
Simple mixtures

Before dealing with chemical reactions, here we consider mixtures of substances that do not
react together. At this stage we deal mainly with binary mixtures (mixtures of two components,
A and B). We therefore often be able to simplify equations using the relation xA + xB = 1. A
restriction in this chapter – we consider mainly non-electrolyte solutions – the solute is not
present as ions.

The thermodynamic description of mixtures
We already considered the partial pressure – the contribution of one component to the total

pressure, when we were dealing with the properties of gas mixtures. Here we introduce other
analogous partial properties.

Partial molar quantities: describe the contribution (per mole) that a substance makes to an
overall property of mixture.

The partial molar volume, VJ – the contribution J makes to the total volume of a mixture.
Although 1 mol of a substance has a characteristic volume when it is pure, 1 mol of a substance
can make different contributions to the total volume of a mixture because molecules pack
together in different ways in the pure substances and in mixtures.



Imagine a huge volume of pure water. When a further 1
mol H2O is added, the volume increases by 18 cm3. When
we add 1 mol H2O to a huge volume of pure ethanol, the
volume increases by only 14 cm3. 18 cm3 – the volume
occupied per mole of water molecules in pure water. 14
cm3 – the volume occupied per mole of water molecules
in virtually pure ethanol. The partial molar volume of
water in pure water is 18 cm3 and the partial molar
volume of water in pure ethanol is 14 cm3 – there is so
much ethanol present that each H2O molecule is
surrounded by ethanol molecules and the packing of the
molecules results in the water molecules occupying only
14 cm3.

The partial molar volumes of the components of a mixture vary with composition because the
environment of each type of molecules changes as the composition changes from pure A to pure
B. This changing molecular environment and the modification of the forces acting between
molecules results in the variation of the thermodynamic properties of a mixture as its
composition is changed.



The formal definition of the partial molar volume: 
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n' subscript means that the amount of all other substances present is
constant.
The partial molar volume is the slope of the plot of the total volume as
the amount of J is changed, the pressure, temperature, and amount of
the other components being constant. When the composition of the
mixture is changed by the addition of dnA of A and dnB of B, then the
total volume of the mixture changes by
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dnB = VAdnA + VBdnB

Once we know the partial molar volumes VA and VB, we can state the total volume of the
mixture: V = nAVA + nBVB

Consider a very large sample of the mixture. When an amount nA of A is added, the
composition remains virtually unchanged but the volume increases by nAVA. Similarly,
when amount nB of B is added, the volume increases by nBVB. The total increase in
volume is nAVA + nBVB. The mixture now occupies a larger volume but the proportions of
components are still the same. Next, scoop out of this enlarged volume a sample
containing nA of A and nB of B. Its volume is nAVA + nBVB. Because the volume is a state

function, we could prepare the same sample simply by mixing the appropriate amount of
A and B.



One method of measuring partial molar volumes is to measure the dependence of the
volume on the composition and to fit the observed volume to a function of the substance.
Once the function has been found, its slope can be determined at any composition by
differentiation.

The total volume of an ethanol solution at 25°C containing 1.000 kg
of water is found to be given by the expression
V/mL = 1002.93 + 54.6664b – 0.36394b2 + 0.028256b3

b – the numerical value of the molality.
Because the amount of ethanol in moles here is equal to the numerical value of
the molality in moles per kg, we can write the partial molar volume of ethanol as

VE/(mL mol-1) = 

€ 

∂ V /mL( ) ∂b( ) p,T ,nW = 54.6664 – 2(0.36394)b + 3(0.028256)b2

Molar volumes are always positive, but partial molar quantities need not be. Example: the
limiting partial molar volume of MgSO4 in water (its partial molar volume in the limit of zero
concentration) is –1.4 cm3 mol-1, meaning that the addition of 1 mol MgSO4 to a large volume of
water results in a decrease in volume of 1.4 cm3: the salt breaks the open structure of water as the
ions become hydrated, and it collapses slightly.



Partial molar Gibbs energies
The concept of a partial molar quantity can be extended to any extensive state function. For

a pure substance, the chemical potential is just another name for the molar Gibbs energy. For a

substance in a mixture:
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The chemical potential is the slope of a plot of Gibbs energy against the
amount of the component J, with the pressure and temperature (and the
amounts of other substances) held constant. Using the same argument as
for partial molar volumes, the total Gibbs energy of a binary mixture can
be expressed as

G = nAµA + nBµB

The Gibbs energy depends on the composition, pressure, and
temperature:

dG = Vdp – SdT + µAdnA + µBdnB + …
The fundamental equation of chemical thermodynamics
At constant pressure and temperature:
dG = µAdnA + µBdnB + …

Since dG = dwadd,max dwadd,max = µAdnA + µBdnB + …
Additional (non-expansion) work can arise from the changing composition of a system.



The wider significance of the chemical potential
G = U +pV –TS U = G – pV + TS
dU = –pdV – Vdp + SdT + TdS + dG
= –pdV – Vdp + SdT + TdS + (Vdp – SdT + µAdnA + µBdnB + …)
= –pdV + TdS + µAdnA + µBdnB + …
At constant volume and entropy,

dU = µAdnA + µBdnB + … ⇒
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Not only does the chemical potential show how G changes when the composition changes, it also
shows how the internal energy changes too (but under a different set of conditions). Also, in the
same way it is easy to show that
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The µJ shows how all the extensive thermodynamic properties U, H, A, G depend on the
composition. This is why the chemical potential is so central to chemistry.
The Gibbs-Duhem equation

G = nAµA + nBµB Therefore, dG = µAdnA + µBdnB + nAdµA + nBdµB

On the other hand, at constant temperature and pressure
dG = µAdnA + µBdnB Thus, nAdµA + nBdµB = 0

This equation is a special case of the Gibbs-Duhem equation:
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nJdµJ
J
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The significance of the Gibbs-Duhem equation – the chemical potential of one component
of a mixture cannot change independently of the other components. In a binary mixture, if one

partial molar quantity increases, then the other must decrease:
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The same line of reasoning applies to all partial molar quantities. For example, where the partial
molar volume of water increases, that of ethanol decreases. Moreover, a small change in the
partial molar volume of A corresponds to a large change in the partial molar volume of B if
nA/nB is large. In practice, the Gibbs-Duhem equation is used to determine the partial molar
volume of one component of a binary mixture from measurements of the partial molar volume
of the second component.

Example 1. Using the Gibbs-Duhem equation.
The experimental values of the partial molar volume of K2SO4(aq) at 298 K are given by

the expression VK2SO4/(cm3 mol-1) = 32.280 + 18.216b1/2

b – the numerical value of molality of K2SO4. Use the Gibbs-Duhem equation
to derive an expression for the partial molar volume of water in solution. The
molar volume of pure water is 18.079 cm3 mol-1.
A: K2SO4 B: H2O nAdVA + nBdVB = 0

dVB = -(nA/nB)dVA
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  Molality: 
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                                             The thermodynamics of mixing
The dependence of the Gibbs energy of a mixture is given by G = nAµA + nBµB.
At constant T and p systems tend towards lower Gibbs energy. Example: all gases mix
spontaneously because the molecules of one gas can mingle with the molecules of another gas -
ΔG < 0. Let the amounts of two perfect gases in the two containers be nA and nB; both are at
temperature T and pressure p.
    Gi = nAµA + nBµB = nA[µA

Ø + RTln (p/pØ)] + nB[µB
Ø + RTln (p/pØ)]

 µØ - the standard chemical potential, the chemical potential of the pure gas at 1 bar.
If pressure is measured in bar, pØ = 1 bar and Gi = nA[µA

Ø + RTln p] + nB[µB
Ø + RTln p]

When the partition is removed, the total pressure remains the
same, but, according to Dalton’s law, the partial pressures fall to
xAp and xBp, xA = nA/n and xB = nB/n.

      Gf = nA[µA
Ø + RTln xAp] + nB[µB

Ø + RTln xBp]
ΔmixG = Gf  - Gi

ln xp – ln p = ln(xp/p) = ln x
 ΔmixG = RT[nAln xA + nBln xB] = nRT[xAln xA + xBln xB]
Because both xA and xB are less than 1, the two logarithms are
negative – ΔmixG < 0.
Perfect gases mix spontaneously in all proportions.
 ΔmixG = ΔmixH – TΔmixS
 ΔmixH = 0  ΔmixS = -nR[xAln xA + xBln xB] > 0
There is no change in enthalpy when two perfect gases mix because there are no interactions 
between the molecules. There is an increase in entropy because the mixed gas is more disordered 
than the unmixed gases – the increase in entropy is the ‘driving force’ of the mixing.
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The variation of the Gibbs energy of
mixing with composition for two perfect
gases at constant temperature and pressure

The variation of the entropy of
mixing with composition for two perfect
gases at constant temperature and pressure

Example 2. Calculating a Gibbs energy of mixing. A container is divided
into two equal compartments, one containing 3.0 mol H2 and the other
1.0 mol N2 both at 25˚C. Calculate the Gibbs energy of mixing when the
partition is removed. Assume perfect behavior.
    Gi = (3.0 mol)[µØ(H2) + RTln 3p] + (1.0 mol)[ µØ(N2) + RTln p]
    Gf = (3.0 mol)[µØ(H2) + RTln(3p/2)] + (1.0 mol)[ µØ(N2) + RTln(p/2)]
    ΔmixG = (3.0 mol)RTln(1/2) + (1.0 mol)RTln(1/2) = -(4.0 mol) RT ln 2
    ΔmixG = -6.9 kJ



                                              Ideal solutions
     We need an expression for the chemical potential of a substance in a liquid
solution. We can anticipate that the chemical potential of a species should increase
with concentration.

French chemist Raoult measured the partial
vapor pressure, pJ, of each component in
dynamic equilibrium with the solution and
established Raoult’s law:

The partial vapor pressure of a substance in a
mixture is proportional to its mole fraction in
the solution and its vapor pressure when pure.

pJ = xJ pJ*
pJ* - the vapor pressure of the pure substance.

The partial vapor pressures of the two
components of an ideal binary mixture are
proportional to the mole fractions of the
components in the liquid. The total pressure of
the vapor is the sum of the two partial vapor
pressures.

The chemical potentials of liquids



                           The molecular origin of Raoult’s law:
    The effect of the solute on the entropy of solution.

In the pure solvent, the molecules have a
certain disorder and a corresponding
entropy; the vapor pressure then represents
the tendency of the system and its
surroundings to reach a higher entropy
(through vaporizing). When a solute is
present, the solution has a greater disorder
than the pure solvent because we cannot be
sure that a molecule chosen in random will
be a solvent molecule. Because the entropy
of the solution is higher than that of the pure
solvent, the solution has a lower tendency to
acquire an even higher entropy by the
solvent vaporizing – the vapor pressure of
the solvent in the solution is lower than that
of the pure solvent.



    The theoretical importance of Raoult’s law – relates vapor pressure to
composition.
                          The chemical potential of a solvent
    When a liquid A in a mixture is in equilibrium with its vapor at a partial
pressure pA, the chemical potential of the two phases are equal:
    µA(l) = µA(g) µA(l) = µA

Ø(g) + RTln pA  pA = xApA* - Raoult’s law
    µA(l) = µA

Ø(g) + RTln xApA* = µA
Ø(g) + RTln pA* + RTln xA

    µA
Ø(g) and RTln xA – independent of the composition of the mixture and we can

write them as the constant µA
Ø – the standard chemical potential of the liquid.

    µA = µA
Ø + RTln xA

The chemical potential
of a solvent is lower in
a solution than when
it is pure.
This behavior is likely
to be shown by a dilute
solution in which the
solvent is almost pure
(and obeys Raoult’s
law).



Molecular interpretation of Raoult’s law (2)

The origin of Raoult’s law can be also understood
in molecular terms by considering the rates at which
molecules leave and return to the liquid. The presence
of a second component reduces the rate at which A
molecules leave the surface but does not inhibit the
rate at which they return.
The rate at which A molecules leave the surface is
proportional to their number at the surface, which in
turn is proportional to the mole fraction of A:

rate of vaporization = kxA
The rate at which molecules condense is proportional
to their concentration in the gas phase, which in turn is
proportional to their partial pressure:

rate of condensation = k’pA
At equilibrium the two rates are equal:
       kxA = k’pA         pA = (k/k’)xA
For pure liquid, xA = 1, so  pA

* = k/k’
Therefore,

 pA = pA
*xA



A hypothetical solution that obeys Raoult’s law
throughout the composition range from pure A
to pure B – ideal solution. The law is most reli-
able when the components have similar molecular
shape and are held together in the liquid by similar
types and strengths of intermolecular forces: a mix-
ture of two structurally similar hydrocarbons –
benzene and methylbenzene (toluene).

No mixture is perfectly ideal and all real
mixtures show deviations from Raoult’s
law. The deviations are small for the com-
ponent of the mixture that is in large excess
(the solvent) and become smaller as the
concentration of solute decreases. Raoult’s
law is reliable for the solvent when the so-
lution is very dilute – a limiting law, strictly
valid only in the limit of zero concentration.



                                         Ideal-dilute solutions
     Raoult’s law provides a good description of the vapor pressure of the solvent in
a very dilute solution. We cannot expect it to be a good description of the vapor
pressure of the solute – a solute in dilute solution is very far from being pure.

In a dilute solution, each solute molecule is surrounded by
nearly pure solvent, so its environment is quite unlike that
in pure solute and it is very unlikely its vapor pressure will
be related to that of pure solute. It is found experimentally
that in dilute solutions the vapor pressure of the solute is
proportional to its mole fraction, just as for the solvent.
Unlike the solvent, the constant of proportionality is not the
vapor pressure of the pure solute.
Henry’s law: The vapor pressure of a volatile solute B is
proportional to its mole fraction in a solution:

pB = xBKB

KB – Henry’s law constant – characteristic of the solute
and chosen so that the straight line is tangent to the
experimental curve at xB = 0.
When a component (the solvent) is almost pure, it behaves
in accord with Raoult’s law and has a vapor pressure that is
proportional to the mole fraction in the liquid mixture, and
a slope p*, the vapor pressure of the pure substance. When
the same substance is the minor component (the solute), its
vapor pressure is still proportional to its molar fraction, but
the constant of proportionality is now K.



                         Example 3. Verifying Raoult’s and Henry’s laws
    The partial vapor pressures of each component in a mixture of propanone
(acetone, A) and trichloromethane (chloroform, C) were measured at 35°C with
the following results:
xC 0 0.20 0.40 0.60 0.80 1
pC/Torr 0 35 82 142 219 293
 pA/Torr 347 270 185 102 37 0

Confirm that the mixture conforms to Raoult’s law for
the component in large excess and to Henry’s law for
the minor component. Find the Henry’s law constants.
We need to plot the partial vapor pressures against
mole fraction. To verify Raoult’s law, we compare the
data to the straight line pJ = xJpJ* for each component
in the region in which it is in excess and therefore
acting as the solvent. We verify Henry’s law by
finding a straight line pJ = xJKJ that is tangent to each
partial vapor pressure at low xJ where the component
can be treated as the solute.
In this case, the plot shows that Henry’s law requires
KA = 175 Torr and KC = 165 Torr.
The data deviate from both Raoult’s and Henry’s laws
for even quite small departures from x = 1 and x = 0,
respectively.



Henry’s law lets us write an expression for the chemical potential of a solute in a solution:
                                                        µB = µB

Ø + RTln xB

This expression applies when Henry’s law is valid, in very dilute solutions. The chemical
potential of the solute has its standard value when it is pure (xB = 1) and a smaller value when
dissolved (xB < 1).
     We often express the composition of a solution in terms of molar concentration of the solute,
[B], rather than as a mole fraction. The molar fraction and the the molar concentration are pro-
portional to each other in dilute solutions: xB = constant × [B].

 µB = µB
Ø + RTln(constant) + RTln [B]  µB = µB

Ø’ + RTln [B]

The chemical potential
of the solute has its
standard value when
the molar concentration
of the solute is 1 mol L-1.



The Henry’s law constants for many gases have been measured and are available in tables.
They are often used in calculations relating to gas solubilities, as the estimation of the
concentration of O2 in natural waters or the concentration of carbon dioxide in blood plasma. To
apply Henry’s law, we treat gas as the solute and use its partial pressure above the solvent to
calculate the mole fraction in the solution: xB = pB/KB

Example 4. Using Henry’s law.
Estimate the molar solubility (the solubility in moles per liter) of oxygen in water at 25°C

and a partial pressure of 160 Torr, which is its partial pressure in the atmosphere at sea level.
The mole fraction of solute is given by Henry’s law. We need to calculate the mole fraction

that corresponds to the stated pressure and then convert that mole fraction to a molar
concentration. To do that we calculate the amount of O2 dissolved in 1.00 kg of water (about 1.0
L of water). The solution is dilute, so the expression for the mole fraction can be simplified.
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xO2 =
nO2

nO2 +nH2O
≈
nO2
nH2O
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nO2 ≈ xO2nH2O =
pO2nH2O
K

nO2 = (160 Torr) × (55.5 mol) / (3.3×107 Torr) = 2.69×10-4 mol
The molality of the saturated solution is therefore 2.69×10-4 mol kg-1, corresponding to a

molar concentration 2.7×10-4 mol L-1.
Henry’s law constants for gases in blood and fats are important for respiration, especially

when the partial pressure of oxygen is abnormal (mountaineering and diving). Decreasing
atmospheric pressure – lower molar solubility of O2 in blood – respiration is impaired at high

altitudes. Higher pressure – higher O2 solubility – a diver cannot return to the surface too
rapidly to avoid the formation of O2 bubbles in the bloodstream.



The properties of solutions. Liquid mixtures
Ideal solutions

The Gibbs energy of mixing of two liquids to form an ideal solution is calculated
exactly in the same way as for two gases. Before the mixing:

Gi = nAµA
* + nBµB

*

After the mixing:
Gf = nA{µA

* + RT ln xA} + nB{µB
* + RT ln xB}

ΔmixG = nRT{xAln xA + xBln xB} with n = nA + nB

ΔmixS = –nR{xAln xA + xBln xB} ΔmixH = 0
The driving force for mixing is the increasing entropy of the system as the molecules

mingle and the enthalpy of mixing is zero. However, solution ideality means something
different from gas perfection. In a perfect gas there no interactions between molecules. In
ideal solutions there are interactions, but the average A-B interactions in the mixture are the
same as the average A-A and B-B interactions in pure liquids.

Real solutions – A-A, A-B, and B-B interactions are all different. Enthalpy changes
when liquids mix in real solutions and there is also an additional contribution to entropy
arising from the way in which the molecules of one type might cluster together instead of
mingling freely with the others. If the enthalpy change is large and positive or if the entropy
change is negative (due to a reorganization of the molecules resulting in an orderly
mixture), then the Gibbs energy might be positive for mixing. Then, separation is

spontaneous and the liquids may be immiscible. Or, the liquids may be partially miscible
(i.e., miscible over a certain range of compositions).



Excess functions and regular solutions
The thermodynamic properties of real solutions are expressed in terms

of the excess functions, XE, the difference between the observed
thermodynamic function and the function for an ideal solution.
The excess entropy: SE = ΔmixS – ΔmixS

ideal

The excess enthalpy and volume are both equal to the observed enthalpy and
volume of mixing, because the ideal values are zero.
Deviations of the excess energies from zero indicate the extent to which the
solutions are nonideal. A useful model – the regular solution: HE ≠ 0, SE = 0. Two
kinds of molecules are distributed randomly (as in ideal solution) but have different
energies of interaction with each other:
(a) HE for benzene/cyclohexane: the mixing is endothermic;
(b) VE for tetrachloroethane/cyclopentane: there is a contraction at low

tetrachloroethane mole fractions, but an expansion at high mole fractions.
Suppose that the excess enthalpy depends on composition as

HE = nβRTxAxB

β - a parameter: β = w/RT, w – the energy of AB interactions relative to AA and
BB interactions. The plot of the function given by this equation resembles the
experimental curve for HE. If β < 0, mixing is exothermic and the solute-solvent

interactions are more favorable than the solvent-solvent and solute-solute
interactions. β > 0 – endothermic mixing.



Because the entropy of mixing has its ideal value for a regular solution, the excess
Gibbs energy is equal to the excess enthalpy.

ΔmixG = nRT{xAln xA + xBln xB + βxAxB}
ΔmixG varies with composition differently for different values of β. For β > 2 the
graph shows two minima separated by a maximum – the system will separate
spontaneously into two phases with compositions corresponding to the two
minima.

Colligative properties
An ideal solute has no effect on the enthalpy of solution but does affect the entropy by

introducing a degree of disorder that is not present in the pure solvent – we can expect a solute
to modify the physical properties of the solution.

In addition to lowering the vapor pressure of the solvent, a nonvolatile solute has three
main effects: (1) it raises the boiling point of the solution; (2) it lowers the freezing point; and
(3) it gives rise to an osmotic pressure.

All these properties originate from changes in the disorder of the solvent and the increase
in disorder is independent of the species involved – they depend only on the number of solute
molecules present, not their chemical identity.

Colligative properties (‘depending on collection’)

In our consideration, we assume throughout that the solute is not volatile, so it does not
contribute to the vapor. We also assume that the solute does not dissolve in the solid solvent:
the pure solid solvent separates when the solution is frozen.



The origin of colligative properties is the lowering of chemical potential of the solvent by the
presence of solute: µA

* + RTln xA < µA
* because xA < 1 and ln xA is negative. The freezing and

boiling points correspond to the temperatures at which the graph of the molar Gibbs energy of 
the liquid intersect the graphs of the molar Gibbs energy of the solid and gas phases, respectively. 
We are dealing with mixtures – we have to think of the partial molar Gibbs energy (the chemical
potential) of the solvent. The presence of a solute lowers the chemical potential of the liquid but,
because the vapor and solid remain pure, their chemical potentials remain unchanged. As a result,
the freezing point moves to lower values and the boiling point moves to higher values. The
freezing point is depressed, the boiling point is elevated, and the liquid exists over a wider range 
of temperatures.



The elevation of boiling point
The heterogeneous equilibrium – boiling between the solvent vapor and
the solvent in solution at 1 atm. A – solvent, B – solute.

µA
*(g) = µA

*(l) + RT ln xA

The presence of a solute at a mole fraction xB causes an increase in normal
boiling point from T* to T* + ΔT:

ΔT = KxB
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RT

=
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RT

ΔvapG – the Gibbs energy of vaporization of the pure solvent (A).

ΔvapG = ΔvapH – TΔvapS
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ln 1− xB( ) =
ΔvapH
RT

−
ΔvapS
R

When xB = 0, the boiling point is that of the pure liquid is T*:
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ln1=
ΔvapH
RT *

−
ΔvapS
R

 = 0

The difference between the two equations gives
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Suppose that xB << 1, than ln(1 – xB) ≈ –xB 
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Because T ≈ T* 
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The equation makes no reference to the solute identity, only to its mole
fraction – the elevation of boiling point is a colligative property. For
practical applications: the mole fraction of B is proportional to its molality,
b, so ΔT = Kbb

Kb – the empirical ebullioscopic constant of the solvent.

The depression of freezing point
The heterogeneous equilibrium – between pure solid solvent A and the
solution with solute present at a mole fraction xB. At the freezing point, the
chemical potentials of A in the two phases are equal:

µA
*(s) = µA

*(l) + RT ln xA

Similar to the case of boiling, we can derive that    ΔT = K'xB

€ 

′ K =
RT *2

Δ fusH
where ΔT = T*– T, the freezing point depression, ΔfusH – the enthalpy of
fusion. ΔT = Kfb     Kf – the cryoscopic constant.

Solubility
When a solid solute is in a contact with a solvent, it dissolves until the
solution is saturated. Saturation is a state of equilibrium between the
undissolved solute with the dissolved solute. In a saturated solution the

chemical potential of the pure solid solute, µB
*(s), and the chemical potential of B in

solution, µB, are equal: µB = µB
*(l) + RT ln xB µB

*(s) = µB
*(l) + RT ln xB



In this case, we want to find the mole fraction of B in solution at equilibrium when the
temperature is T.

€ 
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* l( )
RT
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RT
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RT
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At the melting point of the solute, T*, we know that ΔfusG = 0 and so ΔfusG/RT
* = 0 and this

term can be added to the right hand side of the equation:

€ 

ln xB = −
Δ fusH
RT

+
Δ fusS
R

+
Δ fusH
RT *

−
Δ fusS
R

= −
Δ fusH
RT

+
Δ fusH
RT *

€ 

ln xB =
Δ fusH
R

1
T *

−
1
T

 
 
 

 
 
 

The variation of solubility with temperature: individual curves are
labeled with the value of ΔfusH/RT

*.
The solubility of B decreases exponentially as the temperature is
lowered from its melting point. Solutes with high melting points and
large enthalpies of melting have low solubilities at normal
temperatures.
However, the detailed content of the equation should not be treated
too seriously because it is based on highly questionable
approximation – ideality of the solution. So, this approximation fails
to predict that solutes will have different solubilities in different
solvents, as no solvent properties appear in the expression.



                                                     Osmosis
    The passage of a pure solvent into a solution separated from it by a
semipermeable membrane – a membrane that is permeable to the solvent but not
to the solute. The membrane might have microscopic holes that are large enough
to allow water molecules to pass through but not ions or carbohydrate molecules
with their bulky coating of hydrating water molecules.

The osmotic pressure, Π - the pressure that must be
applied to the solution to stop the inward flow of solvent.

Examples: transport of fluids through cell membranes,
osmometry – the determination of molar mass by
measurement of osmotic pressure, study of the binding of
small molecules to proteins.

The pressure opposing the passage of solvent into the
solution arises from the hydrostatic pressure of the column
of solution that the osmosis itself produces. This column is
formed when the pure solvent flows through the
membrane into the solution and pushes the column of
solution higher up to the tube. Equilibrium is reached
when the downward pressure exerted by the column is
equal to the upward osmotic pressure.



                                        The van’t Hoff equation
    The thermodynamic treatment of osmosis – equilibrium conditions:
    µA(solvent in the solution at pressure p+Π) = µA(pure solvent at pressure p)
    µA*(p) – the chemical potential of the pure solvent at the atmospheric pressure p.
    µA(xA,p+Π) – the chemical potential of the solvent in the solution (lowered by the solute
but raised on account of the greater pressure acting on the solution.

µA*(p) = µA(xA,p+Π) 
µA (xA,p+Π) = µA*(p+Π) + RTln xA

The effect of pressure on incompressible liquid:
ΔGm = VmΔp
 µA*(p+Π) = µA*(p) + VAΔp
-RTln xA = ΠVA
xA = 1 – xB ln(1-x) ≅ -x
RTxB ≅ ΠVA

When the solution is dilute, xB = nB/n ≅ nB/nA
nAVA ≅ V

nBRT ≅ ΠV
The van’t Hoff equation for the osmotic pressure

nB/V = [B]

 Π ≅ [B]RT



                                                  Osmometry
    The measurement of molar mass of proteins and synthetic polymers from the
osmotic pressure of their solutions.

The solutions are far from ideal – we
assume that the van’t Hoff equation is
only the first term of an expansion:
Π = [B]RT{1 + B[B] + …}
Analogical to the virial equation of
state for a real gas.
B – the osmotic virial coefficient.
 Π /[B] = RT + BRT[B] + …
RT – intercept
BRT – slope
We can find the molar mass of the
solute B by measuring the osmotic
pressure at a series of mass
concentrations and making a plot of Π
/[B] against [B].



                         Using osmometry to determine molar mass
    The osmotic pressures of solutions of an enzyme in water at 298 K. The pressures are
expressed in terms of the heights of solution (of density ρ = 0.9998 g cm-3).
c/(g dm-3) 1.00 2.00 4.00 7.00 9.00
h/cm 0.28 0.71 2.01 5.17 8.00

We need to express the equation for Π /[B] in terms of the
mass concentration, c, and the height of the solution h:

Π = ρgh

c = (mass/volume) = (mass/amount)×(amount/volume)

 c = M×[B]

 ρgh/(c/M) = RT + BRTc/M +…

h/c = RT/ρgM + (RTB/ρgM2)c + …

By plotting h/c against c, the results should fall on a straight
line with intercept RT/ρgM on the vertical axis at c = 0.

c/(g dm-3)   1.00    2.00    4.00    7.00 9.00

h/cm / c/g dm-3 0.28    0.36    0.503    0.739 0.889

The intercept is found at
h/c = 0.21 cm g-1 dm3 = 2.1×10-3 m4 kg-1

M = (RT/ρg)/2.1×10-3 m4 kg-1 = (8.3145 J K-1 mol-1)×(298 K)/

{(999.8 kg m-3)×(9.81 m s-2)×(2.1×10-3 m4 kg-1) = 120 kg mol-1

The molar mass of the enzyme is about 120 kDa.



Activities
No actual solutions are ideal. However, we can adjust the expressions developed above to

take into account deviations from ideal behavior.
The solvent activity

The general form of the chemical potential of a real or ideal solvent:

€ 

µA = µA
* +RT ln pA

pA
*

pA
* – the vapor pressure of pure A, pA – the vapor pressure of A when it is a component

of a solution. For an ideal solution, the solvent obeys Raoult’s law at all concentrations:
µA = µA

* + RT ln xA

The standard state of the solvent is pure liquid (at 1 bar) and is obtained when xA = 1. The
form of the equation can be preserved when the solution does not obey Raoult’ law:

µA = µA
* + RT ln aA

aA – the activity of A, an ‘effective’ mole fraction, just as the fugacity is an effective
pressure. We can conclude that aA = pA/pA

*

Thus, the activity of a solvent can be determined experimentally simply by measuring the
vapor pressure.

For example, the vapor pressure of 0.500 M KNO3(aq) is 749.7 Torr, so the activity of
water in the solution at this temperature is

aA = 749.7 Torr / 760.0 Torr = 0.9864



All solvents obey Raoult’s law (pA/pA
* = xA) increasingly closely as the concentration of

solute approaches zero, therefore, the activity of the solvent approaches the mole fraction as
xA → 1: aA → xA as xA → 1
The activity coefficient, γ: aA = γAxA γA → 1 as xA → 1 µA = µA

* + RT ln xA + RT ln γA

The solute activity
Ideal-dilute solutions

A solute B that satisfies Henry’s law has a vapor pressure given by pB = KBxB. Then

€ 

µB = µB
* +RT ln pB

pB
* = µB

* +RT lnKB

pB
* +RT ln xB

Both KB and pB
* are characteristics of the solute, so the second term may be combined with

the first to give a new standard chemical potential:   

€ 

µB
Θ = µB

* +RT lnKB

pB
*  

€ 

µB = µB
Θ +RT ln xB

Real solutes
We now permit deviations from ideal-solute, Henry’s law behavior and introduce aB in

place of xB

€ 

µB = µB
Θ +RT lnaB

All the deviations from ideality are captured in the activity aB. aB = pB/KB aB = γBxB

Because the solute obeys Henry’s law as its concentration goes to zero, γB → 1 as xB → 0:
deviations of the solute from ideality disappear as zero concentration is approached.



Example 6. Measuring activity.
Use the partial pressures measured
for acetone and chloroform to
calculate the activity and activity
coefficient of chloroform in
acetone at 25°C treating it first as
a solvent and then as a solute. For
the activity of chloroform as a
solvent (the Raoult’s law activity),
calculate a = p/p* and γ = a/x. For
its activity as a solute (the Henry’s
law activity), a = p/K and γ = a/x.

xC 0 0.20 0.40 0.60 0.80 1
pC/Torr 0 35 82 142 200 273
Because p* = 273 Torr and K = 165 Torr, we construct the following table:
xC 0 0.20 0.40 0.60 0.80 1
From Raoult’s law (chloroform regarded as the solvent):
a 0 0.13 0.30 0.52 0.73 1.00
γ 0.65 0.75 0.87 0.91 1.00
From Henry’s law (chloroform regarded as the solute):

a 0 0.21 0.50 0.86 1.21 1.65
γ 1 1.05 1.25 1.43 1.51 1.65
γ → 1 as x → 1 in the Raoult’s law case, but γ → 1 as x → 0 in the Henry’s law case.

(a) Raoult’s law
(b) Henry’s law



Activities in terms of molalities
The selection of a standard state is entirely arbitrary. In chemistry, compositions are

often expressed as molalities, b, in place of mole fractions and it is convenient to write

€ 

µB = µB
Θ +RT lnbB

Here µΘ has a different value from the standard values introduced earlier: the chemical
potential of the solute has its standard value µΘ when the molality of B is equal to bΘ (1 mol
kg-1). As bB → 0, µB → -∞: as the solution becomes diluted, so the solute becomes
increasingly stabilized. The practical consequence – it is very difficult to remove the last
traces of a solute from a solution.
We can incorporate deviations from ideality by introducing a dimensionless activity aB and a
dimensionless activity coefficient γB:  aB = γB(bB/bΘ) γB → 1 as bB → 0

€ 

µ = µΘ +RT lna

The biological standard state
The conventional standard state of hydrogen ions (unit activity corresponding to pH = 0) is

not appropriate to normal biological conditions. In biochemistry it is common to adopt the
biological standard state with pH = 7 (an activity of 10-7, neutral solution) and to label the
corresponding standard thermodynamic functions as G⊕, H⊕, µ⊕, and S⊕.

€ 

µH+ = µH+
Θ +RT lnaH+ = µH+

Θ − RT ln10( )× pH  

€ 

µH+
⊕ = µH+

Θ − 7RT ln10
At 298.15 K, 7RT ln 10 = 39.96 kJ mol-1, so the two standard values differ by about 40 kJ mol-1.



The activities of regular solutions
In regular solutions the activity coefficients are given by

ln γA = βxB
2 ln γB = βxA

2 Margules equations
The Gibbs energy of mixing to form a nonideal solution is

ΔmixG = nRT{xAlnaA + xBlnaB}
ΔmixG = nRT{xAlnxA + xBlnxB + xAlnγA + xBlnγB}
ΔmixG = nRT{xAlnxA + xBlnxB + βxAxB

2 + βxBxA
2} = nRT{xAlnxA + xBlnxB + βxAxB(xA + xB)}

   = nRT{xAlnxA + xBlnxB + βxAxB},
which gives us the correct equation for ΔmixG in regular solutions.

We can use the Margules equations to write the activity of A as

€ 

aA = γ AxA = xAe
βxB

2
= xAe

β 1−xA( )2

The activity of A is the ratio of the vapor pressure of A in solution to the

vapor pressure of pure A:

€ 

pA = xAe
β 1−xA( )2{ }pA*

β = 0, corresponding to an ideal solution, gives a straight line, in accord with
Raoult’s law. Positive values of β (endothermic mixing, unfavorable solute-
solvent interactions) give vapor pressures higher than ideal. Negative values
of β (exothermic mixing, favorable solute-solvent interactions) give a lower
vapor pressure. All curves approach linearity and coincide with the Raoult’s
law line as xA → 1 and the exponential function approaches 1.

When xA << 1,

€ 

pA = xAe
β pA

*

This expression has the form of Henry’s law with K = eβpA
*, which differs for

each solute-solvent system. So, β can be determined from the ratio K/pA
*.



Ion activities
µ = µ∅ + RT ln a

The standard state – a hypothetical solution with molality b∅ = 1 mol kg-1 in which the ions
behave ideally. a = γb/b∅

As the solution approaches ideality (in the sense of obeying Henry’s law) at low molalities, the
activity coefficient tends to 1: γ → 1 and a → b/b∅ as b → 0

µ = µ∅ + RT ln b + RT ln γ = µideal + RT ln γ
µideal – the chemical potential of the ideal-dilute solution of the same molality.

Mean activity coefficients
µ+ – the chemical potential of a univalent cation M+

µ- – the chemical potential of a univalent anion X-

For an ideal solution: Gm
ideal = µ+

ideal + µ-
ideal

For a real solution: Gm = µ+ + µ- = µ+
ideal + µ-

ideal + RT ln γ+ + RT ln γ- = Gm
ideal + RT ln γ+γ-

All the deviations from ideality are contained in the last term.
There is no experimental way to separate the product γ+γ- into contributions from the cations

and anions – the best way we can do is to assign responsibility for the nonideality equally to both
kinds of ions. We introduce (for a 1,1-electrolyte) the mean activity coefficient as the geometric
mean of the individual coefficients: γ+ = (γ+γ-)

1/2

The individual chemical potentials of the ions are then expressed:

µ+ = µ+
ideal + RT ln γ+ µ- = µ-

ideal + RT ln γ+

The sum of these two chemical potentials is the same as before, but now the nonideality is
shared equally.



We can generalize this approach to MpXq, which gives a solution of p cations and q anions:
Gm = pµ+ + qµ- = Gm

ideal + pRT ln γ+ + qRT ln γ-

The mean activity coefficient: γ+ = (γ+
pγ-

q)1/s s = p + q
The chemical potential of each ion: µi = µi

ideal + RT ln γ+

Then we get the same equation for Gm by writing Gm = pµ+ + qµ-

Both types of ions now share equal responsibility for the nonideality.
The Debye-Hückel limiting law

The long range and the strength of the Coulombic interaction
between ions means that it is primarily responsible for the departures
from ideality in ionic solutions. This is the basis of the Debye-Hückel
theory (1923).
Oppositely charged ions attract each other – anions are more likely to
be found near cations in solution and vise versa. Overall, the solution
is neutral, but near any given ion there is an excess of counter ions.
Average over time, counter ions are more likely to be found near any
given ion. This time-averaged spherical haze around the central ion is
called ionic atmosphere of the central ion. The energy, and therefore
the chemical potential, of any given central ion is lowered as a result
of its electrostatic interaction with its atomic atmosphere. This
lowering is Gm

real – Gm
ideal = RT ln γ+. In dilute solutions the

stabilization is less important.



This model leads to the result that at very low concentrations the activity coefficient can be
calculated from the Debye-Hückel limiting law log γ+ = –|z+z-|AI1/2

A = 0.509 for an aqueous solution at 25°C, I – the dimensionless ionic strength of the solution:

€ 

I =
1
2

zi
2 bi
bΘ
 
 
 

 
 
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i
∑ zi – the charge number of an ion i, bi – molality

The sum extends over all the ions present in the solution. For solutions consisting of two types of

ions at molalities b+ and b-:

€ 

I =
1
2
b+z+

2 +b−z−
2( ) bΘ

The ionic strength strongly depends on the charges of the ions because the charge numbers occur
as their squares.

The mean activity coefficient of 5.0×10-3 mol kg-1 KCl(aq) at 25°C is calculated as 

€ 

I =
1
2
b+ +b−( ) bΘ = b bΘ    log γ+ = -0.509×(5.0×10-3)1/2 = -0.036   γ+ = 0.92 (0.927 – exp.)

The name ‘limiting law’ is applied to the equation
log γ+ = –|z+z-|AI1/2

because ionic solutions of moderate molalities may have activity
coefficients that differ from the values given by the expression, yet

all solutions are expected to conform as b → 0. The more
accurate equation – the extended Debye-Hückel law:

€ 

logγ± =
A z+z− I

1/2

1+BI1/2
B – an adjustable empirical dimensionless constant.


