GEOMETRIC INTERPRETATION
 AND UTILITIES RELATED TO THE MONGE-AMPERE EQUATION

Lamia Bel Kenani-Toukabri
I.P.E.I.T.

Queen Dido Conference, 25 May 2010

OUTLINES

- Equations of Monge-Ampère type
- Geometric interpretations, the Weyl and Minkowski problem
- History and utilities
- Results on existence and regularity of solutions
- in bounded domains
- in unbounded domains

Equations of Monge-Ampère type

- A real Monge-Ampère equation is a fully nonlinear second order partial differential equation of special kind:

$$
\operatorname{det} D^{2} u=f(x, u, D u)
$$

x : a variable with values in IR^{n}
u: a function defined over a domain Ω of I^{n}

- When $\mathbf{f}=\mathbf{1}$, an entire convex solution must be a quadratic polynomial
(by Calabi for $\mathrm{n} \leq 5$ and Pogorolov for n)

Geometric interpretations, the Weyl and Minkowski problem

$>$ Monge-Ampère equations arises naturally in several problems in Riemannian geometry, conformal geometry, and CR geometry.
$>$ The simplest application is the problem of prescribed Gauss curvature:

Suppose a real valued function K is specified on a domain Ω in IR^{n}, we seek to identify a hypersurface of $\mathrm{IR}^{\mathrm{n}+1}$ as a graph: $\mathbf{z = u (x)}$ over $x \in \Omega$ so that:

$$
\operatorname{det} D^{2} u=K(x)\left(1+|D u|^{2}\right)^{(n+2) / 2}
$$

> If $\mathrm{z}=\mathrm{u}(\mathrm{x}, \mathrm{y})$ is the equation of a hypersurface \sum of R^{3},

$$
\operatorname{det} D^{2} u=u_{x x} u_{y y}-u_{x y}=k_{1}(x, y) k_{2}(x, y)
$$

where $\mathbf{k}_{1}, \mathbf{k}_{2}$, are the eigenvalues of $\mathrm{D}^{2} \mathbf{u}$, the point (x, y) is

- elliptic when $\mathbf{k}_{1} \mathbf{k}_{2}>0$, in that case u is convex near (x, y)
- hyperbolic when $\mathbf{k}_{1} \mathbf{k}_{2}<0$
- parabolic when $D^{2} u \neq 0$ and $\mathbf{k}_{1} \mathbf{k}_{2}=\mathbf{0}$

$>$ Denote by \mathbf{N} the unite normal to the surface:
$\Sigma: \mathbf{z = u}(\mathrm{x}, \mathrm{y})$,

$$
N=1 /\left(1+|D u|^{2}\right)(-D u, 1)
$$

$>$ Principle curvatuves $\mathbf{k}_{1}(\mathbf{x}, \mathbf{y}), \mathbf{k}_{\mathbf{2}}(\mathbf{x}, \mathbf{y})$ are the eigenvalues of the Weirgarten map (shape form map),

$$
\begin{aligned}
\mathbf{W}: \mathbf{T}_{(\mathrm{x}, \mathrm{y})} & \sum \rightarrow \mathbf{T}_{(\mathrm{x}, \mathrm{y})} \sum \\
\mathrm{v} & \rightarrow \mathbf{N}^{\prime}(\mathbf{x}, \mathrm{y}) \mathbf{v}
\end{aligned}
$$

$>$ The Gauss curvature is defined by:

$$
K=k_{1} k_{2}=\operatorname{det}\left(D^{2} u\right) /\left(1+|D u|^{2}\right)^{(n+2) / 2}
$$

$>$ When $K>0,(x, y)$ is elliptic and if $k_{1}>0, k_{2}>0$, the surface is convex near (x, y)
\Rightarrow When $\mathrm{k}_{1}=\mathrm{k}_{2},(\mathrm{x}, \mathrm{y})$ is called spherical point

Osculator circle to a curve at a point having principle curvature $k>0$

$R=1 / k$

An elliptic point
> The Minkowski problem (1903) goes as follows:

Given f defined on S^{2}, find a strictly convex surface: $\sum \subset \mid \mathrm{R}^{3}$ such that the Gauss curvature of \sum at the point x equals $\mathrm{f}(\mathrm{N}(\mathrm{x}))$

* When $f(x)$ is identically equal to the constant: $1 / R^{2}$, the solution would be the sphere of radius R

$>$ The Weyl problem (1916) goes as follows:

Given a Riemannien metric \mathbf{g} on $\mathbf{S}^{\mathbf{2}}$ having Gauss curvature $K>0$, we seek a regular isometric embedding wich image is a convex hypersurface \sum :

$$
\mathrm{X}:\left(\mathrm{S}^{2}, \mathrm{~g}\right) \rightarrow\left(\mathrm{IR}^{3}, \mathrm{~h}\right)
$$

h : the standard plane metric

History and utilities

> For the Minkowski problem: (1903)

* Minkowski prouved the uniqueness and tried to prove existence of such surface as a limit of polyhedrons
* 1938, Lewy, under hypothesis of analicity of K, proved the existence and uniqueness of the required surface
* 1971, Pogorelov studied the generalized Minkowski problem consisting in finding a convex closed hypersurface in $\operatorname{IR}^{\mathrm{n}}$ with prescribed Gauss curvature K
$>$ For the Weyl problem (1916):
* Weyl tried to solve it by classical method of continuity based on à priori estimations of holderian norms of smooth solutions
* 1962, Niremberg completed this proof and solve the existance problem
* 1948, Alexandroff obtained a generalized solution to Weyl problem as a limit of polyhedrons.
* 1949, Pogorelov proved the regularity of Alexandroff solution
* 1984, Oliker, generalized Weyl problem to dimention n:

Det $D^{2} u=K(x)\left(1+|\nabla u|^{2}\right)^{(n+2) / 2}$

Utilities in Physics

* 1850, Joseph Antoine Ferdinand Plateu,

Plateau's Problem: Determine the shape of the minimal surface constrained by a given boundary, there arizes then the question:

Is there a convex surface with prescribed Gauss curvature a constant $\mathrm{K}>0$ and its boundary is a Jordan curve?

* Caffarelli, Nirembeg, Spruck in 1984, prouved existance an unicity of such surface
a belgian physist.

The surface \sum of the sop film is submitted to the homogenous presser of the air

* 1992, Hoffman, Rosenberg, Spruck, generalized that result for graphs above rings planes (Σ is not global convex)
* 2004, Guan and Spruck, proved that two prallel planes limit a K-surface which topology is of the ring

* In geometrical optic it rises these two following related problems:
- Given the light intensity I of a light ray R, find the wave surface \sum :
the wave surface \sum is orthogonal

Can burn for bad Gauss curvature of surface Σ
 to the light beam and the light intensity at point A is proportional to the Gauss curvature of \sum at point A :

I=cK

- Suppose a homogenous light source is located at the origin, I(m) the intensity of this light source in the direction m and suppose that a ray reaches the surface Σ at a point $r(m)$ and is reflected in the direction $y(m)$. The law of reflection is:

$$
y(m)=m-2(m \mid N) N
$$

Which defines a function y from S^{1} into I^{3}. The intesity of the reflected light is given by:

$$
l(y(m))=I(m) / \operatorname{det}\left(D^{2} y\right)
$$

- Thus arises that question: how do we reconstruct a surface \sum from the light rays reflected? (Oliker)

principle of the device antenna reflector considered by some engineers is also linked to this type of equation

Results on existence and regularity of solutions

$>$ Case when Ω is a bounded domain :
We consider then the Dirichlet problem:

$$
\begin{array}{ll}
\text { Det } D^{2} u=f(x, u, D u)>0 & \text { in } \Omega \\
\mathbf{u}=\phi & \text { on } \partial \Omega
\end{array}
$$

- 2008, N.S. Trudinger, X.J.Wang,
if $f=f(x), \Omega$ is a convex domain in $\operatorname{IR}^{n}, \partial \Omega \in \mathrm{C}^{3}, \phi \in \mathrm{C}^{3}(\bar{\Omega})$,
inf $f>0$ and $f \in \mathrm{C}^{\alpha}(\bar{\Omega})$ then there exists a convex solution u :

$$
|\mathrm{u}|_{2, \alpha} \leq \mathrm{C}
$$

- 1999, P. Guan, N.S. Trudinger, X.J.Wang: if $f=f(x) \geq 0$, $\partial \Omega, \phi \in \mathrm{C}^{3,1}$ and $\mathrm{f}^{1 / n-1} \in \mathrm{C}^{1,1}$, then u exists
* when $\mathrm{f}=\mathrm{f}(\mathrm{x}, \mathbf{u}, \nabla \mathbf{u})>\mathbf{0}$,
- 1984, L.Caffarelli, L.Niremberg, J.Spruk, If there exists a subsolution

$$
\underline{\mathbf{u}}: \operatorname{det} D^{2} \mathbf{u} \geq \mathbf{0} \quad \text { in } \Omega, \quad \underline{\mathbf{u}}=\phi \quad \text { on } \partial \Omega
$$

and Ω is a convex domain, there exists a unique solution u :

$$
|u|_{2, \alpha} \leq C
$$

- 1998, B.Guan, generalized the latter work to non convex domains, nevertheless had no result of existance of subsolutions
- 2004, B.Guan, obtained some good results for infinit boundary value even in unbounded domains
$>$ Case where the domain is unbounded:
* 1996, K.S.Chou, X.J.wang,
when $\mathrm{f}=\mathrm{f}(\mathrm{x})$ and $0<\mathrm{c}_{1} \leq \mathrm{f} \leq \mathrm{c}_{2}$, there exist
infinitely many entire convexe solutions to the MA equations in IR^{n}
- Existance of entire convex solutions for any given positive function f is still open problem
* 2002, F.Finster, O.C.Shurer,

If there exists a subsolution \underline{u} close to a cone, there exists a hypersurface of prescribed Gauss curvature in an exterior domain which is close to a cone: $|\mathbf{x}| \leq \mathbf{u} \leq|\mathbf{x}|+\varphi$

Has a derivative not bounded near 0
> 2010, Lamia Bel Kenani Toukabri, J. Math. Anal. Appl. 363 (2010) 596-605, jointed work with Saoussen KallelJallouli published the following result of existence of entire solution for $\mathbf{n} \geq 3$,
if $f>0$ in $C^{2}\left(\mathbb{R}^{n} \times I R \times \mathbb{R}^{n}\right)$. We prove the existence of convex solutions, provided there exists a subsolution of the form $\underline{\mathbf{u}}=\mathbf{a}|\mathbf{x}|^{2}$ and a superharmonic bounded positive function φ satisfying:

$$
f \geq(2 a+\Delta \varphi / n)^{n} .
$$

- The hypothesis on f is so that

$$
a|x|^{2} \leq u \leq a|x|^{2}+\varphi
$$

and $\mathbf{D}^{2} \mathbf{u}$ is uniformly bounded,
with φ superharmonic bounded positive function
then the graph of the surface \sum is close to a parabolïd

THANK YOU

