PHY 3106, Fall 2017, Homework \#8

due Wednesday, Nov. 22, by 5 pm (e.g., before Thanksgiving)

1.) Take a particle moving in a one-dimensional gox with walls at $x= \pm \frac{L}{2}$. A) Write the wavefunctions and probability densities for the lowest 3 states. B) Normalize these lowest three states. C) Find the probability that the particle is in the region $-\frac{L}{4}<x<0$ for the ground state wavefunction.
2.) An electron is in an infinite well, with the wavefunction in the lowest state. It has an energy of 0.10 eV . A) Find the well's length, L. B) What is the probability that the electron will be found in the left-hand third of the well? C) What would be the next higher allowed energy? D) if the well was "roomier", i.e, $L=1.0 \mathrm{~mm}$, while the energy remained 0.10 eV , what would be the probability of finding it in the well's left hand third and what would be the minimum possible fractional increase in its enegy?
3.) A 50 eV electron is trapped in between electrostatic walls 200 eV high (e.g., in a finite well). How far does the wave function extend beyond the walls?
4.) A particle in the infinite square well is in the initial state $\Psi(x, 0)=A x(a-x)$, where $0 \leq x \leq a$ and A is a constant. a) Normalize the wave function. b) Use the Hamiltonian operator ($\widehat{H}=$ $\left.\frac{-\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial x^{2}}+V(x)\right)$ to find the expectation value of $H:\langle H\rangle=\int \Psi^{*}(\mathrm{x}, 0) \widehat{H} \Psi(\mathrm{x}, 0) \mathrm{dx}$.
5.) Determine the probability of finding a particle of mass m between $x=0$ and $x=a / 10$ if it is in the $n=3$ state of an infinite well of width a.

