Lecture 1
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Review of basic properties of R

> Notation

» Least upper bound and greatest lower bound
» Density in R

» Countable and uncountable sets



Notation

» N={1,23 ---}' The set of natural numbers

> Z={- —1,0,1, 2, --- }: The set of integers
> Q= {x = Z; p.QEZ, qF# 0}: The set of rational
numbers

» R: The set of real numbers.
R*T = {x € R; x > 0}: The set of positive real numbers.

» |f E and F are nonempty sets, the cartesian product E x F
denotes the set of all elements (x, y) such that x € E and
yeF.
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Supremum and infimum

A set E C R is bounded above if there exists b € R such that
x < bfor all x € E such a number b is called an upper bound
for E.

Completeness Axiom: Let E C R be bounded above. Then
the set of all upper bounds has a smallest element

If U= {b e R; bupperbound for E}, then there is by € U such
that by < bforall b e U.

by is called the least upper bound for E or the supremum of E.

by = L.u.b(E) = sup(E)

Example. E = {x ¢ R; x? < 2} is bounded above and
sup(E) = v/2. Note that in this example sup(E) ¢ E



A set E C R is bounded below if there exists a € R such that
x > bfor all x € E such a number ais called a lower bound for
E.

Theorem

Let E C R be bounded below. Then E has a largest lower
bound. If U = {a € R; alower bound for E}, then there is
ap € Usuchthatay < aforallae U.

This theorem is consequence of the completeness axiom.
Indeed, if E is bounded below then the set

E' = {x € R; —x € E} is bounded above and so has l.u.b by.
Then using the completeness axiom, we can show that a; is
largest lower bound for E.

ao is called the greatest lower bound for E or the infimum of E.

ap = g.1.b.(E) = inf(E)



Density in R

A inequality: Forevery a,b € R, |a+ b| < |a| + |b|
Archimedean property: For every a,b € R* there exists
n € N such that na > b.

In particular, for any given ¢ > 0 (no matter how small) there
exists n € N such that ne > 1.

A subset E of R is said to be dense in R if for every x,y € R
with x < y the interval (x, y) contains elements of E

(En(x, y) #0).



Theorem
Q is dense in R.

Proof.
Let a,b € R. Suppose 0 < a < b. then b — a > 0.1t follows from the Archimedean
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property that there exists n € N such that n(b — a) > 1 or equivalently n <b-a

Let Sp = {m € N such that m > b} by the Archimedean property Sy, is a nonempty

subset of N. Therefore S, has a smallest element p. (p € Spand (p— 1) ¢ Sy).

We have then

p-1 < b; B>b; and1<b—a
n n n
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It follows from these inequalities that the rational number r = pT € Q satisfies

a<r<h.
If a < 0and b > 0, then by the Archimedean property there is n € N so that the

1
rational number r = 5 satisfiesa <0< r < b.

Ifa< b<0,then 0 < —b < —a. The above argument shows that there exists
re Qn(—b, —a). Therefore —r € Q satisfies a < —r < —b.



Countable and uncountable sets

Two sets E and F are said to be equipotent if there exists a
bijection f: E — F (f is injective and surjective).

A set E is said to be finite if either E = () or there exists n € N
such that E is equipotent to the set {1, --- n} (nis number of
elements in E).

A set E is said to be countably infinite if E is equipotent to N.

A set E is said to be countable if E is either finite or countably
infinite. A set that is not countable is said to be uncountable.



Theorem
A subset of a countable set is countable. In particular if E C N,
then E is countable

Proof.
Case 1. F is finite: Let n be the cardinality of F so that there exists a bijection
f:{1,--- n} — F. Since E C F, then there exists a first integer j; such that

1 <ji <nandf(ji) € E. If E= {f(ji)} then the function h: {1} — E given by
h(1) = f(j1) is a bijection and E has cardinality 1. If E\{h(1)} # 0, then let j» be the
smallest integer such that f(jo) € E\{h(1)} and define h(2) = f(j2). If

E\{h(1), h(2)} = 0, then E is finite with cardinality 2. This selection process
terminates after p steps with p < nso that E is finite with p elements.

Case 2. F is countably infinite: Let f : N — F be a bijection. Let j; € N be the first
integer such that f(j;) € E. Set h(1) = f(j;).Repeat the selection for h(2), h(3),--- as
in the previous case. If this selection process terminates after N steps, then (by
construction) E has N elements. If the selection process does not terminate, then the
function his defined on N and is injective by construction. To complete the proof, we
need to show that h is surjective. First note that it can be verified by induction that for
every k € N, we have k < jx with h(k) = f(ji). Now let x € E. There exists m € N
such that x = f(m) and therefore x € {h(1), --- h(m)}. L]



Theorem

Let E and F be countable sets. Then E x F is countable. More
generally if E4, - - - Ej, are countable sets, then their cartesian
product Ey x --- x Ej is countable.

Proof.

Since E and F are countable then they are equipotent to subsets of N. hence there
exist injective functions f: E — Nandg: F — N. To prove that E x F, itis
enough to prove that it is equipotent to a subset of N. For this it is enough to construct
an injective function h: E x F — N. For (x,y) € E x F, define h(x, y) by

h(x,y) = (f(x) + g(¥))? + g(y). The function h is injective. Indeed, assume that
h(a, b) = h(x, y). If g(b) = g(¥), then b = y (g injective) and it follows from the
definition of hthat (f(a) + g(b))? + g(b) = (f(x) + g(¥))? + g(¥) and so f(a) = f(x)
(all these functions are N-valued) consequently a = x. In this case we have

(a, b) = (x, y). Now we claim that g(b) # g(y) leads to an absurdity. If g(b) # g(y),
then it follows from h(a, b) = h(x, y) that

(f(a) + g(b))? — (f(x) + 9(¥))? = 9(y) — g(b)
1f(a) + 9(b) + f(x) + g(¥)l [f(a) + g(b) — f(x) — 9(¥)| = |9(y) — 9(b)|

This means that f(a) + g(b) + f(x) + g(¥) > |9(y) — g(b)| and divides
lg(y) — g(b)|.This is contradiction. Therefore (a, b) = (x, y) and h is injective. L]



Theorem
Letf: E — X be a function. If E is countable, then f(E) is

countable.

Proof.

Consider the equivalence relation ~ in E defined by x ~ y iff f(x) = f(y). For each

x € E,let Cx = {y € E: y ~ x}. The collection of these equivalence classes
partitions E. Select an element a in each equivalence class Cy to obtainaset A C E
such that if a, b € Aand a # b, then f(a) # f(b). The set A is countable (subset of a
countable set).The restriction f4 : A — X of f is injective. Also

fa: A — fa(A) = f(E) is a bijection. Therefore f(E) is equipotent to the countable
set A L]



Theorem
A countable union of countable sets is countable. More
precisely, Let \ be a countable set. For each X € A, let E), be a

countable set. Then E = U E, is countable.
AEA

Proof.

Suppose E # () and A countably infinite (the case A finite is left as an exercise). We
can write A = {A\n : n e N}. By hypothesis for each n € N, E,, is countable. If E, , is
finite with cardinality |Ex,| = N(n), then there exists a bijection

fo: {1,--- ,N(n)} — E,,. Otherwise there exists a bijection f, : N — Ej ..

Consider the set
S={(nk) e NxN: Ey, #0andif Ey, is finitel < k <|Ey,|}.

Now define the function
g:S— E=J E,
An€A
by g(n, k) = fa(k) € E,,.The function g is surjective: If x € E, then the exists n € N
such that x € E,, and therefore x = fn(k) = g(n, k) for some k € N. By the previous

theorem E is countable as the image via g of the countable set S C N x N. L]



Theorem
The set of rational numbers Q is countable.

Proof.

LetQ" =QNRtand Q™ =QNR~ sothat Q = Q~ U {0} UQ™. To prove that Q is
countable it is enough to prove that QT is countable.The function f : N x N — Q*
given by f(p, q) = p/q is surjective. Therefore Q™ is countable as the image of a
countable set. A similar argument shows that Q~ is also countable. L]



Theorem
Leta,b € R with a < b. The interval | = (a, b) is uncountable.

Proof.

By contradiction. Suppose that the interval / = (a, b) is countable. Let f : N — [ be
a bijection. We have a < f(1) < b and we can find an interval [xy, y1] C (f(1), b) so
that f(1) ¢ [xy, y1]. Similarly for f(2) € I, we can find an interval [xo, yo] C [X1, y1]
such that f(2) ¢ [x2, yo] (if f(2) ¢ [x1, y1] we can select X, y» arbitrary such that

Xy < Xg < yo < yq; if not, select xo, y» arbitrary such that either f(2) < xo < yo < y4
or x; < X2 < yo < f(2)). This process can be continued by induction to produce a
countable collection of nested intervals {[xn, yn]}nen such that for every n,

f(n) ¢ [xn, yn] and [Xn, yn] C [Xn—1, ¥Yn—1]- The set A= {xn, n € N} is bounded
above by yi (for any k € N). Let x* = sup(A). Then x, < x* < yn for every n € N and
so x* € I. Therefore, there exists m € N such that x* = f(m). This implies

f(m) € [Xm, ym]. A contradiction.
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