PHY 3107, Spring 2016, Homework \#8

due Friday, Apr. 1, at noon
1.) A) What is the radius of the nucleus of ${ }^{56} \mathrm{Fe}$? B) What energy electrons and protons are required to measure the size of the nucleus of ${ }^{56} \mathrm{Fe}$ if you want to be able to resolve distances of the order of less than half the radius? [Hint: relate the de Broglie wavelength to the kinetic energy.]
2.) The more common isotope of uranium is ${ }^{238} \mathrm{U}$, which decays by alpha emission: ${ }^{238} \mathrm{U} \rightarrow{ }^{234} \mathrm{Th}+\alpha$. A) Calculate the energy released (or the Q value) by looking up the masses of the particles involved. Express this energy in MeV. B) The energy is released in the form of kinetic energy of the α-particle and the daughter nucleus, ${ }^{234} \mathrm{Th}$. Calculate the energy of each if the ${ }^{238} \mathrm{U}$ was initially at rest in the lab frame. [Hint: this is simple conservation of momentum.] C) A sample of uranium ore has a ratio of ${ }^{234} \mathrm{Th} /{ }^{238} \mathrm{U}$ of 0.06 . How old is the ore? [You will need to look up the half life of ${ }^{238} \mathrm{U}$.]
3.) The binding energy is given as $E_{b}=C_{1} A-C_{2} A^{\frac{2}{3}}-C_{3} \frac{Z(Z-1)}{A^{\frac{1}{3}}}-C_{4} \frac{(N-Z)^{2}}{A}$, where the constants are given in your book as $C_{1}=15.7 \mathrm{MeV}, C_{2}=17.8 \mathrm{MeV}, C_{3}=0.71$ $\mathrm{MeV}, C_{4}=23.6 \mathrm{MeV}$. Use these constants to calculate the binding energy for ${ }^{40} \mathrm{Ca}$.
4.) In order for a decay to be allowed, the Q value must be greater than 0 . A) $\operatorname{Can}{ }^{230} U$ decay via proton emission? B) Can ${ }^{230} \mathrm{U}$ decay via neutron emission? C) Can ${ }^{230} \mathrm{U}$ decay via α emission?
5.) Carbon dating is used to figure out how old stuff is. In carbon dating, the idea is to take advantage of the radioactive 14 -carbon produced in our atmosphere by cosmic rays: $n+{ }^{14} \mathrm{~N} \rightarrow{ }^{14} \mathrm{C}+p$. This reaction produces a "natural equilibrium" ratio of ${ }^{14} \mathrm{C} /{ }^{12} \mathrm{C}$ in the atmospheric CO_{2} of 1.2×10^{-12}. Once something stops taking in this ${ }^{14} \mathrm{C}$, the ratio decreases as the ${ }^{14} \mathrm{C}$ decreases.

A bone dug up in a field in Maine is suspected to be that of one of the Vikings, who visited North America in the $10^{\text {th }}$ century. One thing is certain - it is old! Accelerator techniques gave its $14 \mathrm{C} / 12 \mathrm{C}$ ratio as 1.1×10^{-12}. Is the bone old enough?

