding Sasaki-type metric, the associated holonomic distance coincides with the restricted metric on E_p from E.

(日) (同) (三) (

Outline	Basic Ingredients	Sasaki-type metrics	Riemannian versus Metric properties	Isoholonomy	Possible Application
	00000000	00 000 0			• o 0

Consider a Riemannian surface (Σ, g) with volume element ω and suppose that there exists a rank-two vector bundle over Σ with connection such that the curvature 2-form is given by ω .

イロト 不得下 イヨト イヨト 二日

Outline	Basic Ingredients	Sasaki-type metrics	Riemannian versus Metric properties	Isoholonomy	Possible Application
	00000000	00 000 0			• o 0

Consider a Riemannian surface (Σ, g) with volume element ω and suppose that there exists a rank-two vector bundle over Σ with connection such that the curvature 2-form is given by ω . Suppose further that the connection is metric for a bundle metric h.

Outline	Basic Ingredients	Sasaki-type metrics	Riemannian versus Metric properties	Isoholonomy	Possible Application
	00000000	00			•• •

Consider a Riemannian surface (Σ, g) with volume element ω and suppose that there exists a rank-two vector bundle over Σ with connection such that the curvature 2-form is given by ω . Suppose further that the connection is metric for a bundle metric h.

Example

Consider a surface with metric g_0 and density μ . Let E be the tangent bundle together with the bundle metric $h = \mu g_0$ over the Riemannian metric $g = \mu^2 g_0$.

Outline Basic	c Ingredients	Sasaki-type metrics	Riemannian versus Metric properties	Isoholonomy	Possible Application
000	00000 0000	000			○ ● ○

Lemma

Let (M^2, g) be a 2-dimensional Riemannian manifold and let $\gamma : [0, \ell] \subseteq \mathbb{R} \to M$ be any curve parametrized by arc length. Let k_g be a signed geodesic curvature of γ with respect to an orientation of $\gamma^* TM$. Let $\theta(t)$ be the angle between $\dot{\gamma}$ and its parallel translate at time t. Then

$$2\pi - \theta(t) = \int_0^t k_g \tag{6.1}$$

Assume further that γ is a loop. Then, possibly up to a reversal in orientation, the holonomy action of γ at $p = \gamma(0)$ is the rotation by $2\pi - \int_0^\ell k_g$.

Pedro Solórzano Stony Brook University An isoholonomic approach to Riemannian Geometry

Outline	Basic Ingredients	Sasaki-type metrics	Riemannian versus Metric properties	Isoholonomy	Possible Application
	0000000	000			•

Thank you!

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

3

Pedro Solórzano Stony Brook University