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L = A(x, y)∂x + B(x, y)∂y

with A, B ∈ C∞(R2\0, C) and homogeneous of degree λ ∈ C with
Re(λ) > 1:

A(tx, ty) = tλA(x, y), B(tx, ty) = tλB(x, y) ∀(x, y) ∈ R2\0, t > 0.

L has a singular point at 0.
Solvability of Lu = f is an open set Ω 3 0 depends heavily on number
theoretic properties of an associated pair (λ, µ):

I λ homogeneity degree;
I µ invariant given by

µ =
1

2π

∫
|z|=1

xA + yB
xB− yA

dz
z
, z = x + iy



Results based on two papers

1. A.M. Solvability of complex vector fields with homogeneous
singularities, Complex Var. Elliptic Eq. (2017)
Among results:

I If µ = iβ ∈ iR∗ and u is a distribution solution of Lu = 0 in an
annulus {r2 ≤ x2 + y2 ≤ R2} with R > re2π|β|, then u extends as
a distribution solution to R2

I If f ∈ C$ at 0, the equation Lu = f has a solution if the pair
(λ, µ) is nonresonant.

2. C. Campana, P. Dattori, A.M. A class of planar vector fields with
homogeneous singular points: Solvability and boundary value
problems, J. Diff. Eq. (2018)
Solvability studied through integral operator

TZf (x, y) =
1

2πi

∫
Ω

f (ξ, η)

Z(ξ, η)− Z(x, y)
dξdη



Preliminaries
x = r cos θ , y = r sin θ , A = rλa(θ) , B = rλb(θ) ,
a, b ∈ C∞(S1,C)

L = A∂x + B∂y = rλ−1 (p(θ)∂θ − iq(θ)r∂r) = rλ−1L0

p(θ) = b(θ) cos θ − a(θ) sin θ , q(θ) = i (a(θ) cos θ + b(θ) sin θ) .

Set of nonellipticity (union of ray):

Σ = {(x, y) ∈ R2; L ∧ L = 0} = {(x, y) ∈ R2; Im(AB) = 0}
= {(r, θ) ∈ [0,∞)× S1; Re(qp) = 0} = [0,∞)× Σ0

Hypotheses:
I Σ has an empty interior in R2 (⇐⇒ Σ0 has an empty interior in

S1);
I L ∧ (x∂x + y∂y) 6= 0 everywhere in R2\0

(⇐⇒ p(θ) 6= 0 ∀θ ∈ S1)



L is locally solvable at m ∈ R2 if ∃V ⊂
open

U ⊂
open

R2, m ∈ V , such that

∀f ∈ C∞(U) equation Lu = f has a solution u ∈ D′(V).
L is locally solvable at each point m ∈ R2\Σ. L is locally solvable at
m0 ∈ Σ\0 ⇐⇒ L satisfies condition (P) at m0 (Im(AB) does not
change sign in a neighborhood of m0; equivalently Re(qp) does not
change sign near θ0 ∈ S1).
Note: If L satisfies condition (P) at m0 ∈ Σ\0, then hypothesis
L ∧ (x∂x + y∂y) 6= 0 implies that L is hypoelliptic at each point on the
ray containing m0.
To L = A∂x + B∂y = rλ−1(p(θ)∂θ − iq(θ)r∂r) associate µ ∈ C

µ =
1

2π

∫
|z|=1

xA + yB
xB− yA

dz
z

=
1

2π

∫ 2π

0

q(θ)

p(θ)
dθ .

We can assume Re(µ) ≥ 0. If L satisfies condition (P) in R2\0, then
Re(µ) > 0.



First Integrals
F is a first integral of L in Ω ⊂

open
R2 if LF = 0 and dF 6= 0 in Ω.

I Case: µ =
1

2π

∫ 2π

0

q(θ)

p(θ)
dθ = 0

m(θ) =

∫ θ

0

q(s)
p(s)

ds. m is 2π-periodic and Re(m) 6≡ 0.

Re(m(θ1)) = min Re(m); Re(m(θ2)) = max Re(m). Define
σ =

π

Re(m(θ2))− Re(m(θ1))
and φ(θ) = σ(m(θ)− m(θ1)).

Z0(r, θ) = rσeiφ(θ): First integral of L and Z0(R2) = C+.



I Case: µ =
1

2π

∫ 2π

0

q(θ)

p(θ)
dθ 6= 0

cj =
1

2π

∫ 2π

0

q(θ)

p(θ)
eijθdθ; φ(θ) =

∑
j 6=0

cj

ijµ
eijθ = φ1(θ) + iφ2(θ)

Zµ(r, θ) = r1/µei(θ+φ(θ)) is a C∞ first integral of L in R2\0.
I If Re(µ) > 0, then Zµ(R2) = C and if L satisfies condition (P),

Z is a global homeomorphism.
I If Re(µ) = 0, µ = iβ,

Ziβ(r, θ) = e−φ2(θ) exp
[

i
(
θ + φ1(θ)− ln r

β

)]
m = min

(
e−φ2(θ)

)
M = max

(
e−φ2(θ)

)
, ∀ε > 0

Z(R2\0) = Z(D(0, ε)) = A(m,M) = {z : m ≤ |z| ≤ M}



Equation Lu = 0

Direct consequence of order of vanishing of L at 0 and definition of Zµ

I L

(
∂j+kδ

∂j
x∂k

y

)
= 0 for j + k ≤ Re(λ)− 1;

I If µ = 0, m ∈ Z, σm < Re(λ)− 1, L(Z−m
0 ) = 0;

I If Re(µ) > 0, m ∈ Z, Re(
m
µ

) < Re(λ)− 1, L(Z−m
µ ) = 0;

I If µ = iβ ∈ iR∗, L(Zm
iβ) = 0, ∀m ∈ Z.

Continuous solutions.
I If L satisfies condition (P) in R2\0 and u ∈ C0(Ω), solves

Lu = 0 in Ω open, then u = H ◦ Zµ with H holomorphic in
Zµ(Ω).



I If µ = 0, Ω 3 0 open, u ∈ C0(Ω) solves Lu = 0, then there is
ε > 0 such that u ∈ C∞(D(0, ε)\Z−1

0 (R)).



I If µ = iβ ∈ iR∗, Ziβ = e−φ2(θ) exp[i (θ + φ1(θ)− ln r/β)].
m = min |Ziβ|, M = min |Ziβ|. If Ω ⊃ A(r1, r2) with
r2 > r1 exp(2π/|β|), then u ∈ C0(Ω), Lu = 0 can be written
u = H ◦ Ziβ where H ∈ C0(A(m,M)) and holomorphic in the
interior of A(m,M). In particular, u extends as a C0-solution to
R2\0.



Domain of extendability of solutions of Lu = 0

Ω ⊂ R2 is starlike w.r.t. 0 if [0, p] ⊂ Ω, ∀p ∈ Ω.
Consider L with µ ≥ 0. Define an equivalence relation on ∂Ω by

p ∼ p′ ⇐⇒ arg(Zµ(p)) = arg(Zµ(p′)); cl(p) = {p′ ∈ ∂Ω, p′ ∼ p}.

Define ρ : ∂Ω −→ R+; ρ(p) = max
p′∈cl(p)

|Zµ(p′)|, and

ΩL =
⋃

p∈∂Ω

[0, Λ(p)ei arg(p) ), where Λ(p) = ρ(p)µeµφ2(arg(p)) if µ > 0

and Λ(p) = ρ(p)1/σeφ2(arg(p))/σ if µ = 0
I (ΩL)L = ΩL, ΩL = Z−1

µ (Zµ(Ω))

I If u ∈ C0(Ω) solves Lu = 0, then there exists û ∈ C0(ΩL),
Lû = 0 and û = u in Ω. Moreover, û ∈ C∞(ΩL\0) if µ > 0 and
û ∈ C∞(ΩL\Z−1

0 (R)) if µ = 0
I There exists v ∈ C0(ΩL) with Lv = 0 such that v has no

extension as a solution to a larger set.



Examples
I µ = 0

DL is the region enclosed by the curve e(| sin θ|−sin θ)eiθ.



I µ ∈ R+ + iR and k ∈ Z+

L = rλ−1 [∂θ − iµ (1 + k cos(kθ)) r∂r], Zµ = r1/µei(θ+sin(kθ))

Σ consists of 2k rays given by cos θ = −1/k.
L does not satisfy condition (P) at any point of Σ. Zµ(D) = D.
If u ∈ C0(D) solves Lu = 0, then u ∈ C∞(D\0).



I µ = i

L = rλ−1 [∂θ − i (2 cos(2θ)− 2 sin(4θ) + i) r∂r],
Zi = r−i exp

[
sin(2θ) + cos(4θ)

2

]
eiθ

Σ = {θ = π
4 ,

3π
4 ,

5π
4 ,

7π
4 ,

π
12 ,

5π
12 ,

13π
12 ,

17π
12 } Zi is a fold along each

ray of Σ. max |Zi| = e3/4 reached along θ = π
12 ,

5π
12 ,

13π
12 ,

17π
12

min |Zi| = e−3/2 reached along θ = 3π
4 ,

7π
4 .

If u ∈ C0(A(r1, r2)) with r2 > r1e2π and Lu = 0, then u extends as a
continuous solution û to R2\0 and û is C∞ on the rays θ = π

4 ,
7π
4 .



Equation Lu = f (∗)
I f ∈ Cl(R2\0), σ-homogeneous with σ ∈ C and Re(σ) > 0.

• If µ(λ− σ − 1) /∈ Z , then (∗) has a solution u ∈ D′(R2) with
u ∈ Cl+1(R2\0) and (σ + 1− λ)-homogeneous. In particular if
Re(σ − λ) > −1, u is Hölder continuous at 0.
Explicit construction of u: f (r, θ) = rσf0(θ) with f0 ∈ Cl(S1);

L = rλ−1(p(θ)∂θ− iq(θ)r∂r), ψ(θ) =

∫ θ

0

q
p

ds so that ψ(2π) = 2πµ.

u(r, θ) = rσ+λ−1v(θ) with
v(θ) =[

K +

∫ θ

0

f0(s)
p(s)

exp(−i(σ + 1− λ)ψ(s)) ds
]

exp(i(σ + 1− λ)ψ(θ))

and K =
1

1− e2πiµ(σ+1−λ)

∫ 2π

0

f0(s)
p(s)

exp(−i(σ + 1− λ)ψ(s)) ds.

• If µ(λ− σ − 1) ∈ Z, equation (∗) we have similar conclusion
provided that f0 satisfies∫ 2π

0

f0(s)
p(s)

exp(−i(σ + 1− λ)ψ(s)) ds = 0.



I f real analytic at 0.

(µ, λ) is resonant if ∃l ∈ Z+, k ∈ Z such that µλ = µl + k.
J(µ, λ) = {l ∈ Z+; µλ = µl + k}: set of resonant integers.
When (µ, λ) is resonant |J(µ, λ)| = 1 if (µ, λ) /∈ Q+ ×Q+ and
|J(µ, λ)| =∞ if not.
A nonresonant pair (µ, λ) satisfies Diophantine condition
(DC): ∃C > 0, ∀j ∈ Z+,

∣∣1− e2πiµ(j−λ)
∣∣ ≥ Cj

• If (µ, λ) is nonresonant, (DC) holds whenever µ /∈ R or µ ∈ R+

and λ /∈ R.
• For µ, λ ∈ R, condition (DC) is equivalent to
(DC′) ∃C > 0, ∀j ∈ Z+, k ∈ Z, |µ(j− λ)− k| ≥ Cj



• Suppose (µ, λ) is nonresonant and satisfies (DC). Then for every f
real analytic at 0, there exists ε > 0 and
w ∈ C∞(D(0, ε)\0) ∩ L∞(D(0, ε)) such that u =

w
rλ−1 is a

distribution solution of Lu = f .

f (x, y) =
∑

j≥0 Pj(x, y), with Pj homogeneous polynomial of degree j.
(µ, λ) nonresonant =⇒ Lu = Pj has solution rj+1−λvj(θ).
(µ, λ) satisfies (DC′) =⇒
w =

∑
j rjvj(θ) ∈ C∞(D(0, ε)\0)∩L∞(D(0, ε)) and L(w/rλ−1) = f .

• Suppose (µ, λ) is resonant. A real analytic function f =
∑

j rjfj(θ)
is (µ, λ)-compatible if∫ 2π

0

fj(s)
p(s)

e−i(j−1−λ)ψ(s)ds = 0 ∀j ∈ J(µ, λ).

Note: If µ /∈ Q, there is only one compatibility condition and if
µ ∈ Q there are infinitely many conditions.
Suppose (µ, λ) is resonant and f is (µ, λ)-compatible, then Lu = f
has a solution as above.



Integral operator and Hölder continuous solutions
(join work with C. Campana and P. Dattori)
Class of vector fields L such that (ı) λµ = 1; (ıı) λ ∈ R+; (ııı)
satisfies condition (P) in R2\0; and (ıυ) L is of finite type.
There exist coordinates (r, θ) such that Z = rλei(θ+φ(θ)) is a first
integral with φ ∈ C∞(S1,R);
1 + φ′(θ) ≥ 0 for all θ; and
Taylor series of φ′′ not identically 0 at for every θj ∈ Σ0.



k• = max kj, τ =
k• − 1

k•
. Let Ω open in R+ × S1.

For 0 < λ < 1, let F = Lp(Ω) with p > max{k• + 1, 1/(1− λ)}.
For λ ≥ 1, let δ > 0 with 1− 1

λ
< δ < 1− 1

λ(2− τ)
,

F = rλδLp(Ω) with p > 1/[1− λ(1− δ)].

‖f‖F =

{
‖f‖p when F = Lp(Ω)

‖f0‖p when F = rλδLp(Ω) and f = rλδf0

For f ∈ F , define

TZf (r, θ) =
1

2πi

∫
Ω

f (ξ, η)

Z(ξ, η)− Z(r, θ)
dξdη .



I ∃M > 0; |TZf (p)| ≤ M ‖f‖F ∀f ∈ F , p ∈ Ω

I ∃C > 0, β > 0 such that ∀f ∈ F , p1, p2 ∈ Ω

|TZf (p1)− TZf (p2)| ≤ C |Z(p1)− Z(p2)|β .

I L(TZf ) = f .



Obrigado


