Lecture 1 Real Analysis MAA 6616

Review of basic properties of $\ensuremath{\mathbb{R}}$

Notation

- Least upper bound and greatest lower bound
- \blacktriangleright Density in \mathbb{R}
- Countable and uncountable sets

Notation

- \triangleright \mathbb{R} : The set of real numbers.
- ▶ $\mathbb{R}^+ = \{x \in \mathbb{R}; x > 0\}$: The set of positive real numbers.
- If E and F are nonempty sets, the cartesian product E × F denotes the set of all elements (x, y) such that x ∈ E and y ∈ F.

Supremum and infimum

A set $E \subset \mathbb{R}$ is bounded above if there exists $b \in \mathbb{R}$ such that $x \leq b$ for all $x \in E$ such a number *b* is called an upper bound for *E*.

Completeness Axiom: Let $E \subset \mathbb{R}$ be bounded above. Then the set of all upper bounds has a smallest element

If $U = \{b \in \mathbb{R}; b \text{ upper bound for } E\}$, then there is $b_0 \in U$ such that $b_0 \leq b$ for all $b \in U$.

 b_0 is called the least upper bound for *E* or the supremum of *E*.

$$b_0 = 1.u.b(E) = \sup(E)$$

Example. $E = \{x \in \mathbb{R}; x^2 < 2\}$ is bounded above and $\sup(E) = \sqrt{2}$. Note that in this example $\sup(E) \notin E$

A set $E \subset \mathbb{R}$ is bounded below if there exists $a \in \mathbb{R}$ such that $x \ge b$ for all $x \in E$ such a number a is called a lower bound for E.

Theorem

Let $E \subset \mathbb{R}$ be bounded below. Then E has a largest lower bound. If $U = \{a \in \mathbb{R}; a \text{ lower bound for } E\}$, then there is $a_0 \in U$ such that $a_0 \leq a$ for all $a \in U$.

This theorem is consequence of the completeness axiom. Indeed, if *E* is bounded below then the set $E' = \{x \in \mathbb{R}; -x \in E\}$ is bounded above and so has l.u.b b_0 . Then using the completeness axiom, we can show that a_0 is largest lower bound for *E*.

 a_0 is called the greatest lower bound for *E* or the infimum of *E*.

$$a_0 = g.l.b.(E) = inf(E)$$

Density in \mathbb{R}

 \triangle inequality: For every $a, b \in \mathbb{R}$, $|a + b| \le |a| + |b|$ Archimedean property: For every $a, b \in \mathbb{R}^+$ there exists $n \in \mathbb{N}$ such that na > b. In particular, for any given $\epsilon > 0$ (no matter how small) there exists $n \in \mathbb{N}$ such that $n\epsilon > 1$.

A subset *E* of \mathbb{R} is said to be dense in \mathbb{R} if for every $x, y \in \mathbb{R}$ with x < y the interval (x, y) contains elements of *E* $(E \cap (x, y) \neq \emptyset)$.

Theorem \mathbb{Q} is dense in \mathbb{R} .

Proof.

Let $a, b \in \mathbb{R}$. Suppose 0 < a < b. then b - a > 0. It follows from the Archimedean property that there exists $n \in \mathbb{N}$ such that n(b - a) > 1 or equivalently $\frac{1}{n} < b - a$. Let $S_n = \left\{m \in \mathbb{N} \text{ such that } \frac{m}{n} > b\right\}$ by the Archimedean property S_n is a nonempty

subset of \mathbb{N} . Therefore S_n has a smallest element p. ($p \in S_n$ and $(p-1) \notin S_N$). We have then

$$\frac{p-1}{n} \le b; \ \frac{p}{n} > b; \text{ and } \frac{1}{n} < b-a$$

It follows from these inequalities that the rational number $r = \frac{p-1}{n} \in \mathbb{Q}$ satisfies a < r < b.

If $a \le 0$ and b > 0, then by the Archimedean property there is $n \in \mathbb{N}$ so that the rational number $r = \frac{1}{n}$ satisfies $a \le 0 < r < b$.

If a < b < 0, then 0 < -b < -a. The above argument shows that there exists $r \in \mathbb{Q} \cap (-b, -a)$. Therefore $-r \in \mathbb{Q}$ satisfies a < -r < -b.

Countable and uncountable sets

- Two sets *E* and *F* are said to be equipotent if there exists a bijection $f: E \longrightarrow F$ (*f* is injective and surjective).
- A set *E* is said to be finite if either $E = \emptyset$ or there exists $n \in \mathbb{N}$ such that *E* is equipotent to the set $\{1, \dots, n\}$ (*n* is number of elements in *E*).

A set *E* is said to be countably infinite if *E* is equipotent to \mathbb{N} .

A set E is said to be countable if E is either finite or countably infinite. A set that is not countable is said to be uncountable.

A subset of a countable set is countable. In particular if $E \subset \mathbb{N}$, then E is countable

Proof.

Case 1. *F* is finite: Let *n* be the cardinality of *F* so that there exists a bijection $f : \{1, \dots, n\} \longrightarrow F$. Since $E \subset F$, then there exists a first integer j_1 such that $1 \leq j_1 \leq n$ and $f(j_1) \in E$. If $E = \{f(j_1)\}$ then the function $h : \{1\} \longrightarrow E$ given by $h(1) = f(j_1)$ is a bijection and *E* has cardinality 1. If $E \setminus \{h(1)\} \neq \emptyset$, then let j_2 be the smallest integer such that $f(j_2) \in E \setminus \{h(1)\}$ and define $h(2) = f(j_2)$. If $E \setminus \{h(1), h(2)\} = \emptyset$, then *E* is finite with cardinality 2. This selection process terminates after *p* steps with $p \leq n$ so that *E* is finite with *p* elements.

Case 2. *F* is countably infinite: Let $f : \mathbb{N} \longrightarrow F$ be a bijection. Let $j_1 \in \mathbb{N}$ be the first integer such that $f(j_1) \in E$. Set $h(1) = f(j_1)$. Repeat the selection for h(2), h(3), \cdots as in the previous case. If this selection process terminates after *N* steps, then (by construction) *E* has *N* elements. If the selection process does not terminate, then the function *h* is defined on \mathbb{N} and is injective by construction. To complete the proof, we need to show that *h* is surjective. First note that it can be verified by induction that for every $k \in \mathbb{N}$, we have $k \leq j_k$ with $h(k) = f(j_k)$. Now let $x \in E$. There exists $m \in \mathbb{N}$ such that x = f(m) and therefore $x \in \{h(1), \dots, h(m)\}$.

Let *E* and *F* be countable sets. Then $E \times F$ is countable. More generally if $E_1, \dots E_n$ are countable sets, then their cartesian product $E_1 \times \dots \times E_n$ is countable.

Proof.

Since *E* and *F* are countable then they are equipotent to subsets of \mathbb{N} . hence there exist injective functions $f : E \longrightarrow \mathbb{N}$ and $g : F \longrightarrow \mathbb{N}$. To prove that $E \times F$, it is enough to prove that it is equipotent to a subset of \mathbb{N} . For this it is enough to construct an injective function $h : E \times F \longrightarrow \mathbb{N}$. For $(x, y) \in E \times F$, define h(x, y) by $h(x, y) = (f(x) + g(y))^2 + g(y)$. The function h is injective. Indeed, assume that h(a, b) = h(x, y). If g(b) = g(y), then b = y (g injective) and it follows from the definition of h that $(f(a) + g(b))^2 + g(b) = (f(x) + g(y))^2 + g(y)$ and so f(a) = f(x) (all these functions are \mathbb{N} -valued) consequently a = x. In this case we have (a, b) = (x, y). Now we claim that $g(b) \neq g(y)$ leads to an absurdity. If $g(b) \neq g(y)$, then it follows from h(a, b) = h(x, y) that

$$\begin{array}{l} (f(a) + g(b))^2 - (f(x) + g(y))^2 = g(y) - g(b) \\ |f(a) + g(b) + f(x) + g(y)| \, |f(a) + g(b) - f(x) - g(y)| = |g(y) - g(b)| \end{array}$$

This means that f(a) + g(b) + f(x) + g(y) > |g(y) - g(b)| and divides |g(y) - g(b)|. This is contradiction. Therefore (a, b) = (x, y) and *h* is injective.

Let $f : E \longrightarrow X$ be a function. If E is countable, then f(E) is countable.

Proof.

Consider the equivalence relation \sim in *E* defined by $x \sim y$ iff f(x) = f(y). For each $x \in E$, let $C_x = \{y \in E : y \sim x\}$. The collection of these equivalence classes partitions *E*. Select an element *a* in each equivalence class C_x to obtain a set $A \subset E$ such that if $a, b \in A$ and $a \neq b$, then $f(a) \neq f(b)$. The set *A* is countable (subset of a countable set). The restriction $f_A : A \longrightarrow X$ of *f* is injective. Also $f_A : A \longrightarrow f_A(A) = f(E)$ is a bijection. Therefore f(E) is equipotent to the countable set *A*

A countable union of countable sets is countable. More precisely, Let Λ be a countable set. For each $\lambda \in \Lambda$, let E_{λ} be a countable set. Then $E = \bigcup_{\lambda \in \Lambda} E_{\lambda}$ is countable.

Proof.

Suppose $E \neq \emptyset$ and Λ countably infinite (the case Λ finite is left as an exercise). We can write $\Lambda = \{\lambda_n : n \in \mathbb{N}\}$. By hypothesis for each $n \in \mathbb{N}$, E_{λ_n} is countable. If E_{λ_n} is finite with cardinality $|E_{\lambda_n}| = N(n)$, then there exists a bijection $f_n : \{1, \dots, N(n)\} \longrightarrow E_{\lambda_n}$. Otherwise there exists a bijection $f_n : \mathbb{N} \longrightarrow E_{\lambda_n}$. Consider the set

$$S = \{(n,k) \in \mathbb{N} \times \mathbb{N} : E_{\lambda_n} \neq \emptyset \text{ and if } E_{\lambda_n} \text{ is finite} 1 \le k \le |E_{\lambda_n}|\}.$$

Now define the function

$$g: S \longrightarrow E = \bigcup_{\lambda_n \in \Lambda} E_{\lambda_n}$$

by $g(n, k) = f_n(k) \in E_{\lambda_n}$. The function g is surjective: If $x \in E$, then the exists $n \in \mathbb{N}$ such that $x \in E_{\lambda_n}$ and therefore $x = f_n(k) = g(n, k)$ for some $k \in \mathbb{N}$. By the previous theorem E is countable as the image via g of the countable set $S \subset \mathbb{N} \times \mathbb{N}$.

Theorem The set of rational numbers \mathbb{Q} is countable.

Proof.

Let $\mathbb{Q}^+ = \mathbb{Q} \cap \mathbb{R}^+$ and $\mathbb{Q}^- = \mathbb{Q} \cap \mathbb{R}^-$ so that $\mathbb{Q} = \mathbb{Q}^- \cup \{0\} \cup \mathbb{Q}^+$. To prove that \mathbb{Q} is countable it is enough to prove that \mathbb{Q}^\pm is countable. The function $f : \mathbb{N} \times \mathbb{N} \longrightarrow Q^+$ given by f(p,q) = p/q is surjective. Therefore \mathbb{Q}^+ is countable as the image of a countable set. A similar argument shows that \mathbb{Q}^- is also countable.

Let $a, b \in \mathbb{R}$ with a < b. The interval I = (a, b) is uncountable.

Proof.

By contradiction. Suppose that the interval I = (a, b) is countable. Let $f : \mathbb{N} \longrightarrow I$ be a bijection. We have a < f(1) < b and we can find an interval $[x_1, y_1] \subset (f(1), b)$ so that $f(1) \notin [x_1, y_1]$. Similarly for $f(2) \in I$, we can find an interval $[x_2, y_2] \subset [x_1, y_1]$ such that $f(2) \notin [x_2, y_2]$ (if $f(2) \notin [x_1, y_1]$ we can select x_2, y_2 arbitrary such that $x_1 < x_2 < y_2 < y_1$; if not, select x_2, y_2 arbitrary such that either $f(2) < x_2 < y_2 < y_1$ or $x_1 < x_2 < y_2 < f(2)$). This process can be continued by induction to produce a countable collection of nested intervals $\{[x_n, y_n]\}_{n \in \mathbb{N}}$ such that for every n, $f(n) \notin [x_n, y_n]$ and $[x_n, y_n] \subset [x_{n-1}, y_{n-1}]$. The set $A = \{x_n, n \in \mathbb{N}\}$ is bounded above by y_k (for any $k \in \mathbb{N}$). Let $x^* = \sup(A)$. Then $x_n < x^* < y_n$ for every $n \in \mathbb{N}$ and so $x^* \in I$. Therefore, there exists $m \in \mathbb{N}$ such that $x^* = f(m)$. This implies $f(m) \in [x_m, y_m]$. A contradiction.