PHY 3106, Fall 2017, Homework \#10

due Monday, Dec. 11, by 5 pm (e.g., the night before the final!!!)

1.) An electron is confined to a quantum dot. If the transition between states with the lowest energy gives off a photon of wavelength 400 nm , what is the size of the quantum dot (e.g., the length of a side of a cubical box containing the electron)?
2.) A helium atom in an excited state is trapped in a cubical box of side L. The wavefunction is given by $\psi(x, y, z)=\left(\frac{2}{L}\right)^{3 / 2} \sin \frac{2 \pi x}{L} \sin \frac{\pi y}{L} \sin \frac{2 \pi z}{L}$. Calculate the probability of finding the atom in the region $\frac{L}{3}<x<\frac{2 L}{3}, \frac{L}{3}<y<\frac{2 L}{3}, 0<z<\frac{L}{2}$.
3.) Calculate the probability that the electron is found inside the Bohr radius of a_{0} for the ground state of hydrogen (e.g. R_{10}). Remember to use $d^{3} x=r^{2} \sin \theta d r d \theta d \varphi$ in your integral. [Hint: $R_{10}=2 a_{0}{ }^{-3 / 2} e^{-\frac{r}{a_{0}}}$. I used integration by parts twice on this problem.]

