Fall 2022 - Real Analysis Homework about the Cantor Set and Cantor-Lebesgue function

The aim of these exercises is to give an alternative view, based on the ternary and binary expansions of real numbers, of the Cantor set and of the Cantor-Lebesgue function.

Let $p \in \mathbb{N}$ with $p>1$. We have seen in a previous exercise that any $x \in[0,1]$ can be written as $x=\sum_{j=1}^{\infty} \frac{a_{j}}{p^{j}}$ with $a_{j} \in\{0,1, \cdots, p-1\}$. This is a representation of x in base p. We will use the following notation.

$$
x=\left[0 . a_{1} a_{2} \cdots a_{n} \cdots\right]_{p} .
$$

We have also seen that such a representation is unique except when $x=\frac{q}{p^{N}}$ for some natural number $q<p^{N}$. In this case x has two representations

$$
x=\left[0 . a_{1} a_{2} \cdots a_{m} 1000 \cdots\right]_{p}=\left[0 . a_{1} a_{2} \cdots a_{m} 0(p-1)(p-1)(p-1) \cdots\right]_{p} .
$$

From now on when $x=\frac{q}{p^{N}}$ we will use only the second representation:

$$
x=\left[0 . a_{1} a_{2} \cdots a_{m} \mathbf{0}(\mathbf{p}-\mathbf{1})(\mathbf{p}-\mathbf{1})(\mathbf{p}-\mathbf{1}) \cdots\right]_{p}
$$

and use the notation $x=\left[0 . a_{1} a_{2} \cdots a_{m} 0 \overline{(p-1)}\right]_{p}$ to indicate that the $(p-1)$ repeats infinitely in the representation. With this understanding any $x \in[0,1]$ has a unique expansion in base p.
(1) Let $I=\left(a_{1}, b_{1}\right)$ the open third middle interval removed from $C_{0}=[0,1]$ in the construction of the Cantor set C. Verify that

$$
a_{1}=[0.0 \overline{2}]_{3} \quad \text { and } \quad b_{1}=[0.2]_{3} .
$$

(2) Let $I=\left(a_{2}, b_{2}\right)$ the one of the two open third middle intervals removed from $C_{1}=C_{0} \backslash\left(a_{1}, b_{1}\right)$. Verify that

$$
a_{2}=[0.00 \overline{2}]_{3} \quad \text { and } b_{2}=[0.02]_{3} \quad \text { or } \quad a_{2}=[0.20 \overline{2}]_{3} \quad \text { and } b_{2}=[0.22]_{3} .
$$

(3) In general if $I=\left(a_{n}, b_{n}\right)$ is one of the 2^{n} open third middle intervals removed from the components of C_{n-1}, show that the expansions in base 3 of the endpoints a_{n} and b_{n} have the form

$$
a_{n}=\left[0 . \alpha_{1} \alpha_{2} \cdots \alpha_{n-1} 0 \overline{2}\right]_{3} \quad \text { and } \quad b_{1}=\left[0 . \alpha_{1} \alpha_{2} \cdots \alpha_{n-1} 2\right]_{3}
$$

with $\alpha_{j}=0$ or 2 for $j=1, \cdots, n-1$.
(4) Show that if x is in one of the removed open intervals (i.e. $x \in\left(a_{n}, b_{n}\right)$), then its ternary expansion contains the digit 1 . That is, $x \in\left(a_{n}, b_{n}\right)$ if and only if

$$
x=\left[0 \cdot x_{1} x_{2} x_{3} \cdots\right]_{3} \quad \text { and } \quad x_{j}=1 \text { for some } j \in \mathbb{N}
$$

(5) Deduce that the Cantor set C consists of the real numbers $x \in[0,1]$ such that

$$
x=\left[0 \cdot x_{1} x_{2} x_{3} \cdots\right]_{3} \quad \text { with } \quad x_{j} \in\{0,2\}, \quad \forall j \in \mathbb{N}
$$

(6) Consider the function $\phi_{0}: C \longrightarrow[0,1]$ defined as follows: For $x \in C$ with $x=\left[0 . x_{1} x_{2} x_{3} \cdots\right]_{3}$ define $\phi_{0}(x)$ by

$$
\phi_{0}(x)=\left[0 \cdot \frac{x_{1}}{2} \frac{x_{2}}{2} \frac{x_{3}}{2} \cdots\right]_{2}
$$

Verify that the function ϕ_{0} is well defined.
(7) Prove that ϕ_{0} is continuous.
(8) Prove that ϕ_{0} extends as a function $\phi:[0,1] \longrightarrow[0,1]$ so that ϕ is continuous and is constant on each removed middle third interval $\left(a_{n}, b_{n}\right)$.
(9) Verify that this function coincides with the Cantor-Lebesgue function defined in the Lecture Notes as the limit of the f_{n} 's.

