HW-Solution-set6

5.1,5.2,5.5,5.10, 5.11, 5.22, 5.24, 5.28, 5.32, 5.35

Problem 5.1. The energy of a mole of argon is given by the equipartition theorem:

U= gNkT = gnRT = %(1)(8.31 J/K)(300 K) = 3.74 kJ.

V]

The entropy is given by the Sackur-Tetrode equation:
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where I've used the ideal gas law and equipartition in the last expression. Since an argon
atom has a mass of about 40 times the proton mass, the argument of the logarithm is

[(1.38 % 10723 J/K)(300 K)]*/2 ((%)(40)(1.67 x 10~27 kg)

3/2
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Therefore
-
S=Nk [111(1.02 X 107) - %} = NEk(18.6) = (18.6)R = 155 J/K.

The enthalpy is

ot

.
H=U+PV =U+nRT = -nRT = 5(8.31 J/K)(300 K) = 6.23 kJ.
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The Helmholtz free energy is
F=U-T5= (374 kJ)— (300 K)(155 J/K) = —42.6 kJ,
while the Gibbs free energy is
G=F+PV =F+RT =(—42.6 kJ) + (8.31 J/K)(300 K) = —40.1 kJ.

Since the term T'S is much larger in magnitude than U or PV, both of the free energies
turn out to be negative. But the sign of F' or ¢ isn’t any more significant than the sign
of U: it’s differences that matter, not actual values. (If we planned on tapping the rest
energies, mc®, of the argon atoms, then we would want to include this energy in U, and
then U, H, F', and G would all be increased by an enormous amount.)



Problem 5.2. Because the reactants Ny and H; are elements in their most stable states,
the AH and AG values for this reaction are just the values for the “formation” of ammonia
listed on page 405, times 2 because we're forming two moles of ammonia. To check the
relation AG = AH —T AS, we also need to know AS, the entropy of two moles of ammonia
minus the entropies of a mole of Ny and three moles of Hs:

AS =2(192.45 J/K) — 191.61 J/K — 3(130.68 J/K) = —198.75 J/K.
Theretore we should have

AG = AH — T AS = 2(—46.11 kJ) — (208 K)(—198.75 J/K)
= —02.22 kJ +59.23 kJ = —32.99 kJ.

And indeed, the tabulated AG value is —16.45 kJ per mole of ammonia, or —32.90 kJ for
two moles, in very good agreement.

Problem 5.5. (Methane fuel cell.)

(a) Subtracting Ay of the reactants from Ay of the products, we have
AH =2(—
AG =2(—

85.83 kJ) + (—393.51 kJ) — (—74.81 kJ) = —890.36 kJ;
3713 kJ) + (—394.36 kJ) — (—50.72 kJ) = —817.90 kJ.
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(b) Under ideal conditions, all of the decrease in G comes out as electrical work, so the
electrical work output is 818 k.J.

(¢) The decrease in enthalpy of 890 kJ is the sum of the electrical work output plus the
heat given off. Under ideal conditions the work output is 818 kJ, so the heat is the
difference, 72 k.J.

(d) For each methane molecule that reacts, eight electrons are pushed around the circuit.
Therefore the voltage is

voltage electrical work done 818 kJ 106V
oltace — j— pr— i .
° total charge (8)(6.02 x 1023)(1.6 x 10~ C)




Problem 5.10. From the relation (0G/JT)p = —S, we can write the change in G as
JG = —SdT. The table on page 405 lists the entropy of a mole of water under standard
conditions as 69.91 J/K, so the change in G from 25°C to 30°C is

dG = —(69.91 J/K)(5 K) = —349.6 J.

In other words, the Gibbs free energy is about 350 .J lower at 30°C than at 25°C. If we
now imagine increasing the pressure at fixed temperature, the relation (0G/IP)r =V tells
us that dG = V dP, where V is the volume of a mole of water, 18.07 x 107 m?®. Raising
the pressure therefore increases G. To produce an increase of 349.6 J, we would need to
increase the pressure by

dG 349.6 J

—_— = — : 7 a=1¢ g
dP = % 1807 % 10-° o2 1.93 x 10" Pa = 193 bars

i

The moral of the story is that temperature changes tend to have much larger effects on ¢
than pressure changes, at least within the realm of conditions familiar to us in evervday
life.

Problem 5.11. (Hydrogen fuel cell at 75°C.)

(a) Under an “infinitesimal” temperature change dT', the Gibbs free energy changes by
dG = —=SdT'. Taking d1' = 50 K and looking up the room-temperature entropies, we
obtain (for a mole of each substance)

Ho: G =0— (131 J/K)(50 K) = —6550 J;
Os: G =0— (205 1/K)(50 K) = —10250 J:
L,0: G = —237000 J — (70 J/K)(50 K) = —240500 J.

(Of course, the entropies are not constant over this temperature interval, so it would
be better to first estimate the entropy of each substance in the middle of the inter-
val, at 323 K, and use that value instead of the room-temperature value. For Hs,
the increase in entropy between 298 K and 323 K is approximately CpIn(1}/T;) =
(29 J/K)In(323/298) = 2.3 J/K. The entropies of the Oy and HyO are likewise only
slightly greater at 323 K.)

(b) At 75°C, AG for the reaction is
G0 — G, — +Go, = —240500 J 4 6550 J 45125 J = —229 kJ.

Thus, the maximum electrical work done by the cell is only 229 kJ (per mole of
hydrogen consumed), about 3.5% less than the room-temperature value of 237 klJ.
Why the difference? The reacting gases have a lot of entropy, which must be gotten
rid of by dumping waste heat into the environment. At the higher temperature, we
need to dump more waste heat to get rid of this entropy, so less of the energy is left
to perform electrical work.



Problem 5.22. In Section 3.5 | showed that the chemical potential of a monatomic ideal

gas 1s
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In the last expression I've substituted V/N = ET/ P, since equation 5.40 is written in terms
of pressure rather than volume. To bring in the reference pressure P°, multiply and divide
by it inside the logarithm:
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This expression is now in the form of equation 5.40, with the first term equal to p°(7"), a
function of temperature but not pressure. (The reference pressure, P°, is just a constant,
conventionally taken to be 1 bar.)

Problem 5.24. We're free to choose an arbitrary reference point for measuring G values,
so for convenience let’s take G = 0 for graphite at 1 bar. Then for diamond, ¢ = 2.9 k.J
at 1 bar. The equations of the lines drawn in Figure 5.15 are

G,=V,P and  Gg=V,P+(29k)),

where the subscripts are g for graphite and d for diamond, and technically, PP is measured

relative to 1 bar, though we’ll soon see that the difference between 0 bar and 1 bar is

negligible. To find the intersection of the lines, set these expressions equal and solve for P:
(2.9 kJ) 2900 J

V,P = VP + (2.9 kJ P= - — 1.53 x 10° Pa.
L =Val +(29K) = V,—V, 180 x 106 w? S

So the intersection is at 1.53 GPa, which is 15.3 kbar.

Problem 5.28. (Calcite and aragonite.)

(a) The table on page 404 gives the molar Gibbs free energies of formation of both calcite
and aragonite, with the value for calcite being lower by 1.0 kJ. This means that the
Gibbs free energy of a mole of calcite is less than that of a mole of aragonite by this
amount, under standard conditions. Calcite is therefore the more stable phase, at
room temperature and atmospheric pressure.

(b) In analogy with the diamond-graphite system, we can imagine plotting G' vs. P (at
fixed T') for both calcite and aragonite. The slopes of the two graphs are V, =
3.693 kJ/kbar and V, = 3.415 kJ/kbar, according to the data in the table and the
conversion factor derived in Problem 5.25. Since the volume of aragonite is less, it
should become stable at high pressure, that is, the two lines should intersect at some
P > 0. For convenience, I'll set G, =0 at P =0; then G, = 1.0 kJ at P = 0. The
equations of the two lines are then



G.=V.P and G, =V,P+ (1.0KkJ).
Equating these two expressions and solving for P gives the transition pressure,

1.0 kJ 1.0 kJ
P =y oV, T o kb o0 KA

Problem 5.32. (The water-ice phase boundary.)

(a)

(b)

(c)

As ice melts into water the change in entropy (or the latent heat) is positive, while the
change in volume is negative (since ice is less dense), so the slope of the phase boundary,
AS/AV, must be negative. In more fundamental terms, converting ice to water lets
the entropy of the environment increase (by making more volume available), and this
effect is more important at high pressure since P = T(dS5/0V). So high pressures
tend to push the equilibrium in the direction of the phase that takes up less volume.
Instead of considering a mole of ice/water, let’s just consider one gram. Then the
latent heat is 333 J, the volume of the ice is (917,000)~! m? = 1.091 x 107% m?3, and
the volume of the water is 1.000 x 10=% m?*. Therefore the slope of the phase boundary
is

P L 333 ]
dT ~ TAV (273 K)(—.001 x 106 m?)

= —1.35 x 10" Pa/K = —135 bar/K.

So if the temperature decreases by one degree (from 0 to —1°C), the pressure must

increase by 135 bars to remain on the phase boundary. In other words, ice will melt
at —1°C if the pressure is above 135 bars (or 133 atmospheres).

Treating the glacier ice as a fluid, the increase in pressure at depth z is simply pgz,
where p is the density. (To derive this formula, consider a column of ice extending
down to depth z. The weight of the column per unit area is pgz, and this must be
balanced by the pressure from below.) In our case, to reach a pressure of 135 bars,

P 135 x 10> N/m? 1500
2= — = — 1.
pg (017 kg/m*)(9.8 N/kg)




(d)

That’s pretty deep, just to lower the melting temperature by one degree. Apparently
the flow of glaciers is not caused primarily by lowering of the melting point under
pressure.

The blade of an ice skate measures a few millimeters across by perhaps 25 cm long,
so the total area is perhaps 10 ecm?. Even if you're leaning on the “corner” of the
blade, the total area in contact with the ice is probably more than 1 em? = 10~* m?2.
If your mass is 50 kg, then your weight is about 500 N so the pressure on the blade is
roughly (500 N)/(10=% m?) = 5 x 10% Pa = 50 bars. Under this pressure the melting
temperature drops by only 50/135 ~ .4°C. This mechanism of friction reduction would
work only if the ice temperature is already within less than half a degree of melting,
and even then, only when you're minimizing the area of the blade in contact with the
ice. In practice, the ability to glide doesn’t depend so critically on the ice temperature
or on how the blade touches the ice, so I don’t think this mechanism can be very
important.

Problem 5.35. (Vapor pressure equation.) Neglecting the volume of the condensed phase
and using the ideal gas law for the volume of the gas, the difference in volume between the
two phases is approximately

RT
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assuming one mole. Therefore the Clausius-Clapeyron equation becomes

dP  LP ap  LdTI
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Integrating both sides then gives

L
In P = ——— + (const), or P = (const)e™L/ET,

RT



