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Review of basic properties of R

▶ Notation
▶ Least upper bound and greatest lower bound
▶ Density in R
▶ Countable and uncountable sets



Notation

▶ N = {1, 2 3 · · · }: The set of natural numbers
▶ Z = {· · · , −2, −1, 0, 1, 2, · · · }: The set of integers

▶ Q =

{
x =

p
q
; p,q ∈ Z, q ̸= 0

}
: The set of rational

numbers
▶ R: The set of real numbers.
▶ R+ = {x ∈ R; x > 0}: The set of positive real numbers.
▶ If E and F are nonempty sets, the cartesian product E × F

denotes the set of all elements (x , y) such that x ∈ E and
y ∈ F .



Supremum and infimum

A set E ⊂ R is bounded above if there exists b ∈ R such that
x ≤ b for all x ∈ E such a number b is called an upper bound
for E .

Completeness Axiom: Let E ⊂ R be bounded above. Then
the set of all upper bounds has a smallest element
If U = {b ∈ R; b upper bound for E}, then there is b0 ∈ U such
that b0 ≤ b for all b ∈ U.

b0 is called the least upper bound for E or the supremum of E .

b0 = l.u.b(E) = sup(E)

Example. E = {x ∈ R; x2 < 2} is bounded above and
sup(E) =

√
2. Note that in this example sup(E) /∈ E



A set E ⊂ R is bounded below if there exists a ∈ R such that
x ≥ b for all x ∈ E such a number a is called a lower bound for
E .

Theorem
Let E ⊂ R be bounded below. Then E has a largest lower
bound. If U = {a ∈ R; a lower bound for E}, then there is
a0 ∈ U such that a0 ≤ a for all a ∈ U.

This theorem is consequence of the completeness axiom.
Indeed, if E is bounded below then the set
E ′ = {x ∈ R; −x ∈ E} is bounded above and so has l.u.b b0.
Then using the completeness axiom, we can show that a0 is
largest lower bound for E .
a0 is called the greatest lower bound for E or the infimum of E .

a0 = g.l.b.(E) = inf(E)



Density in R

△ inequality: For every a,b ∈ R, |a + b| ≤ |a|+ |b|
Archimedean property: For every a,b ∈ R+ there exists
n ∈ N such that na > b.
In particular, for any given ϵ > 0 (no matter how small) there
exists n ∈ N such that nϵ > 1.

A subset E of R is said to be dense in R if for every x , y ∈ R
with x < y the interval (x , y) contains elements of E
(E ∩ (x , y) ̸= ∅).



Theorem
Q is dense in R.

Proof.
Let a, b ∈ R. Suppose 0 < a < b. then b − a > 0.It follows from the Archimedean

property that there exists n ∈ N such that n(b − a) > 1 or equivalently
1
n

< b − a.

Let Sn =
{

m ∈ N such that
m
n

> b
}

by the Archimedean property Sn is a nonempty

subset of N. Therefore Sn has a smallest element p. (p ∈ Sn and (p − 1) /∈ SN ).
We have then

p − 1
n

≤ b;
p
n

> b; and
1
n

< b − a

It follows from these inequalities that the rational number r =
p − 1

n
∈ Q satisfies

a < r < b.

If a ≤ 0 and b > 0, then by the Archimedean property there is n ∈ N so that the

rational number r =
1
n

satisfies a ≤ 0 < r < b.

If a < b < 0, then 0 < −b < −a. The above argument shows that there exists

r ∈ Q ∩ (−b, −a). Therefore −r ∈ Q satisfies a < −r < −b.



Countable and uncountable sets

Two sets E and F are said to be equipotent if there exists a
bijection f : E −→ F (f is injective and surjective).
A set E is said to be finite if either E = ∅ or there exists n ∈ N
such that E is equipotent to the set {1, · · · n} (n is number of
elements in E).
A set E is said to be countably infinite if E is equipotent to N.
A set E is said to be countable if E is either finite or countably
infinite. A set that is not countable is said to be uncountable.



Theorem
A subset of a countable set is countable. In particular if E ⊂ N,
then E is countable

Proof.
Case 1. F is finite: Let n be the cardinality of F so that there exists a bijection
f : {1, · · · n} −→ F . Since E ⊂ F , then there exists a first integer j1 such that
1 ≤ j1 ≤ n and f (j1) ∈ E . If E = {f (j1)} then the function h : {1} −→ E given by
h(1) = f (j1) is a bijection and E has cardinality 1. If E\{h(1)} ̸= ∅, then let j2 be the
smallest integer such that f (j2) ∈ E\{h(1)} and define h(2) = f (j2). If
E\{h(1), h(2)} = ∅, then E is finite with cardinality 2. This selection process
terminates after p steps with p ≤ n so that E is finite with p elements.

Case 2. F is countably infinite: Let f : N −→ F be a bijection. Let j1 ∈ N be the first

integer such that f (j1) ∈ E . Set h(1) = f (j1).Repeat the selection for h(2), h(3), · · · as

in the previous case. If this selection process terminates after N steps, then (by

construction) E has N elements. If the selection process does not terminate, then the

function h is defined on N and is injective by construction. To complete the proof, we

need to show that h is surjective. First note that it can be verified by induction that for

every k ∈ N, we have k ≤ jk with h(k) = f (jk ). Now let x ∈ E . There exists m ∈ N

such that x = f (m) and therefore x ∈ {h(1), · · · h(m)}.



Theorem
Let E and F be countable sets. Then E × F is countable. More
generally if E1, · · · En are countable sets, then their cartesian
product E1 × · · · × En is countable.

Proof.
Since E and F are countable then they are equipotent to subsets of N. hence there
exist injective functions f : E −→ N and g : F −→ N. To prove that E × F , it is
enough to prove that it is equipotent to a subset of N. For this it is enough to construct
an injective function h : E × F −→ N. For (x , y) ∈ E × F , define h(x , y) by
h(x , y) = (f (x) + g(y))2 + g(y). The function h is injective. Indeed, assume that
h(a, b) = h(x , y). If g(b) = g(y), then b = y (g injective) and it follows from the
definition of h that (f (a) + g(b))2 + g(b) = (f (x) + g(y))2 + g(y) and so f (a) = f (x)
(all these functions are N-valued) consequently a = x . In this case we have
(a, b) = (x , y). Now we claim that g(b) ̸= g(y) leads to an absurdity. If g(b) ̸= g(y),
then it follows from h(a, b) = h(x , y) that

(f (a) + g(b))2 − (f (x) + g(y))2 = g(y)− g(b)
|f (a) + g(b) + f (x) + g(y)| |f (a) + g(b)− f (x)− g(y)| = |g(y)− g(b)|

This means that f (a) + g(b) + f (x) + g(y) > |g(y)− g(b)| and divides

|g(y)− g(b)|.This is contradiction. Therefore (a, b) = (x , y) and h is injective.



Theorem
Let f : E −→ X be a function. If E is countable, then f (E) is
countable.

Proof.
Consider the equivalence relation ∼ in E defined by x ∼ y iff f (x) = f (y). For each

x ∈ E , let Cx = {y ∈ E : y ∼ x}. The collection of these equivalence classes

partitions E . Select an element a in each equivalence class Cx to obtain a set A ⊂ E

such that if a, b ∈ A and a ̸= b, then f (a) ̸= f (b). The set A is countable (subset of a

countable set).The restriction fA : A −→ X of f is injective. Also

fA : A −→ fA(A) = f (E) is a bijection. Therefore f (E) is equipotent to the countable

set A



Theorem
A countable union of countable sets is countable. More
precisely, Let Λ be a countable set. For each λ ∈ Λ, let Eλ be a
countable set. Then E =

⋃
λ∈Λ

Eλ is countable.

Proof.
Suppose E ̸= ∅ and Λ countably infinite (the case Λ finite is left as an exercise). We
can write Λ = {λn : n ∈ N}. By hypothesis for each n ∈ N, Eλn is countable. If Eλn is
finite with cardinality |Eλn | = N(n), then there exists a bijection
fn : {1, · · · ,N(n)} −→ Eλn . Otherwise there exists a bijection fn : N −→ Eλn .

Consider the set

S = {(n, k) ∈ N× N : Eλn ̸= ∅ and if Eλn is finite1 ≤ k ≤ |Eλn |}.

Now define the function
g : S −→ E =

⋃
λn∈Λ

Eλn

by g(n, k) = fn(k) ∈ Eλn .The function g is surjective: If x ∈ E , then the exists n ∈ N

such that x ∈ Eλn and therefore x = fn(k) = g(n, k) for some k ∈ N. By the previous

theorem E is countable as the image via g of the countable set S ⊂ N× N.



Theorem
The set of rational numbers Q is countable.

Proof.
Let Q+ = Q ∩ R+ and Q− = Q ∩ R− so that Q = Q− ∪ {0} ∪ Q+. To prove that Q is

countable it is enough to prove that Q± is countable.The function f : N× N −→ Q+

given by f (p, q) = p/q is surjective. Therefore Q+ is countable as the image of a

countable set. A similar argument shows that Q− is also countable.



Theorem
Let a,b ∈ R with a < b. The interval I = (a, b) is uncountable.

Proof.
By contradiction. Suppose that the interval I = (a, b) is countable. Let f : N −→ I be
a bijection. We have a < f (1) < b and we can find an interval [x1, y1] ⊂ (f (1), b) so
that f (1) /∈ [x1, y1]. Similarly for f (2) ∈ I, we can find an interval [x2, y2] ⊂ [x1, y1]
such that f (2) /∈ [x2, y2] (if f (2) /∈ [x1, y1] we can select x2, y2 arbitrary such that
x1 < x2 < y2 < y1; if not, select x2, y2 arbitrary such that either f (2) < x2 < y2 < y1
or x1 < x2 < y2 < f (2)). This process can be continued by induction to produce a
countable collection of nested intervals {[xn, yn]}n∈N such that for every n,
f (n) /∈ [xn, yn] and [xn, yn] ⊂ [xn−1, yn−1]. The set A = {xn, n ∈ N} is bounded
above by yk (for any k ∈ N). Let x∗ = sup(A). Then xn < x∗ < yn for every n ∈ N and
so x∗ ∈ I. Therefore, there exists m ∈ N such that x∗ = f (m). This implies
f (m) ∈ [xm, ym]. A contradiction.


