Planar Complex Vector Fields with Homogeneous Singular Points ICMC Summer Meeting on Differential Equations

Hamid Meziani

Florida International University

February 1, 2021

$$L = A(x, y)\partial_x + B(x, y)\partial_y$$

with $A, B \in C^{\infty}(\mathbb{R}^2 \setminus 0, \mathbb{C})$ and homogeneous of degree $\lambda \in \mathbb{C}$ with $\operatorname{Re}(\lambda) > 1$:

$$A(tx,ty) = t^{\lambda}A(x,y), \quad B(tx,ty) = t^{\lambda}B(x,y) \quad \forall (x,y) \in \mathbb{R}^2 \setminus 0, \quad t > 0.$$

L has a singular point at 0.

Solvability of Lu = f is an open set $\Omega \ni 0$ depends heavily on number theoretic properties of an associated pair (λ, μ) :

- λ homogeneity degree;
- μ invariant given by

$$\mu = \frac{1}{2\pi} \int_{|z|=1} \frac{xA + yB}{xB - yA} \frac{dz}{z}, \quad z = x + iy$$

Results based on two papers

- 1. A.M. Solvability of complex vector fields with homogeneous singularities, Complex Var. Elliptic Eq. (2017) Among results:
 - If μ = iβ ∈ iℝ* and u is a distribution solution of Lu = 0 in an annulus {r² ≤ x² + y² ≤ R²} with R > re^{2π|β|}, then u extends as a distribution solution to ℝ²
 - If $f \in C^{\infty}$ at 0, the equation Lu = f has a solution if the pair (λ, μ) is nonresonant.
- C. Campana, P. Dattori, A.M. A class of planar vector fields with homogeneous singular points: Solvability and boundary value problems, J. Diff. Eq. (2018) Solvability studied through integral operator

$$T_{Z}f(x,y) = \frac{1}{2\pi i} \int_{\Omega} \frac{f(\xi,\eta)}{Z(\xi,\eta) - Z(x,y)} d\xi d\eta$$

Preliminaries

$$\begin{aligned} x &= r\cos\theta, \ y = r\sin\theta, \ A = r^{\lambda}a(\theta), \ B = r^{\lambda}b(\theta), \\ a, b &\in C^{\infty}(\mathbb{S}^{1}, \mathbb{C}) \\ L &= A\partial_{x} + B\partial_{y} = r^{\lambda-1}\left(p(\theta)\partial_{\theta} - iq(\theta)r\partial_{r}\right) = r^{\lambda-1}L_{0} \end{aligned}$$

$$p(\theta) = b(\theta) \cos \theta - a(\theta) \sin \theta$$
, $q(\theta) = i (a(\theta) \cos \theta + b(\theta) \sin \theta)$.

Set of nonellipticity (union of ray):

$$\begin{split} \Sigma &= \{(x,y) \in \mathbb{R}^2; \ L \wedge \overline{L} = 0\} = \{(x,y) \in \mathbb{R}^2; \ \operatorname{Im}(A\overline{B}) = 0\} \\ &= \{(r,\theta) \in [0,\infty) \times \mathbb{S}^1; \ \operatorname{Re}(q\overline{p}) = 0\} = [0,\infty) \times \Sigma_0 \end{split}$$

Hypotheses:

• Σ has an empty interior in \mathbb{R}^2 ($\iff \Sigma_0$ has an empty interior in \mathbb{S}^1);

►
$$L \wedge (x\partial_x + y\partial_y) \neq 0$$
 everywhere in $\mathbb{R}^2 \setminus 0$
($\iff p(\theta) \neq 0 \quad \forall \theta \in \mathbb{S}^1$)

L is locally solvable at $m \in \mathbb{R}^2$ if $\exists V \underset{open}{\subset} U \underset{open}{\subset} \mathbb{R}^2, m \in V$, such that $\forall f \in C^{\infty}(U)$ equation Lu = f has a solution $u \in \mathcal{D}'(V)$. *L* is locally solvable at each point $m \in \mathbb{R}^2 \setminus \Sigma$. *L* is locally solvable at $m_0 \in \Sigma \setminus 0 \iff L$ satisfies condition (\mathcal{P}) at m_0 (Im $(A\overline{B})$ does not change sign in a neighborhood of m_0 ; equivalently $\operatorname{Re}(q\overline{p})$ does not change sign near $\theta_0 \in \mathbb{S}^1$).

Note: If *L* satisfies condition (\mathcal{P}) at $m_0 \in \Sigma \setminus 0$, then hypothesis $L \wedge (x\partial_x + y\partial_y) \neq 0$ implies that *L* is hypoelliptic at each point on the ray containing m_0 .

To $L = A\partial_x + B\partial_y = r^{\lambda-1}(p(\theta)\partial_\theta - iq(\theta)r\partial_r)$ associate $\mu \in \mathbb{C}$

$$\mu = \frac{1}{2\pi} \int_{|z|=1} \frac{xA + yB}{xB - yA} \frac{dz}{z} = \frac{1}{2\pi} \int_0^{2\pi} \frac{q(\theta)}{p(\theta)} d\theta.$$

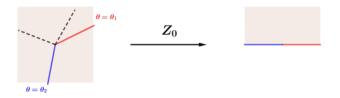
We can assume $\operatorname{Re}(\mu) \geq 0$. If *L* satisfies condition (\mathcal{P}) in $\mathbb{R}^2 \setminus 0$, then $\operatorname{Re}(\mu) > 0$.

First Integrals

F is a first integral of *L* in $\Omega \underset{open}{\subset} \mathbb{R}^2$ if LF = 0 and $dF \neq 0$ in Ω .

• Case:
$$\mu = \frac{1}{2\pi} \int_0^{2\pi} \frac{q(\theta)}{p(\theta)} d\theta = 0$$

 $m(\theta) = \int_0^{\theta} \frac{q(s)}{p(s)} ds$. *m* is 2π -periodic and $\operatorname{Re}(m) \neq 0$.
 $\operatorname{Re}(m(\theta_1)) = \min \operatorname{Re}(m)$; $\operatorname{Re}(m(\theta_2)) = \max \operatorname{Re}(m)$. Define
 $\sigma = \frac{\pi}{\operatorname{Re}(m(\theta_2)) - \operatorname{Re}(m(\theta_1))}$ and $\phi(\theta) = \sigma(m(\theta) - m(\theta_1))$.
 $Z_0(r, \theta) = r^{\sigma} e^{i\phi(\theta)}$: First integral of *L* and $Z_0(\mathbb{R}^2) = \mathbb{C}^+$.



• **Case:**
$$\mu = \frac{1}{2\pi} \int_0^{2\pi} \frac{q(\theta)}{p(\theta)} d\theta \neq 0$$

 $c_j = \frac{1}{2\pi} \int_0^{2\pi} \frac{q(\theta)}{p(\theta)} e^{ij\theta} d\theta; \quad \phi(\theta) = \sum_{j \neq 0} \frac{c_j}{ij\mu} e^{ij\theta} = \phi_1(\theta) + i\phi_2(\theta)$
 $Z_\mu(r, \theta) = r^{1/\mu} e^{i(\theta + \phi(\theta))}$ is a C^∞ first integral of L in $\mathbb{R}^2 \setminus 0$.

 If Re(µ) > 0, then Z_µ(ℝ²) = C and if L satisfies condition (P), Z is a global homeomorphism.

• If
$$\operatorname{Re}(\mu) = 0$$
, $\mu = i\beta$,

$$Z_{i\beta}(r,\theta) = e^{-\phi_2(\theta)} \exp\left[i\left(\theta + \phi_1(\theta) - \frac{\ln r}{\beta}\right)\right]$$

$$\begin{split} m &= \min\left(\mathrm{e}^{-\phi_2(\theta)}\right) \quad M = \max\left(\mathrm{e}^{-\phi_2(\theta)}\right), \, \forall \epsilon > 0 \\ Z(\mathbb{R}^2 \backslash 0) &= Z(\mathbb{D}(0,\epsilon)) = \mathbb{A}(m,M) = \{z : m \leq |z| \leq M\} \end{split}$$

 $\mathbb{A}(m,M)$

 $\overbrace{\bullet}^{\mathbb{D}(0,\epsilon)} \xrightarrow{Z_{i\beta}}$

Equation Lu = 0

Direct consequence of order of vanishing of L at 0 and definition of Z_{μ}

$$L\left(\frac{\partial^{j+k}\delta}{\partial_x^j\partial_y^k}\right) = 0 \text{ for } j+k \le \operatorname{Re}(\lambda)-1;$$

$$If \ \mu = 0, \ m \in \mathbb{Z}, \ \sigma m < \operatorname{Re}(\lambda)-1, \ L(Z_0^{-m}) = 0;$$

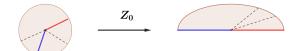
$$If \ \operatorname{Re}(\mu) > 0, \ m \in \mathbb{Z}, \ \operatorname{Re}(\frac{m}{\mu}) < \operatorname{Re}(\lambda)-1, \ L(Z_\mu^{-m}) = 0;$$

$$If \ \mu = i\beta \in i\mathbb{R}^*, \ L(Z_{i\beta}^m) = 0, \ \forall m \in \mathbb{Z}.$$

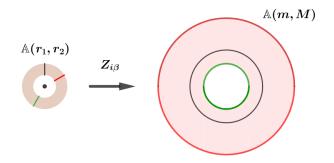
Continuous solutions.

• If *L* satisfies condition (\mathcal{P}) in $\mathbb{R}^2 \setminus 0$ and $u \in C^0(\Omega)$, solves Lu = 0 in Ω open, then $u = H \circ Z_{\mu}$ with *H* holomorphic in $Z_{\mu}(\Omega)$.

• If $\mu = 0$, $\Omega \ni 0$ open, $u \in C^0(\Omega)$ solves Lu = 0, then there is $\epsilon > 0$ such that $u \in C^{\infty}(\mathbb{D}(0, \epsilon) \setminus Z_0^{-1}(\mathbb{R}))$.



▶ If $\mu = i\beta \in i\mathbb{R}^*$, $Z_{i\beta} = e^{-\phi_2(\theta)} \exp[i(\theta + \phi_1(\theta) - \ln r/\beta)]$. $m = \min |Z_{i\beta}|$, $M = \min |Z_{i\beta}|$. If $\Omega \supset \mathbb{A}(r_1, r_2)$ with $r_2 > r_1 \exp(2\pi/|\beta|)$, then $u \in C^0(\Omega)$, Lu = 0 can be written $u = H \circ Z_{i\beta}$ where $H \in C^0(\mathbb{A}(m, M))$ and holomorphic in the interior of $\mathbb{A}(m, M)$. In particular, u extends as a C^0 -solution to $\mathbb{R}^2 \setminus 0$.



Domain of extendability of solutions of Lu = 0

 $\Omega \subset \mathbb{R}^2$ is *starlike* w.r.t. 0 if $[0, p] \subset \Omega$, $\forall p \in \Omega$. Consider *L* with $\mu \ge 0$. Define an equivalence relation on $\partial \Omega$ by

$$p \sim p' \iff \arg(Z_{\mu}(p)) = \arg(Z_{\mu}(p')); \operatorname{cl}(p) = \{p' \in \partial\Omega, \ p' \sim p\}.$$

Define
$$\rho: \partial \Omega \longrightarrow \mathbb{R}^+$$
; $\rho(p) = \max_{p' \in cl(p)} |Z_{\mu}(p')|$, and

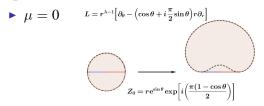
$$\Omega_L = \bigcup_{p \in \partial \Omega} [0, \Lambda(p) e^{i \arg(p)}), \text{ where } \Lambda(p) = \rho(p)^{\mu} e^{\mu \phi_2(\arg(p))} \text{ if } \mu > 0$$

and $\Lambda(p) = \rho(p)^{1/\sigma} e^{\phi_2(\arg(p))/\sigma}$ if $\mu = 0$

•
$$(\Omega_L)_L = \Omega_L, \ \Omega_L = Z_\mu^{-1}(Z_\mu(\Omega))$$

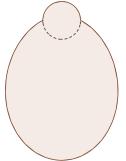
- If $u \in C^0(\Omega)$ solves Lu = 0, then there exists $\hat{u} \in C^0(\Omega_L)$, $L\hat{u} = 0$ and $\hat{u} = u$ in Ω . Moreover, $\hat{u} \in C^{\infty}(\Omega_L \setminus 0)$ if $\mu > 0$ and $\hat{u} \in C^{\infty}(\Omega_L \setminus Z_0^{-1}(\mathbb{R}))$ if $\mu = 0$
- ► There exists $v \in C^0(\Omega_L)$ with Lv = 0 such that v has no extension as a solution to a larger set.

Examples



 \mathbb{D}_L is the region enclosed by the curve $e^{(|\sin \theta| - \sin \theta)}e^{i\theta}$.

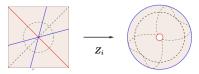
 \mathbb{D} and \mathbb{D}_L



 $\blacktriangleright \mu \in \mathbb{R}^+ + i\mathbb{R}$ and $k \in \mathbb{Z}^+$

 $L = r^{\lambda-1} [\partial_{\theta} - i\mu (1 + k \cos(k\theta)) r \partial_r], Z_{\mu} = r^{1/\mu} e^{i(\theta + \sin(k\theta))}$ Σ consists of 2k rays given by $\cos \theta = -1/k$. L does not satisfy condition (\mathcal{P}) at any point of Σ . $Z_{\mu}(\mathbb{D}) = \mathbb{D}$. If $u \in C^0(\mathbb{D})$ solves Lu = 0, then $u \in C^{\infty}(\mathbb{D}\setminus 0)$.

$$\mu = i L = r^{\lambda - 1} \left[\partial_{\theta} - i \left(2 \cos(2\theta) - 2 \sin(4\theta) + i \right) r \partial_{r} \right], Z_{i} = r^{-i} \exp \left[\sin(2\theta) + \frac{\cos(4\theta)}{2} \right] e^{i\theta} \Sigma = \left\{ \theta = \frac{\pi}{4}, \frac{3\pi}{4}, \frac{5\pi}{4}, \frac{7\pi}{4}, \frac{\pi}{12}, \frac{5\pi}{12}, \frac{13\pi}{12}, \frac{17\pi}{12} \right\} Z_{i} \text{ is a fold along each ray of } \Sigma. \ \max |Z_{i}| = e^{3/4} \text{ reached along } \theta = \frac{\pi}{12}, \frac{5\pi}{12}, \frac{13\pi}{12}, \frac{17\pi}{12} \\ \min |Z_{i}| = e^{-3/2} \text{ reached along } \theta = \frac{3\pi}{4}, \frac{7\pi}{4}. \\ \mathbb{A}(e^{-3/2}, e^{3/4})$$



If $u \in C^0(\mathbb{A}(r_1, r_2))$ with $r_2 > r_1 e^{2\pi}$ and Lu = 0, then *u* extends as a continuous solution \hat{u} to $\mathbb{R}^2 \setminus 0$ and \hat{u} is C^{∞} on the rays $\theta = \frac{\pi}{4}, \frac{7\pi}{4}$.

Equation Lu = f (*)

• $f \in C^{l}(\mathbb{R}^{2}\setminus 0), \ \sigma$ -homogeneous with $\sigma \in \mathbb{C}$ and $\operatorname{Re}(\sigma) > 0$.

• If $\mu(\lambda - \sigma - 1) \notin \mathbb{Z}$, then (*) has a solution $u \in \mathcal{D}'(\mathbb{R}^2)$ with $u \in C^{l+1}(\mathbb{R}^2 \setminus 0)$ and $(\sigma + 1 - \lambda)$ -homogeneous. In particular if $\operatorname{Re}(\sigma - \lambda) > -1$, *u* is Hölder continuous at 0. Explicit construction of $u: f(r, \theta) = r^{\sigma} f_0(\theta)$ with $f_0 \in C^l(\mathbb{S}^1)$; $L = r^{\lambda - 1}(p(\theta)\partial_{\theta} - iq(\theta)r\partial_{r}), \ \psi(\theta) = \int_{0}^{\theta} \frac{q}{p} \, ds \text{ so that } \psi(2\pi) = 2\pi\mu.$ $u(r,\theta) = r^{\sigma+\lambda-1}v(\theta)$ with $v(\theta) =$ $\left[K + \int_{0}^{\theta} \frac{f_{0}(s)}{p(s)} \exp(-i(\sigma + 1 - \lambda)\psi(s)) ds\right] \exp(i(\sigma + 1 - \lambda)\psi(\theta))$ and $K = \frac{1}{1 - e^{2\pi i \mu (\sigma + 1 - \lambda)}} \int_{0}^{2\pi} \frac{f_0(s)}{p(s)} \exp(-i(\sigma + 1 - \lambda)\psi(s)) ds.$ • If $\mu(\lambda - \sigma - 1) \in \mathbb{Z}$, equation (*) we have similar conclusion provided that f_0 satisfies $\int_{0}^{2\pi} \frac{f_0(s)}{n(s)} \exp(-i(\sigma+1-\lambda)\psi(s)) \, ds = 0.$

► *f* real analytic at 0.

 (μ, λ) is *resonant* if $\exists l \in \mathbb{Z}^+$, $k \in \mathbb{Z}$ such that $\mu \lambda = \mu l + k$. $\mathbb{J}(\mu, \lambda) = \{l \in \mathbb{Z}^+; \ \mu \lambda = \mu l + k\}$: set of resonant integers. When (μ, λ) is resonant $|\mathbb{J}(\mu, \lambda)| = 1$ if $(\mu, \lambda) \notin \mathbb{Q}^+ \times \mathbb{Q}^+$ and $|\mathbb{J}(\mu, \lambda)| = \infty$ if not.

A nonresonant pair (μ, λ) satisfies Diophantine condition (\mathcal{DC}) : $\exists C > 0, \forall j \in \mathbb{Z}^+, |1 - e^{2\pi i \mu (j - \lambda)}| \ge C^j$

• If (μ, λ) is nonresonant, (\mathcal{DC}) holds whenever $\mu \notin \mathbb{R}$ or $\mu \in \mathbb{R}^+$ and $\lambda \notin \mathbb{R}$.

• For $\mu, \lambda \in \mathbb{R}$, condition (\mathcal{DC}) is equivalent to $(\mathcal{DC}') \quad \exists C > 0, \ \forall j \in \mathbb{Z}^+, \ k \in \mathbb{Z}, \ |\mu(j - \lambda) - k| \ge C^j$ • Suppose (μ, λ) is nonresonant and satisfies (\mathcal{DC}) . Then for every f real analytic at 0, there exists $\epsilon > 0$ and

 $w \in C^{\infty}(D(0,\epsilon) \setminus 0) \cap L^{\infty}(D(0,\epsilon))$ such that $u = \frac{w}{r^{\lambda-1}}$ is a distribution solution of Lu = f.

 $\begin{aligned} f(x,y) &= \sum_{j\geq 0} P_j(x,y), \text{ with } P_j \text{ homogeneous polynomial of degree } j.\\ (\mu,\lambda) \text{ nonresonant} &\Longrightarrow Lu = P_j \text{ has solution } r^{j+1-\lambda}v_j(\theta).\\ (\mu,\lambda) \text{ satisfies } (\mathcal{DC}') &\Longrightarrow\\ w &= \sum_j r^j v_j(\theta) \in C^\infty(D(0,\epsilon) \setminus 0) \cap L^\infty(D(0,\epsilon)) \text{ and } L(w/r^{\lambda-1}) = f. \end{aligned}$

• Suppose (μ, λ) is resonant. A real analytic function $f = \sum_j r^j f_j(\theta)$ is (μ, λ) -compatible if

$$\int_0^{2\pi} \frac{f_j(s)}{p(s)} \mathrm{e}^{-i(j-1-\lambda)\psi(s)} ds = 0 \qquad \forall j \in \mathbb{J}(\mu, \lambda).$$

Note: If $\mu \notin \mathbb{Q}$, there is only one compatibility condition and if $\mu \in \mathbb{Q}$ there are infinitely many conditions. Suppose (μ, λ) is resonant and *f* is (μ, λ) -compatible, then Lu = f has a solution as above.

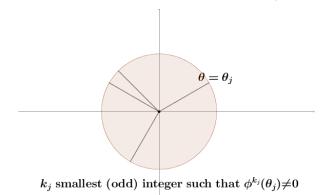
Integral operator and Hölder continuous solutions

(join work with C. Campana and P. Dattori)

Class of vector fields *L* such that (*i*) $\lambda \mu = 1$; (*ii*) $\lambda \in \mathbb{R}^+$; (*iii*) satisfies condition (\mathcal{P}) in $\mathbb{R}^2 \setminus 0$; and (*iv*) *L* is of finite type. There exist coordinates (r, θ) such that $Z = r^{\lambda} e^{i(\theta + \phi(\theta))}$ is a first integral with $\phi \in C^{\infty}(\mathbb{S}^1, \mathbb{R})$;

 $1 + \phi'(\theta) \ge 0$ for all θ ; and

Taylor series of ϕ'' not identically 0 at for every $\theta_j \in \Sigma_0$.



$$k^{\bullet} = \max k_{j}, \ \tau = \frac{k^{\bullet} - 1}{k^{\bullet}}. \text{ Let } \Omega \text{ open in } \mathbb{R}^{+} \times \mathbb{S}^{1}.$$

For $0 < \lambda < 1$, let $\mathcal{F} = L^{p}(\Omega)$ with $p > \max\{k^{\bullet} + 1, 1/(1 - \lambda)\}$.
For $\lambda \ge 1$, let $\delta > 0$ with $1 - \frac{1}{\lambda} < \delta < 1 - \frac{1}{\lambda(2 - \tau)},$
 $\mathcal{F} = r^{\lambda\delta}L^{p}(\Omega)$ with $p > 1/[1 - \lambda(1 - \delta)].$

$$\|f\|_{\mathcal{F}} = \begin{cases} \|f\|_{p} & \text{when } \mathcal{F} = L^{p}(\Omega) \\ \|f_{0}\|_{p} & \text{when } \mathcal{F} = r^{\lambda\delta}L^{p}(\Omega) \text{ and } f = r^{\lambda\delta}f_{0} \end{cases}$$

For $f \in \mathcal{F}$, define

$$T_Z f(r,\theta) = \frac{1}{2\pi i} \int_{\Omega} \frac{f(\xi,\eta)}{Z(\xi,\eta) - Z(r,\theta)} d\xi d\eta.$$

∃M > 0; |T_Zf(p)| ≤ M ||f||_F ∀f ∈ F, p ∈ Ω
∃C > 0, β > 0 such that ∀f ∈ F, p₁, p₂ ∈ Ω

$$|T_Z f(p_1) - T_Z f(p_2)| \le C |Z(p_1) - Z(p_2)|^{\beta}$$
.

$$\blacktriangleright L(T_Z f) = f.$$

Obrigado