HW-Solution-set7

6.3,6.5,6.10,6.12, 6.13, 6.16, 6.25, 6.29, 6.31, 6.33, 6.37, 6.44, 6.48, 6.49, 6.52.

Problem 6.3. For this two-state system,
Z=c"+ e/ — 1 4 o</,

where ¢ = 2 €V is the energy of the excited state. Thus Z varies between 1 (in the limit
T — 0) and 2 (in the limit T — oc). To plot the partition function vs. temperature it’s
convenient to define the dimensionless variable t = kT'/¢, so 7 = 1 + ¢~'/*. The value of
t at T = 300 K is about 1/80 = .013, while the value of t at T" = 300,000 K is about 13.
(Recall that at 300 K, £T = .026 ¢V ~ 1/40 eV.) Here, then, is a plot of Z vs. t for values
of t up to 13:
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Plugging in the particular temperatures given yields the following values:
T=30K: Z=1+e""=1+22x10""
T=3000K: Z=1+¢""=1.00043
T=30,000K: Z=1+¢Y=146
T'=300,000K: Z=1+¢"%=1.03

Notice that the approach to 1 at low temperature is much more dramatic than the approach
to 2 at high temperature.

Problem 6.5. (A three-state toy model.)
(a) At 300 K, £T = 0.026 €V, as computed on page 13. Therefore the partition function
for this system is

7 = ¢ (7005/0.026) 4 0 4 —(0.05/0.026) _ Q4 4 1+ 0.15 = T7.99.

(b) Numbering the states 1, 2, and 3 in the order listed, the probabilities are

6.84 1 0.15
Py = —— =0.86; Py = —— =0.13; Py = >

= = = = 0.02.
7.99 7.99 7.99




c leasuring the energles now relative to the ground state, we have
M ing th gi lati he g d h
7 = ° 4 ¢7(0:05/0:026) 4 o=(010/0.026) — 1 4 (.15 4 0.02 = 1.17.

And the probabilities are

1 0.15 0.02
P = —— = 0.86; Dy = =0.13; Py = —— =0.02.
ST e AR
So even though the partition function changes, the probabilities are unchanged, as
they must be because nature can’t possibly care what we use as our zero-point for

measuring energy.

Problem 6.10. (Vibrational excitations of HyO.)

(a) The partition function for this vibrating atom is
J — e~hf/2KT 4 =3hf/2KT | ~Shf/2kT , .

At 300 K,
hf B (4.136 x 10719 eV - 5)(4.8 x 10'3 s71)

ET — (8617 x 10-5 eV/K)(300 K)

so the partition function is approximately

= T7.68,

Z — ({—3.84 + (____—11.52 + (‘3_19'20 4.
= 0.0215+ (9.9 x 1075) + (4.6 x 107%) + - --
= 0.0215.

The probabilities of the lowest two excited states are therefore

9.9x10°°

4.6 x 107°
P — _ 46x 107
0.0215

= 0.00046. Py = 00215 = 21 x 107"

The probability of the ground state is very nearly 1; more precisely,

Py =1 —0.00046 = 0.99954.

(b) At 700 K, the ratio hf/kT is smaller by a factor of 3/7, so hf /KT = 3.25 and the
partition function is
7 — 1624 | —48T3 L -8A21 | 1187 L
= 0.1971 + 0.0077 4 0.0003 + 0.00001 + - - -
= 0.2051.

The probabilities are therefore

0.1971 0.0077 _ 0.0003

= o057 = 0961 Pi=g5aer =0038, Py =oooe = 0.001.
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Problem 6.12. If the molecules are in equilibrium with a reservoir of temperature 7', then
the probability of a molecule being in any one of the excited states, relative to the ground

state, should be
o—F1 /KT

—(Ey—Eq) /kT
c—FEo/kT :

=€

We are given that this relative probability is approximately 1/10. Therefore,

B - E 1
—In— = —2.303,
w10 '
or
47 % 101 eV

=24 K.

~ (2:303)(8.62 x 105 eV/K)

The uncertainty in the data, however, is somewhat large. We now know that the tempera-
ture is closer to 2.7 K, and that the “reservoir” is the cosmic background radiation, a gas
of photons that fills the entire observable universe (see Section 7.4).

Problem 6.13. The ratio of probabilities under these conditions should be

P(n) e mec /AT ~(Am)e /KT _ exp(— (2.3 x 107% kg)(3 x 10° m/s)g) — 0.86.

Plp) e /sl (1.38 x 10-2% J/K)(10'! K)

In other words, there should be 86 neutrons for every 100 protons. That makes 186 particles
total, so the fraction of protons should be 100/186 = 0.54, and the fraction of neutrons
should be 86/186 = 0.46.

Problem 6.16. Starting from the definition of 7,

0Z 0 —BE(s) _ 9 —BE(s) _ )e=PE)
o5 a3~ _Z{H Z( E(s))e '

Now just multiply by —1/Z, cancel the minus signs, and move the Z inside the sum:

35(3)

Problem 6.25. Because of the symmetry of the CO, molecule, a 180° rotation has no
effect on its state, and therefore we should divide its rotational partition function by 2 just
as for a diatomic molecule with identical atoms:

KT 0.026 eV
T = — 265.
U e T 2(0.000049 6V)




Problem 6.29. From the graph plotted in the previous problem, we see that the rotational
heat capacity falls off steeply when k7/e is between about 0.3 and 0.6; the heat capacity
is at about half its asymptotic value when k7T /e =~ 0.4. For HD, that translates to a
temperature of

0.4e (0.4)(0.0057 eV)

I = =562 x 10 eV/K

=26 K.

Problem 6.31. If state ¢ has energy c|q|. then the Boltzmann factor for this state is ¢ =7/l
and the partition function is the sum of all these Boltzmann factors:

1
7 .—Bclq| ,—Bc|q|
Z—E(. qf—qgc 1 Ag.
q

q

In the limit Ag¢ — 0 the sum becomes an integral:

1 2 1
Z = V—SC\q| d —9.__ / _—3cq _( =\, —feq
Aq / AQ’ If( )(

(Since the integral is symmetric under ¢ — —¢q, ['ve written it as twice the integral over
only positive ¢ values. This trick gets rid of the absolute value bars.) The average energy
is therefore

< 2

= — = C-‘J"))_l.
0 elAq '

F=-70="¢

—Cp7?) = 1} = kT.

Problem 6.33. The mass of an oxygen molecule is 32 u, so for oxygen at 300 K,
ET (1.38 x 10—2% J/K)(300 K)
=279 m/s.
Vo \/ 32(1.66 x 10-27 kg) m/s

The most likely speed, vy, is just this times v/2, or 395 m/s. To get the rms speed, we
instead multiply by /3 to get 484 m/s. And to get the average speed, we multiply by

\/8/7 to get 446 m/s.

Problem 6.37. In analogy with equation 6.51, imagine first that the v values are discretely
spaced, then take the continuum limit:

N2 peo
2 — , . 2 = (m 4 _—mv?J2kT
v D(v) dv / v*D(v)dv = \/_(ZF\T) '/0 vt e dv

= \/_(QLT) ( - ) /0 e dr = T”'”-,/o e dar.




The integral over = is worked out in Appendix B, Problem B.2; or you can look it up in a
table or ask a computer. The answer is 3,/7/8, so finally we have

SKT 37 3kT
vam 8  m’

in agreement with equation 6.41 and the equipartition theorem.

02

Problem 6.44. For N indistinguishable, noninteracting molecules that can exchange
places with each other,

]_ AN:'
“=mh
S0
F=—kTZ=—kK[NnZ —InN]
= —KT[NInZ ~ NN + N] = -NkT |In % +1].

Therefore the chemical potential is

_(OFN\ 1 7 D N2
;_,:_(%)ﬂ_ A.T[lnNH} NKT——(=InN) = —kTln 52,

L 4

Problem 6.48. (S and ;. for a diatomic gas.)

(a) For a collection of N rotating diatomic molecules, the internal contribution to the free
energy is

Ent = —NET lﬂ(Ze Zrot-) ]

where (at ordinary temperatures) 7, is k1'/¢ for a molecule composed of two different
atoms, or k7' /2¢ for a molecule composed of identical atoms. Either way, Z,, is simply
a constant times T, so

aFint
oT

1
= ~NkW(Z.Zy) = NKT 7 = =Nk[In(Z.Zro0) + 1]

Therefore, according to equation 6.92,

. V 5 . N VZ.Z. . 7
S — N [m(MQ) + 2] - NEI(Z. 7o) + 1] = Nk [ln( o ) + 2].

The rotational partition function for oxygen at room temperature is

,  _ KT _ (8617 x 107 eV/K)(208 K)
ot 26 2(.00018 eV)

— 71,

while the quantum volume is



( h )3 ( 6.63 x 10734 J -5 )3
'} — _— =
@ VormkT V/27(32)(1.66 x 1027 kg)(1.38 x 10 2 J/K)(298 K)

= (1.79 x 107" m)® = 5.73 x 10™** m®

and the average volume per particle (at atmospheric pressure) is

VKT (1.8 x 1072 J/K)(298 K) I
N=P = 101x1sNme - Urelomm

From these numbers we can compute the logarithm

VZ.Zwi\ (407 x 10726 m)(3)(71) _
hl(W) - ln( 5.73 x 10 %3 m? =2

Thus the entropy under these conditions is
S = NEk[21.14 + 3.50] = (24.6)nR = 205 J/K,

precisely in agreement with the measured value (to the number of significant figures
used in the calculation).

(b) The chemical potential is —k7" times the same logarithm:

= —(8.62 x 107 eV /K)(208 K)(21.1) = —0.54 eV.

Problem 6.49. As shown in Section 6.2, the rotational energy of a diatomic molecule
at room temperature is k7', corresponding to two degrees of freedom. Therefore the total
thermal energy of a mole of Ny is

o3 . 5 . 5 5
U= 51\' ET + NET = 54-’\' ET = i-r'a.RT = 5(1 mol)(8.31 J/mol - K)(298 K) = 6190 J.
The enthalpy is just U + PV = U + nRT, so it’s larger by

nRT = (1 mol)(8.31 J/mol - K)(298 K) = 2480 J, that is, H = 8670 J.

To compute the remaining quantities we need the internal partition function, which in this
case is purely rotational:

gy _ KT _ (8617 x 107" eV/K)(298 K)
mtTm et T 9 T 2(.00025 eV)

=51.

We also need the quantum volume,



o ( Z )3 B ( 6.63 x 107 J. s )3
'Q V2rmkT V/27m(28)(1.66 x 10—27 kg)(1.38 x 10-2% J/K)(298 K)
=(1.91 x 107" m)® = 6.98 x 107* m?
and the average volume per particle,

VoKD (1.38x107% J/K)(298 K)
N P 1.01 % 10° N/m?

—4.07 x 107 m?*.

From these numbers we can compute the logarithm

77 —26 (e
IH(I th) _ln((z;.o? % 10-2 m )(01)) s

Nug 6.98 x 10733 m?

The Helmholtz free energy is therefore

7

F = —nRT [m(%) - 1] = (2480 J)[19.5 4+ 1] = —50.8 kJ,
NUg

while the Gibbs free energy is
G=F+ PV =-50.8kJ+ 2480 J = —48.3 kJ.

The easiest way to get the entropy is from the definition F' = U — T'S:

_U-F (6190 J) — (=50,800 J) 191 J/K

. T 208 K

(in agreement with the measured value tabulated on page 405). And the easiest way to get
the chemical potential is from G = Np:
G —48.3 kJ

= O TR 9081072 J = — 501 eV,
=N~ 602x10% uLe

Problem 6.52. As in the nonrelativistic case, the allowed wavelengths (in one dimension)
arc A, = 2L/n, and thercfore the allowed momenta are p, = h/\, = hn/2L. Now,
however, the relation between energy and momentum is E = pec, so the allowed energies
are F,, = hen/2L. Therefore the single-particle partition function is

T :E :G—En/kT _ E :(._,—hcn/‘ZLIcT‘
™ mn

When L is macroscopic the number of terms in the sum that are significant is very large,
so we can convert the sum to an integral to obtain

2LET —hen/2LET = 2LkT
S = )

o
Zld — / e—hcn/ZLkT d?? — _
0

he he

0

As expected, the partition function is directly proportional to L and increases with increas-
ing temperature.



