
PHYS 4134, Fall 2015, Homework #2 
Due Wednesday, September 9, at 4:00 pm  

 
1. Rutherford scattering sends an incident alpha particle scattering from a nucleus.  In class, 

we did not have time to think about the difference between observing the reaction in the 
laboratory frame where the target is at rest, and the reaction observed in the center-of-
mass frame (CM) where the total initial (and final) momentum are zero.   
In general, given 2 particles with masses !"and !# (with !# initially at rest) with 
coordinates $"  and  $# the equations of motion can be written as !"$" = −∇"(|$" − $#| , 
and !#$# = −∇#(|$" − $#|.    We will use *+,- as the outgoing angle of particle 1 in the 
laboratory frame measured with respect to the incident direction.   
In the CM it is more common to use the equivalent two variables $ = 	 $" − $#and /01 =
	2343	52646

23526
 instead.  This gives a velocity of the center of mass frame (as measured in the 

laboratory frame) of 701 = /01 = 2383	
23526

	 (remember 7#= 0 initially, and conservation of 
momentum means the center of mass velocity is a constant of the motion).   And that 
means for non-relativistic velocities, 7",01 = 	7" − 701 = 	 2683

23526
 and for the second 

particle 7#,01 = 	7# + 701 = 0 + 701 = 	 2383
23526

.   
Assuming elastic scattering, we can say the magnitudes of the velocities are unchanged 
after collision but the outgoing angles of particles 1 and 2 will depend on the dynamics.    
I.e., looking at particle 1 after the collision, along the initial direction we have  
7" cos *+,- − 7",01 = 	7",01 cos *01	 or 7" cos *+,- = 7",01 +	7",01 cos *01 and 
	7" sin *+,- = 	7",01 sin *01	for the perpendicular component.  
 
Dividing the two gives tan *+,- = 	

CDE FGH
IJCFGH5(

LGH
L3,GH

)
= 	 CDE FGH

IJCFGH5N
 

where this defines the O ≡ 	 8GH83,GH
.  It even turns out to be able to re-write this (here I am 

skipping the steps of inverting the equation and substituting for v) as 
cos *+,- = 	

IJCFGH5N
("5#N IJC FGH5	N6)3/6

.  
 
Now for the homework!  This is meant to be your first use of Mathematica, so I am taking 
"baby steps".  Use Mathematica (or another program) to sketch the Cosine of the 
laboratory angle as a function of the Cosine of the center of mass angle, for the 
nonrelativistic elastic scattering of particles of unequal mass, for the two cases: a) when 
O = 0.05 and b) when O = 0.05.   Note this corresponds to ratios of 1:20 and 20:1 for the 
masses of particles 1 and 2. 
To get you started, see the modify the Mathematica notebook at 
http://faculty.fiu.edu/~markowit/WidelyApplied/Homework/HW2-1.nb . 
 
 
 



 
2. A thin (1.00±0.01 mg/cm2) target of 48Ca is bombarded with a (10±0.15)-nA beam of α 

particles. A detector, subtending a solid angle of (2.00±0.02)×10−3 steradians, records 15 
protons per second. 
a) If the angular distribution is measured to be isotropic, determine the total cross section 

(in mb) for the 48Ca(α,p) reaction. Take the atomic mass of 48Ca to be 48 u. 
[Hint: The measured yield (or “rate” in your text) is given by�  / = TU

TV 	ΔΩ	
(YZ)[\
1\]^_ 	`.] 

 

b) How long would one have to measure to obtain the cross section with a relative error of 
3%. Assume that the error in the measurement of time is negligible. (For a 3% statistical 
uncertainty, it would need "[ = 	0.03 where N is the number of counts.  However here 
you need to add in quadrature the uncertainties from the target thickness, beam current, 
and solid angle.) 

3. Derive the formula N(t) = P(1 − e−λt)/λ for the production of a radioactive nucleide (with 
decay constant λ) as a function of time, given that the production rate is constant at P 
nuclei per second. 

Estimate the time it will take to produce a 100 nCi source of 14C by irradiating 1 g of 
natural carbon in a neutron flux of 1014 cm−2s−1. The natural abundance of the two stable 
carbon isotopes 12C and 13C is 98.90% and 1.10% respectively. The cross section for the neutron 
capture reactions 12C(n,γ)13C and 13C(n,γ)14C are 3.4 mb and 0.9 mb, respectively. 

4. [Hint: Before attempting this problem go over Appendix E: Coulomb Scattering of 
your book.]�   Fig. 1 shows the cross section for elastic scattering of alpha particles 
by tantalum at 60o as a function of alpha particle energy. At an energy of 23.9 
MeV, the observed cross section starts to deviate from the expected behaviour for 
Coulomb scattering. This would be expected, if the alpha particle comes close 
enough to the tantalum nucleus that the process gets effected by the strong nuclear 
force. At 60o and 23.9 MeV, what is the distance of closest approach (apsidal 
distance), d, of the classical alpha trajectory. 

• What is the Coulomb energy (potential) of an alpha particle and a tanta- lum nucleus at 
the distance d. (Please don’t use numbers yet. E.g., just refer to the charge of the 
particles as Z1e and Z2e.)  

• With the simplification that the tantalum nucleus stays at rest (is infinitely heavy 
compared to the alpha particle), what is the energy of the alpha particle , E′, at 
distance d, if the beam energy was E.  



• Let p ⃗′ be the momentum vector of the alpha particle a closest approach (distance d). 
What is the alpha particles angular momentum at this point.  

• Find the ratio p′/p and relate it to E′/E.  

• Find d as a function of the known parameters E, Z1, Z2, and the scattering � angle Θ. 
Simplify as much as possible.  

• Calculate the distance of closest approach in fm. (This is the first time you should need 
a claculator!)  

• Compare your result with Eq. 1.31 in your book.  

Figure 1: Elastic scattering of alpha particles by tantalum at 60o [1]. 
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