Lecture 1
 Real Analysis MAA 6616

Review of basic properties of \mathbb{R}

- Notation
- Least upper bound and greatest lower bound
- Density in \mathbb{R}
- Countable and uncountable sets

Notation

- $\mathbb{N}=\{1,23 \cdots\}$: The set of natural numbers
- $\mathbb{Z}=\{\cdots,-2,-1,0,1,2, \cdots\}$: The set of integers
- $\mathbb{Q}=\left\{x=\frac{p}{q} ; p, q \in \mathbb{Z}, q \neq 0\right\}:$ The set of rational numbers
$-\mathbb{R}$: The set of real numbers.
$-\mathbb{R}^{+}=\{x \in \mathbb{R} ; \quad x>0\}$: The set of positive real numbers.
- If E and F are nonempty sets, the cartesian product $E \times F$ denotes the set of all elements (x, y) such that $x \in E$ and $y \in F$.

Supremum and infimum

A set $E \subset \mathbb{R}$ is bounded above if there exists $b \in \mathbb{R}$ such that $x \leq b$ for all $x \in E$ such a number b is called an upper bound for E.

Completeness Axiom: Let $E \subset \mathbb{R}$ be bounded above. Then the set of all upper bounds has a smallest element
If $U=\{b \in \mathbb{R} ; b$ upper bound for $E\}$, then there is $b_{0} \in U$ such that $b_{0} \leq b$ for all $b \in U$.
b_{0} is called the least upper bound for E or the supremum of E.

$$
b_{0}=\text { 1.u.b }(E)=\sup (E)
$$

Example. $E=\left\{x \in \mathbb{R} ; x^{2}<2\right\}$ is bounded above and $\sup (E)=\sqrt{2}$. Note that in this example $\sup (E) \notin E$

A set $E \subset \mathbb{R}$ is bounded below if there exists $a \in \mathbb{R}$ such that $x \geq b$ for all $x \in E$ such a number a is called a lower bound for E.

Theorem

Let $E \subset \mathbb{R}$ be bounded below. Then E has a largest lower bound. If $U=\{a \in \mathbb{R}$; a lower bound for $E\}$, then there is $a_{0} \in U$ such that $a_{0} \leq a$ for all $a \in U$.

This theorem is consequence of the completeness axiom. Indeed, if E is bounded below then the set $E^{\prime}=\{x \in \mathbb{R} ;-x \in E\}$ is bounded above and so has l.u.b b_{0}. Then using the completeness axiom, we can show that a_{0} is largest lower bound for E.
a_{0} is called the greatest lower bound for E or the infimum of E.

$$
a_{0}=\text { g.l.b. }(E)=\inf (E)
$$

Density in \mathbb{R}

\triangle inequality: For every $a, b \in \mathbb{R},|a+b| \leq|a|+|b|$
Archimedean property: For every $a, b \in \mathbb{R}^{+}$there exists $n \in \mathbb{N}$ such that $n a>b$.
In particular, for any given $\epsilon>0$ (no matter how small) there exists $n \in \mathbb{N}$ such that $n \epsilon>1$.

A subset E of \mathbb{R} is said to be dense in \mathbb{R} if for every $x, y \in \mathbb{R}$ with $x<y$ the interval (x, y) contains elements of E
$(E \cap(x, y) \neq \emptyset)$.

Theorem

\mathbb{Q} is dense in \mathbb{R}.

Proof.

Let $a, b \in \mathbb{R}$. Suppose $0<a<b$. then $b-a>0$.lt follows from the Archimedean property that there exists $n \in \mathbb{N}$ such that $n(b-a)>1$ or equivalently $\frac{1}{n}<b-a$. Let $S_{n}=\left\{m \in \mathbb{N}\right.$ such that $\left.\frac{m}{n}>b\right\}$ by the Archimedean property S_{n} is a nonempty subset of \mathbb{N}. Therefore S_{n} has a smallest element p. $\left(p \in S_{n}\right.$ and $\left.(p-1) \notin S_{N}\right)$. We have then

$$
\frac{p-1}{n} \leq b ; \frac{p}{n}>b ; \text { and } \frac{1}{n}<b-a
$$

It follows from these inequalities that the rational number $r=\frac{p-1}{n} \in \mathbb{Q}$ satisfies $a<r<b$.
If $a \leq 0$ and $b>0$, then by the Archimedean property there is $n \in \mathbb{N}$ so that the rational number $r=\frac{1}{n}$ satisfies $a \leq 0<r<b$.
If $a<b<0$, then $0<-b<-a$. The above argument shows that there exists $r \in \mathbb{Q} \cap(-b,-a)$. Therefore $-r \in \mathbb{Q}$ satisfies $a<-r<-b$.

Countable and uncountable sets

Two sets E and F are said to be equipotent if there exists a bijection $f: E \longrightarrow F$ (f is injective and surjective).
A set E is said to be finite if either $E=\emptyset$ or there exists $n \in \mathbb{N}$ such that E is equipotent to the set $\{1, \cdots n\}$ (n is number of elements in E).
A set E is said to be countably infinite if E is equipotent to \mathbb{N}.
A set E is said to be countable if E is either finite or countably infinite. A set that is not countable is said to be uncountable.

Theorem

A subset of a countable set is countable. In particular if $E \subset \mathbb{N}$, then E is countable

Proof.

Case 1. F is finite: Let n be the cardinality of F so that there exists a bijection $f:\{1, \cdots n\} \longrightarrow F$. Since $E \subset F$, then there exists a first integer j_{1} such that $1 \leq j_{1} \leq n$ and $f\left(j_{1}\right) \in E$. If $E=\left\{f\left(j_{1}\right)\right\}$ then the function $h:\{1\} \longrightarrow E$ given by $h(1)=f\left(j_{1}\right)$ is a bijection and E has cardinality 1 . If $E \backslash\{h(1)\} \neq \emptyset$, then let j_{2} be the smallest integer such that $f\left(j_{2}\right) \in E \backslash\{h(1)\}$ and define $h(2)=f\left(j_{2}\right)$. If $E \backslash\{h(1), h(2)\}=\emptyset$, then E is finite with cardinality 2 . This selection process terminates after p steps with $p \leq n$ so that E is finite with p elements.

Case 2. F is countably infinite: Let $f: \mathbb{N} \longrightarrow F$ be a bijection. Let $j_{1} \in \mathbb{N}$ be the first integer such that $f\left(j_{1}\right) \in E$. Set $h(1)=f\left(j_{1}\right)$.Repeat the selection for $h(2), h(3), \cdots$ as in the previous case. If this selection process terminates after N steps, then (by construction) E has N elements. If the selection process does not terminate, then the function h is defined on \mathbb{N} and is injective by construction. To complete the proof, we need to show that h is surjective. First note that it can be verified by induction that for every $k \in \mathbb{N}$, we have $k \leq j_{k}$ with $h(k)=f\left(j_{k}\right)$. Now let $x \in E$. There exists $m \in \mathbb{N}$ such that $x=f(m)$ and therefore $x \in\{h(1), \cdots h(m)\}$.

Theorem

Let E and F be countable sets. Then $E \times F$ is countable. More generally if $E_{1}, \cdots E_{n}$ are countable sets, then their cartesian product $E_{1} \times \cdots \times E_{n}$ is countable.

Proof.

Since E and F are countable then they are equipotent to subsets of \mathbb{N}. hence there exist injective functions $f: E \longrightarrow \mathbb{N}$ and $g: F \longrightarrow \mathbb{N}$. To prove that $E \times F$, it is enough to prove that it is equipotent to a subset of \mathbb{N}. For this it is enough to construct an injective function $h: E \times F \longrightarrow \mathbb{N}$. For $(x, y) \in E \times F$, define $h(x, y)$ by $h(x, y)=(f(x)+g(y))^{2}+g(y)$. The function h is injective. Indeed, assume that $h(a, b)=h(x, y)$. If $g(b)=g(y)$, then $b=y(g$ injective) and it follows from the definition of h that $(f(a)+g(b))^{2}+g(b)=(f(x)+g(y))^{2}+g(y)$ and so $f(a)=f(x)$ (all these functions are \mathbb{N}-valued) consequently $a=x$. In this case we have $(a, b)=(x, y)$. Now we claim that $g(b) \neq g(y)$ leads to an absurdity. If $g(b) \neq g(y)$, then it follows from $h(a, b)=h(x, y)$ that

$$
\begin{aligned}
& (f(a)+g(b))^{2}-(f(x)+g(y))^{2}=g(y)-g(b) \\
& |f(a)+g(b)+f(x)+g(y)||f(a)+g(b)-f(x)-g(y)|=|g(y)-g(b)|
\end{aligned}
$$

This means that $f(a)+g(b)+f(x)+g(y)>|g(y)-g(b)|$ and divides
$|g(y)-g(b)|$ This is contradiction. Therefore $(a, b)=(x, y)$ and h is injective.

Theorem
Let $f: E \longrightarrow X$ be a function. If E is countable, then $f(E)$ is countable.

Proof.

Consider the equivalence relation \sim in E defined by $x \sim y$ iff $f(x)=f(y)$. For each $x \in E$, let $C_{x}=\{y \in E: y \sim x\}$. The collection of these equivalence classes partitions E. Select an element a in each equivalence class C_{X} to obtain a set $A \subset E$ such that if $a, b \in A$ and $a \neq b$, then $f(a) \neq f(b)$. The set A is countable (subset of a countable set). The restriction $f_{A}: A \longrightarrow X$ of f is injective. Also $f_{A}: A \longrightarrow f_{A}(A)=f(E)$ is a bijection. Therefore $f(E)$ is equipotent to the countable set A

Theorem

A countable union of countable sets is countable. More precisely, Let Λ be a countable set. For each $\lambda \in \Lambda$, let E_{λ} be a countable set. Then $E=\bigcup_{\lambda \in \Lambda} E_{\lambda}$ is countable.

Proof.

Suppose $E \neq \emptyset$ and \wedge countably infinite (the case \wedge finite is left as an exercise). We can write $\Lambda=\left\{\lambda_{n}: n \in \mathbb{N}\right\}$. By hypothesis for each $n \in \mathbb{N}, E_{\lambda_{n}}$ is countable. If $E_{\lambda_{n}}$ is finite with cardinality $\left|E_{\lambda_{n}}\right|=N(n)$, then there exists a bijection
$f_{n}:\{1, \cdots, N(n)\} \longrightarrow E_{\lambda_{n}}$. Otherwise there exists a bijection $f_{n}: \mathbb{N} \longrightarrow E_{\lambda_{n}}$.
Consider the set

$$
S=\left\{(n, k) \in \mathbb{N} \times \mathbb{N}: E_{\lambda_{n}} \neq \emptyset \text { and if } E_{\lambda_{n}} \text { is finite } 1 \leq k \leq\left|E_{\lambda_{n}}\right|\right\} .
$$

Now define the function

$$
g: S \longrightarrow E=\bigcup_{\lambda_{n} \in \Lambda} E_{\lambda_{n}}
$$

by $g(n, k)=f_{n}(k) \in E_{\lambda_{n}}$. The function g is surjective: If $x \in E$, then the exists $n \in \mathbb{N}$ such that $x \in E_{\lambda_{n}}$ and therefore $x=f_{n}(k)=g(n, k)$ for some $k \in \mathbb{N}$. By the previous theorem E is countable as the image via g of the countable set $S \subset \mathbb{N} \times \mathbb{N}$.

Theorem

The set of rational numbers \mathbb{Q} is countable.

Proof.

Let $\mathbb{Q}^{+}=\mathbb{Q} \cap \mathbb{R}^{+}$and $\mathbb{Q}^{-}=\mathbb{Q} \cap \mathbb{R}^{-}$so that $\mathbb{Q}=\mathbb{Q}^{-} \cup\{0\} \cup \mathbb{Q}^{+}$. To prove that \mathbb{Q} is countable it is enough to prove that $\mathbb{Q}^{ \pm}$is countable. The function $f: \mathbb{N} \times \mathbb{N} \longrightarrow Q^{+}$ given by $f(p, q)=p / q$ is surjective. Therefore \mathbb{Q}^{+}is countable as the image of a countable set. A similar argument shows that \mathbb{Q}^{-}is also countable.

Theorem

Let $a, b \in \mathbb{R}$ with $a<b$. The interval $I=(a, b)$ is uncountable.

Proof.

By contradiction. Suppose that the interval $I=(a, b)$ is countable. Let $f: \mathbb{N} \longrightarrow I$ be a bijection. We have $a<f(1)<b$ and we can find an interval $\left[x_{1}, y_{1}\right] \subset(f(1), b)$ so that $f(1) \notin\left[x_{1}, y_{1}\right]$. Similarly for $f(2) \in I$, we can find an interval $\left[x_{2}, y_{2}\right] \subset\left[x_{1}, y_{1}\right]$ such that $f(2) \notin\left[x_{2}, y_{2}\right]$ (if $f(2) \notin\left[x_{1}, y_{1}\right]$ we can select x_{2}, y_{2} arbitrary such that $x_{1}<x_{2}<y_{2}<y_{1}$; if not, select x_{2}, y_{2} arbitrary such that either $f(2)<x_{2}<y_{2}<y_{1}$ or $\left.x_{1}<x_{2}<y_{2}<f(2)\right)$. This process can be continued by induction to produce a countable collection of nested intervals $\left\{\left[x_{n}, y_{n}\right]\right\}_{n \in \mathbb{N}}$ such that for every n, $f(n) \notin\left[x_{n}, y_{n}\right]$ and $\left[x_{n}, y_{n}\right] \subset\left[x_{n-1}, y_{n-1}\right]$. The set $A=\left\{x_{n}, n \in \mathbb{N}\right\}$ is bounded above by y_{k} (for any $k \in \mathbb{N}$). Let $x^{*}=\sup (A)$. Then $x_{n}<x^{*}<y_{n}$ for every $n \in \mathbb{N}$ and so $x^{*} \in I$. Therefore, there exists $m \in \mathbb{N}$ such that $x^{*}=f(m)$. This implies $f(m) \in\left[x_{m}, y_{m}\right]$. A contradiction.

