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Problem 4.1. (Ideal gas engine with rectangular PV cycle.)

(a) The net work done by the gas during one cycle is
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= (P = P)(Va = Vi) = (P)(2Vy) = 2PV,
while the heat absorbed (during steps A and B) is
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Therefore the efficiency is
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(b) The relative temperatures at various points around the cycle can be determined from
the ideal gas law, PV = NET. The lowest temperature occurs at the hottom-left
corner when P and V are both smallest. As the pressure doubles during step A
the temperature also doubles; then as the volume is tripled during step B so is the
temperature. Thus the highest temperature, at the upper-right corner, is six times
as great as the lowest temperature. For these extreme temperatures the maximum
possible efficiency would be
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The rectangular cycle is extremely inefficient compared to a Carnot cycle.

Problem 4.3. (Waste heat from a power plant.)

(a) An efficiency of 40% means that the other 60% of the energy consumed ends up as
waste heat. That’s 1.5 times as much as the amount that ends up as work. More
generally, by the definition of efficiency and the first law,
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so the waste heat is

1

e



(b) TIn one second, the waste heat dumped to the river is 1.5x 10 J, and this heat is spread
among 10° kg of water, so each kilogram gets 15 k.J. With a heat capacity of 4186 .J /°C,
the water’s temperature increases by AT = Q/C = 15000 .J /4186 J/°C = 3.6°C.

(c) The latent heat to evaporate water is 2260 J/g (at 100°C). At room temperature
it’s about 8% more, as mentioned in Problem 1.54 and Figure 5.11; so I'll take L =
2400 J/g. The total amount of water that must evaporate each second is then

1.5 % 10°J
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5100 J/a 6 < 10”7 g = 600 kg.

That’s only 0.6 m®, or only 0.6% of the water in the river.

Problem 4.4. (Engine driven by the ocean’s thermal gradient.)

(a) Converting the temperatures to the kelvin scale, we get a maximum possible efficiency
of ‘
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or about 6%.
(b) A rigorous calculation of the absolute minimum amount of water that we must process
is not easy. As the engine extracts heat from the warm water, the water’s temperature

decreases and therefore so does the efficiency of the engine. To make a rough estimate,
however, let’s suppose that we extract heat from the warm water until its temperature
drops by 9°C (half the temperature difference between the warm and cool water), and
similarly that we expel heat into the cool water until its temperature increases by
9°C. Then the average temperatures of the reservoirs are 290.5 K and 281.5 K, so the
efficiency is only

281.5

290.5
The heat extracted from each kilogram of the warm water is 9 x 4186 J = 38 kJ, but
at 3.1% efficiency, this heat produces only 1.2 kJ of work. We need 10? J of work each
second, so the amount of water required is

e=1 = (0.031.
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or about 900 cubic meters.



Problem 4.5. (Efficiency of an ideal gas Carnot engine.)
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To compute ()}, and @), we need consider only the isothermal processes 1-2 and 3—4, since the
other two steps are adiabatic. Furthermore, the heat input during an isothermal process is
equal in magnitude to the work performed, since for an ideal gas AU o AT = 0. Therefore
the heat input is
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The efficiency of the engine is

Qe Tn(Vy/Vy)
Q T n(Va/Vh)

which is equal to the Carnot efficiency provided that V3/V, = V5/V;. To show that this is
the case, note from equation 1.39 that for each of the adiabatic processes, VT//? is constant
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(where f is the number of degrees of freedom per molecule). For the adiabatic expansion
2-3, this implies

VT = T2,
while for the adiabatic compression 4-1 we have

ViT!? = T2,

Dividing these two equations, we obtain V3/Vy = V5/V7, as needed to cancel the logarithms
in the preceding formula for the efficiency.

Problem 4.11. For the temperatures given, the maximum COP would be
T. 001K
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In other words, for each joule of heat extracted from the very cold reservoir, we must supply

at least 100 .J (or 99, to be precise) of work.

COP = = 0.01.



Problem 4.14. The heat pump is physically the same as an ordinary retrigerator, so please
refer to the energy-flow diagram in Figure 4.4.

(a)

(b)

(c)

(d)

The COP should be defined as the benefit divided by the cost. In this case the benefit is
the heat that enters the building, @5, while the cost is the electrical energy consumed,
W. So benefit/cost = Q;, /W

The energy in is (). + W and the energy out is @), so
Qr=0Q.+W
under cyclic operation. The COP is therefore
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which is always greater than 1.

The entropy expelled during the cycle must be at least as great as the entropy ab-
sorbed, so
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Because Q)./Q;, must be less than or equal to 1, /1},, the quantity 1 —Q./Qp must be
greater than or equal to 1 — T,./T},, and therefore, by the result of part (b),
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For an electric heater, all the electrical energy (W) is converted to heat ((0). so
the COP is 1. An ideal heat pump, though, always has a COP greater than 1. For
instance, if T, = 25°C and T, = 0°C, then the COP can (in principle) be as high as
208/25 = 12. In practice the COP is never this high, but as long as T, and T, aren’t
too different, a heat pump offers a big advantage in efficiency over an electric heater.
On the other hand, a heat pump is more expensive to manufacture and maintain,
since it a complicated device with many moving parts. Fortunately, a central air
conditioning system can double as a heat pump in the winter. So if you're already
planning to install central air, and your winters aren’t oo cold, get a heat pump.



