PHY 3107, Spring 2016, Homework \#3

due Friday, Jan. 29, at 12:00 pm (noon)
1.) It has been suggested that the neutron could be considered to be a bound state of the proton and electron. In that case, the mass of the neutron would be comparable to (or a little less) than the mass of the electron, plus the proton, plus the potential energy between the two of them. Let's play with this. [Hint: it may be useful to think of the mass in units of $\mathrm{MeV} / \mathrm{c}^{2}$, and use the constant $\hbar c=197 \mathrm{MeV}-\mathrm{fm}$.
a) Consider the mass difference between the proton and neutron. What is it in units of $\mathrm{MeV} / \mathrm{c}^{2}$? b) Treating the electron as a particle in a 3-dimensional, cubical box of side 1 femtometer (fm), calculate the ground state energy of an electron in such a box in units of MeV . c) OK, now let's put it all together: is the mass difference between the neutron and proton comparable to the mass of the electron and the energy of confining it to such a small box?
2.) An electron is confined to a quantum dot. If the transition between states with the lowest energy gives off a photon of wavelength 400 nm , what is the size of the quantum dot (e.g., the length of a side of a cubical box containing the electron)?
3.) A helium atom in an excited state is trapped in a cubical box of side L. The wavefunction is given by $\psi(x, y, z)=\left(\frac{2}{L}\right)^{3 / 2} \sin \frac{2 \pi x}{L} \sin \frac{\pi y}{L} \sin \frac{2 \pi z}{L}$. Calculate the probability of finding the atom in the region $\frac{L}{3}<x<\frac{2 L}{3}, \frac{L}{3}<y<\frac{2 L}{3}, 0<z<\frac{L}{2}$.
4.) A particle is orbiting due to an attractive central force. If it has an angular momentum of $1.00 \times 10^{-33} \mathrm{~kg} \mathrm{~m} / \mathrm{s}$, what are all of the possible z-components of angular momentum that can be detected?
5.) At the CERN LHC, two beams of protons move in a circle of circumference 27 km , with energies upto 7 TeV (a TeV is $10^{12} \mathrm{eV}$; the protons are ultrarelativistic). A) Find the orbital angular momentum of the proton. B) What is the orbiatal angularmomentum quantum number for a proton?

