PHY 3107, Spring 2018, Homework #6 due Friday March 2

- **1.)** A) What is the radius of the nucleus of ⁵⁶Fe? B) What energy electrons and C) what energy protons are required to measure the size of the nucleus of ⁵⁶Fe if you want to be able to resolve distances of the order of less than half the radius? [Hint: relate the de Broglie wavelength to the kinetic energy.]
- 2.) The more common isotope of uranium is ²³⁸U, which decays by alpha emission: ²³⁸U → ²³⁴Th + α. A) Calculate the energy released (or the Q value) by looking up the masses of the particles involved. Express this energy in MeV. B) The energy is released in the form of kinetic energy of the α-particle and the daughter nucleus, ²³⁴Th. Calculate the energy of each if the ²³⁸U was initially at rest in the lab frame. [Hint: this is simple conservation of momentum.] C) A sample of uranium ore has a ratio of ²³⁴Th/²³⁸U of 0.06. How old is the ore? [You will need to look up the half life of ²³⁸U.]
- **3.)** The binding energy is given as $E_b = C_1 A C_2 A^{\frac{2}{3}} C_3 \frac{Z(Z-1)}{\frac{1}{A^{\frac{1}{3}}}} C_4 \frac{(N-Z)^2}{A}$, where the constants are given in your book as $C_1 = 15.7$ MeV, $C_2 = 17.8$ MeV, $C_3 = 0.71$ MeV, $C_4 = 23.6$ MeV. Use these constants to calculate the binding energy for 40 Ca.
- **4.)** In order for a decay to be allowed, the Q value must be greater than 0. A) Can 230 U decay via proton emission? B) Can 230 U decay via neutron emission? C) Can 230 U decay via α emission?
- 5.) Carbon dating is used to figure out how old stuff is. In carbon dating, the idea is to take advantage of the radioactive 14-carbon produced in our atmosphere by cosmic rays: $n + {}^{14}N \rightarrow {}^{14}C + p$. This reaction produces a "natural equilibrium" ratio of ${}^{14}C/{}^{12}C$ in the atmospheric CO₂ of 1.2×10^{-12} . Once something stops taking in this ${}^{14}C$, the ratio decreases as the ${}^{14}C$ decreases.

A bone dug up in a field in Maine is suspected to be that of one of the Vikings, who visited North America in the 10^{th} century. One thing is certain – it is old! Accelerator techniques gave its 14C/12C ratio as 1.1×10^{-12} . Is the bone old enough?