Homework set 3-solution

Problems:

2.1,2.2,25,2.6,2.8,2.15,2.28,2.31, 2.33, 2.35

Problem 2.1. (Flipping four coins.)

(a)

(b)

(c)

Here are all the possible outcomes, 16 in total:

TTTT TTHH THHH
THTH HTHH

T1TTH THHT HHTH

TTHT HTTH HHHT

THTT HTHT

HTTT HHTT HHHH

The macrostates are:

0 heads, €2 = 1, probability = 1/16
1 head, Q =4, probability = 4/16
2 heads, €2 = 6, probability = 6/16
3 heads, €2 = 4, probability = 4/16
4 heads, €2 = 1, probability = 1/16

For N =4 and n = 0, equation 2.6 gives 2 = 4!/(0!-4!) = 1, since 0! = 1. For n = 1,
we have Q =4!/(1!-3!) =24/6 =4. Forn =2, Q=4!/(2!-2!) =24/1=6. For n =3
the formula predicts the same result as for n = 1, namely 4. And for n =4 it’s again
1, the same as for n = D.‘

Problem 2.2. (Flipping 20 coins.)

(a)
(b)

(c)

Each coin has two possible states, and the coins are independent, so the total number
of microstates is 22° = 1048576, or a little over a million.

The sequence given corresponds to just one particular microstate. It the coins are fair
every microstate is equally probable, so the probability ot any one of them, including
this, is 1/22° or a little less than one in a million. (And yet, amazingly, T got exactly
that sequence, on the first try, when I was writing the problem!)

The number of ways of getting exactly 8 heads is

= 125970.

20y  20-19-18-17-16-15-14-13
8 ) 8.7-6-5-4-3.-2-1

So the probability of getting exactly 8 heads is 125970/1048576 = 12.0%|



Problem 2.5. (Microstates of a small Einstein solid.) To represent each microstate I'll
use a sequence of digits, for the number of energy units in the first, second, and third
oscillators, respectively.
(a) N=3, q=4

400 310 031 220 211

040 301 103 202 121

004 130 013 022 112

I count 15 microstates. And according to the formula, there should be

4+3-1 6! 6-5
4 412! 2

(b) N=3, ¢g=5:

500 410 041 320 032 311 221
050 401 104 302 203 131 212
005 140 014 230 023 113 122

I count 21 microstates. And according to the formula, there should be

G+&4)_7!_?6_m

5 512! 2

o]

600 501 015 042 141 033 132
060 150 420 204 114 321 213
006 051 402 024 330 312 123
510 105 240 411 303 231 222

I count 28 microstates. And according to the formula, there should be

6+3—1 S
= = 2o
( 6 ) 621 2

(d) N=4, q=2:
2000 0020 1100 1001 0101
0200 0002 1010 0110 0011
I count 10 microstates. And according to the formula, there should be

2441 50 5.4
( 2 >_sz‘2 =10




(e) N=4, ¢g=3:
3000 2100 0210 0021 1110
0300 2010 0201 1002 1101
0030 2001 1020 0102 1011
0003 1200 0120 0012 0111
I count 20 microstates. And according to the formula, there should be
(3—1—4—1)_ 6! 6-5-4

= = = 20.
3 313! 3.2

(f) If N =1, then all the energy must belong to the one and only oscillator, so there’s only
one microstate, which we would denote simple “¢”. And according to the formula, the

multiplicity should be
(q +1-— 1) _q .
q q

(g) If g =1, then there’s only one unit of energy to distribute among the N oscillators, so
the allowed states would be 1000---, 0100- - -, 0010-- -, and so on up to ---0001. There
are N places to put the unit of energy, so the number of possible microstates is N.
And indeed, according to the formula,

_ 1+N—-1 N! ,

Problem 2.6. For N = 30 and g = 30, the number of microstates should be

30 + 30 — 50!
30 +;00 1) _ % pg1 10

€(30,30) = ( (301)(29)

Problem 2.8. (Two small Einstein solids.)
(a) Of the 20 units of energy, anywhere from 0 to 20 could be in solid A. Each possibility
from 0 to 20 defines a different macrostate, so there are 21 macrostates in total.

(b) The combined system has 20 oscillators and 20 units of energy, so the total number
of microstates is

0(20,20) = ( 90 — _ =6.89 x 10",

(201)(19!)

(c¢) For the macrostate with all the energy in solid A, the multiplicity of solid A is
204+10-1 29!

= =1.00x 107,

( 20 ) (201)(9") ’

while the multiplicity of solid B is 1. Assuming that the system is in equilibrium, all

microstates are equally probable, so the probability of this macrostate is

Q(this state)  1.00 x 107
Q(total)  6.89 x 1010

20+201) I

Q(10,20) =

Probability = =1.45 x 1074,



(d) For the macrostate with half the energy in each solid, the multiplicity of the combined
system is

10+10—1\ /10+10—1 190\ .

so the probability (in equilibrium) is
. 8.53 x 10° ‘
Probability = 580 % 100 — 0.124.

(e) The probability of the energy being evenly distributed is greater than that of all the
energy being in A by a factor of nearly 1000. So if this system started out with all (or
nearly all) of the energy in one solid or the other, then we could be pretty sure that
it would evolve toward a state with energy more evenly distributed. And if it started
out with the energy evenly distributed, we could be pretty sure that at some later
time we wouldn’t find all the energy on one side or the other—this would happen less
than one time in a thousand. So the evolution trom the unlikely state to the likely
one is sortot irreversible, but not exactly since the process does occasionally happen
in reverse.

Problem 2.15. According to my calculator, 50! = 3.0414 x 1054, Stirling’s approximation.
however, gives

50! 2 50°% /27 - 50 = 3.0363 x 10%*,

off by about 0.2%. The natural logarithm of 50! is 148.5, while the simplified form of
Stirling’s approximation gives

In 50! 22 50 In 50 — 50 = 145.6,

off by about 2%.

Problem 2.28. There are 52 possible cards that could be on top, and for each of these
choices there are 51 possibilities for the next card, then 50 for the next, and so on down to
1 choice for the bottom card. So the total number of arrangements is just 52! = 8.06 x 107,
If all arrangements are accessible, then the entropy is

S
L =I5 =156; 5= 156k = 2.16 x 1072 J/K.

This is then the amount of entropy created by shuffling the cards, and it’s tiny compared
to the entropy associated with thermal motions, which is typically a large number (pro-
portional to the number of particles) in fundamental units and a number of order 1 when
multiplied by Boltzmann’s constant.



Problem 2.31. Starting from equation 2.40 for the multiplicity, we have for the entropy
of an ideal gas

2rmU
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omrmlr \*/? 3N 3N\ 3N
m) lenNJrN——ln( )+—
h? 9 9

F4

V ormU \*/? 3N\3/2 5 V' rdrml \3/2 5
=N|ln—+In[ —— —1(—) —|=N|l —(7) —1.
{nN+ H( 2 ) "\ +2] [H(N 3NT2 T3
In the second line I've used Stirling’s approximation twice, in the form of equation 2.16

which omits the merely “large” factor of /27 N. The final expression is the Sackur-Tetrode
result, equation 2.49.
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Problem 2.33. For argon at room temperature and atmospheric pressure, the volume per
molecule is

VoOET (138 % 102 J/K)(300 K)
R =4.14 x 1072 m?,
N~ P 10° N/m? . m

while the energy per molecule is

J .
f\f = ng = ;(1.38 x 107 J/K)(300 K) = 6.21 x 1072 J.

The mass of an argon atom is 40 u or 6.64 x 1072 kg, so the argument of the logarithm in
the Sackur-Tetrode equation is

1% (47rmU)3/2 L 1072 ) (4w(6.64 x 10726 kg)(6.21 x 10721 J)

N\ 3N#2 3(6.63 x 1031 J.5)2

3/2
—1.02 % 107,
N ) *

The entropy of a mole of argon under these conditions is therefore
S = R[In(1.02 x 107) + 5] = R[18.64] = 155 J/K.

The only relevant difference between argon and helium in this calculation is the larger
mass of the argon atom, which increases the argument of the logarithm by a factor of
(40/4)%/2 = 31.6. The reason why m matters is because for a given energy, a molecule with
more mass has more momentum, resulting in a larger “hypersphere” of allowed momentum
states for the gas and hence a larger multiplicity.



Problem 2.35. Writing 5/2 as Ine®2, the Sackur-Tetrode equation becomes

% drml\3/2
o ) - 5/2
S Nkln[Ne (5v77) ]

We want to know when this quantity is negative, that is, when the argument of the logarithm
is less than 1. So set it equal to 1 and use the equipartition theorem to write U in terms
of T

Vs (47rmU)3/9 V 5/2(2ﬂka )3/2
1= —¢" = —e T .
N 3N h? N h?

Solving for T gives

T Ny\2/3 h?
7(?) 2med3mik

We're to assume that N/V is the same as at room temperature (7) and atmospheric
pressure (), so we can use the ideal gas law to write it as Py /kTo, then plug in Py = 10° Pa
and T, = 300 K. The mass of a helium atom is 4 u, where 1 u = 1.66 x 10727 kg. Plugging
in all these numbers, I get T" ~ 0.01 K. Below this temperature, the methods of Chapter 7
become necessary.



