Problem Solutions set2

Problem 1.36. (Pumping up a bicycle tire.)

(a) From equation 1.40 (derived in the previous problem), we have
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PfV;? =PV, or Vi=V;- (Ff) = (1 liter) (7 ;ti) = 0.25 liters,

where 7 and f refer to initial and final. and T've set v = 7/5 for air, which has five
degrees of freedom per molecule at ordinary temperatures.

(b) The pressure as a function of volume is P = constant /V7, where the constant can be
evaluated from the initial conditions as P;V.". The work done is then
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= % [(4.0)2/% — 1] = 1.86 liter-atm = 188 J.
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(c) From equation 1.39 we can write Vfo 7= viT! 2 or

Vi 2/1 1 liter 2/
Tr=T (] =@B0K)|[-———) =(300K)(1.74) ~ 520 K.
re (Vf) ( )(0.25 1iters) ( )74

Problem 1.37. From equation 1.39 we can write VfTJ{c 2 = V,-Tif 2 where i represents the
initial state and f represents the final state. I'll assume an initial temperature of 300 K
and f = 5 for air. Solving for T} then gives

Vv 2/f

Ty =T, - (V) = (300 K)(20)*® = (300 K)(3.31) ~ 1000 K.
f

This is presumably hot enough to ignite the fuel as soon as it is injected, without the aid

of a spark plug.

Problem 1.39. (Bulk modulus and speed of sound.)

(a) During an isothermal compression, according to the ideal gas law,
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and therefore the bulk modulus is

(b)

(c)

dP  NETI
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During an adiabatic compression, on the other hand, the pressure of an ideal gas obeys
PV = (' for some constant . This implies
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and therefore
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Badiabatic = *VW = ”f"ﬁ
Since 7 is always greater than 1, the adiabatic bulk modulus is always larger than the
isothermal bulk modulus. This makes sense, because it’s harder to compress a gas

adiabatically (as its temperature rises) than isothermally.
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Sound typically travels much faster than heat, so there’s no way that heat could
flow back and forth between the compressed and rarified portions of sound wave fast
enough to accomplish any temperature equilibration. Therefore we can treat these
compressions as approximately adiabatic, with no significant heat flow at all.

Let m be the average mass of a gas molecule. Then the density, p, is Nm/V = mP/kT
by the ideal gas law. The speed of sound is therefore
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where M is the mass of a mole of the gas. This result is the same as equation 1.21 for
the rms speed of the gas molecules, except that the 3 is here replaced by ~. In other
words, the speed of sound is slower than the rms molecular speed, by a factor of \/3 /7.
(Note that v is always between 1 and 5/3, being largest for a monatomic gas.) This
result makes sense: The sound wave is carried by the molecules. so its speed should
be comparable to the average molecular speed, and definitely no faster. Numerically,
for air at room temperature,
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(d) At high altitude, the pressure of the atmosphere is less than at sea level. But the result
of part (¢) shows that for an ideal gas, the speed of sound is independent of pressure—
it depends only on temperature. (Both B and p are proportional to pressure, but this
dependence cancels in the ratio B/p.) If the environment throws your bagpipes out
of tune, it must be the temperature, not the lower pressure, that causes this effect.
In fact, the concert referred to was in a heated auditorium so there should have been
no significant effect due to temperature either. In any case, the musician managed to
tune his pipes just fine and the performance was superb.

Problem 1.41. (Measuring a heat capacity.)

(a) The heat gained by the water is
My Cop (AT),, = (250 g)(4.186 J/g-°C)(4°C) = 4186 J.

(b) The heat lost by the metal must be the same as the heat lost by the water, 4186 J,
since there are no other energy transfers going on and energy must be conserved.

(c) The heat capacity of the chunk of metal must therefore be

Q  —4186 ]
AT,  —76°C

C, = — 55 J/°C.

(d) The specific heat capacity is the heat capacity per unit mass,

O 55 J/oC
a Mom 100 g

o
3

=0.55 J/g-°C.

Problem 1.42. The heat lost by the water should be approximately equal to the heat
gained by the pasta. Therefore,

M Co (L — 1) = mye, (T — 15,),

where w stands for water, p for pasta, and f for the common final temperature. Solving
for Ty gives

My Cop Ty + 0,7,

My, Coy T MpCp
(1500 g)(4.186 J/g-°C)(100°C) + (340 g)(1.8 J/g-°C)(25°C)
B (1500 g)(4.186 J/g-°C) + (340 g)(1.8 J/g-°C)

1Ty =

= 03.3°C.

So we would expect the water temperature to drop by nearly 7°C, assuming that equilibra-
tion happens faster than the stove can provide any significant additional heat. To prevent
the water temperature from dropping so much, it might be wise to use a bigger pot of
water.



Problem 1.47. The amount of heat that I want to remove from the tea is
Q) = (200 g)(1 cal/g-"C)(35°C) = 7000 cal.

This heat enters the ice, brings it up to 0°C, melts it, and then brings the melted water up
to 65°C. If the mass of the ice is m, then

QQ = m(0.5 cal/g-°C)(15°C) + m(80 cal/g) + m(1 cal/g-°C)(65°C).

Solving for m gives m = 46 g.

Problem 1.48. Consider a 1-m? patch of snow-covered ground, which is covered by 1 m?
of ice (and an equal amount of air mixed with it, which we can neglect). That’s nearly
1000 kg, so if it’s already at 0°C. the energy needed to melt it is 80 million calories or
335 M.J. Now direct sunlight provides to this patch of ground 1000 .J/s, but only 10%, or
100 J/s, is absorbed. A full day of sunshine in late spring might be equivalent to 8 hours,
or about 30,000 seconds, of direct sunlight. So in one day the snow absorbs about 3 M.J of
solar energy. That means it should take more than 100 days. or 14 weeks. for the snow to
melt! Probably, though. the snow absorbs more energy from other sources such as the air
and any nearby rocks or trees.

Problem 1.50. (Combustion of methane.)

(a) From the table on page 404, line 8, the change in enthalpy upon forming one mole of
methane from elemental carbon and hydrogen is —74.81 kI; the change in enthalpy
for the reverse reaction is therefore +74.81 kJ.

(b) From the same table. AH to form one mole of CO5 is —393.51 kJ (line 14), while AH
to form two moles of HyO vapor is 2 x (—241.82 kJ) = —483.64 kJ (page 405, line 5).

(c) Imagine first converting the mole of methane into elemental carbon and hydrogen,
then taking these elements and some oxygen and converting them into CO, and H;O.
The total change in enthalpy for all these steps is

AH = +74.81 kJ + (—393.51 kJ) + (—483.64 kJ) = —802.34 kJ.

Now the actual reaction doesn’'t occur by this sequence of steps, but the end result is
the same, so the net change in enthalpy must be the same: a decrease of 802 k.J.

(d) In a constant-pressure process with no other work done. the heat given off is precisely
equal to the decrease in enthalpy, in this case, 802 k.J.



(e) In a constant-pressure process, AU = AH — P AV. This reaction starts with three
moles of gas and ends with three moles of gas, so AV is almost exactly zero (by the
ideal gas law). Therefore AU is the same as AH, —802 kJ. However, if the HyO ends
up as a liquid, things are a bit more interesting. Then AH to form the H,O from its
elemental constituents is instead 2 x (—285.83 kJ) = —571.66 kJ (page 405, line 4).
and the computation in part (c¢) yields a net AH of —890.36 kJ. But the volume of
the system decreases substantially, because it starts with three moles of gas and ends
up with only one (while the volume of the liquid is negligible):

2RT

RT
AV = ?/_\n e —T

The change in the system’s energy is therefore

AU = AH — PAV = AH + 2RT = (—890.36 kJ) + 2(8.315 J/K)(298 K)
— —800.36 kJ + 4.96 kJ = —885.40 kJ.

The heat given off is a bit more than the amount of energy lost by the system; the
difference comes from work done by the atmosphere as it compresses the system to a
smaller volume.

(f) A mole of methane has a mass of only 16 g, but two moles of Oy have a total mass
of 64 g, giving a total of 80 g = 0.080 kg for the mass of fuel to produce the reaction
given here. If the sun were composed entirely of such fuel in the correct proportions,
it would contain I

2X 07 5 510
0.080

moles of methane, which could give off a total of roughly
2.5 x 10* % 800,000 J =2 x 10°7 J

of heat. by the reaction considered here. But at a rate of about 4 x 10%® watts, this
fuel would last only
2 x 10%7 J

m =5 x 10 seconds,
p T/s

or about 1600 years. Other chemical fuels might give somewhat longer lifetimes. but
no chemical fuel could power the sun for more than a few thousand years.



Problem 1.53. On page 405 we see that the enthalpy of formation of a mole of atomic
hydrogen is 217.97 kJ. To convert this enthalpy change to an energy change, we need to
subtract off the P AV term:
AU =AH — PAV = AH — (An)RT
= 21797 kJ — %(8.31 J/K)(298 K) = 21797 kJ — 1.24 kJ = 216.73 k.J.

(The 1.24-k.J difference between AU and AH is the work that you must do to make room
for the additional half-mole of gas created during dissociation.) Now, to get the energy

required to dissociate a single molecule, we divide by the number of molecules:
AU 216.7 kJ

. = o = = 7.20 % 1071 J = 4.49 ¢V,
e N 10602 x 107 8 ¢




