Real Analysis MAA 6616 Lecture 10 Approximation by Simple Functions

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

Convergence of Measurable Functions

Let $\{f_n\}_{n \in \mathbb{N}}$ be a sequence of functions defined on a set *E*.

- ► The sequence $\{f_n\}$ converges to f pointwise on a set A if for every $x \in A$ we have $\lim_{n \to \infty} f_n(x) = f(x)$.
- ► The sequence $\{f_n\}$ converges to *f* pointwise a.e. on a set *A* if there exists a set *Z* of measure zero such that $\lim_{n\to\infty} f_n(x) = f(x)$ for every $x \in A \setminus Z$.
- ► The sequence $\{f_n\}$ converges to *f* uniformly on a set *A* if for every $\epsilon > 0$ there exists $N \in \mathbb{N}$ such that $|f_n f| < \epsilon$ on *A* for all $n \ge N$.
- ▶ $\sup_n f_n$ is defined on *E* by $\sup_n f_n(x) = \sup\{f_n(x) : n \in \mathbb{N}\}$ and $\inf_n f_n$ is defined on *E* by $\inf_n f_n(x) = \inf\{f_n(x) : n \in \mathbb{N}\}$.

$$\overline{\lim}_{n \to \infty} f_n = \limsup_{n \to \infty} f_n = \inf_{m \in \mathbb{N}} \{\sup_{n \ge m} f_n \}$$

$$\lim_{n \to \infty} f_n = \liminf_{n \to \infty} f_n = \sup_{m \in \mathbb{N}} \{ \inf_{n \ge m} f_n \}$$

Theorem (1)

Let $\{f_n\}$ be a sequence of measurable functions on a set $E \subset \mathbb{R}^q$. Suppose that f_n is finite a.e. on E for each $n \in \mathbb{N}$. Then

- 1. Each function $\sup_n f_n$, $\inf_n f_n$, $\limsup_{n \to \infty} f_n$ and $\liminf_{n \to \infty} f_n$ is measurable on *E*.
- 2. If $\{f_n\}$ converges pointwise a.e. on *E* to a function *f*. Then *f* is measurable on *E*.

Simple Functions

Proof.

- Let c ∈ ℝ. We have sup_nf_n(x) = sup{f_n(x) : n ∈ ℕ}. Hence {sup_nf_n > c} = ⋃_{n∈ℕ}{f_n > c} is measurable as countable union of measurable sets. Therefore sup_nf_n is measurable. Since −f_n is measurable and inf_nf_n = − sup_n(−f_n), then inf_nf_n is measurable. Since −f_n is measurable. We have lim sup_nf_n = inf_n F_n with F_n = sup{f_p : p ≥ n}. It follows that F_n is measurable. Similarly lim_{n→∞} f_n is also measurable. Similarly lim_{n→∞} f_n is also measurable. Similarly lim_{n→∞} f_n = sup G_n, with G_n = inf{f_p : p ≥ n}, is measurable.
- 2. We know from part 1 that $\limsup_n f_n$ is measurable. If in addition $\{f_n\}$ converges to f a.e. on E, then $f = \limsup_n f_n$ a.e. on E and therefore f is measurable.

Let $E \subset \mathbb{R}^q$. A function $\phi : E \longrightarrow \mathbb{R}$ is said to be simple if it takes only finitely many distinct value: $\phi(E)$ is a finite subset of \mathbb{R} . In most statements we take simple functions to be also measurable.

Lemma (1)

If $\phi : E \longrightarrow \mathbb{R}$ is a simple and measurable function, then there exist a family of disjoint measurable sets E_1, \dots, E_n contained in E such that $E = E_1 \cup \dots \cup E_n$, and there exist real numbers a_1, \dots, a_n such that

$$\phi = a_1 \chi_{E_1} + a_2 \chi_{E_2} + \dots + a_n \chi_{E_n} = \sum_{j=1}^{j=n} a_j \chi_{E_j}$$

The Proof is left as an exercise.

The representation of ϕ given in Lemma 1 is called the canonical representation of a simple function

Lemma (2)

Let $f: E \longrightarrow \mathbb{R}$ be measurable and bounded. For every $\epsilon > 0$, there exist simple functions ϕ_{ϵ} and ψ_{ϵ} on E such that $0 \le \psi_{\epsilon} - \phi_{\epsilon} \le \epsilon$ and $\phi_{\epsilon} \le f \le \psi_{\epsilon}$ on the set E.

Proof.

Since *f* is bounded, then there exists an interval (a, b) such that $f(E) \subset (a, b)$. For the given $\epsilon > 0$, we can find $n \in \mathbb{N}$ such that $\delta = \frac{b-a}{n} < \epsilon$. Consider the partition of [a, b] given by $c_0 = a < c_1 < \cdots < c_n = b$ with $c_j = c_0 + j\delta$ for $j = 1, \cdots, n$. We have $c_j - c_{j-1} = \delta$. For each $j = 1, \cdots, n$, let $E_j = f^{-1}([c_{j-1}, c_j))$. Then the collection E_1, \cdots, E_n of measurable subset *E* is disjoint and covers *E*. Define the simple functions ϕ_ϵ and ψ_ϵ on *E* by

$$\phi_{\epsilon} = \sum_{j=1}^{j=n} c_{j-1} \chi_{E_j} \quad \text{and} \quad \psi_{\epsilon} = \sum_{j=1}^{j=n} c_j \chi_{E_j}.$$

We have then

$$\psi_\epsilon - \phi_\epsilon = \sum_{j=1}^{j=n} (c_j - c_{j-1}) \chi_{E_j} = \sum_{j=1}^{j=n} \delta \chi_{E_j} = \delta < \epsilon \, .$$

▲□▶▲□▶▲□▶▲□▶ □ のQで

Also for any $x \in E$ there is a unique $j \in \{1, \dots, n\}$ such that $x \in E_j$ and so $f(x) \in [c_{j-1}, c_j)$ therefore $\phi_{\epsilon}(x) \leq f(x) < \psi_{\epsilon}(x)$.

The Simple Approximation Theorem

Before we state the main theorem, note that if ϕ and ψ are simple functions on $E \subset \mathbb{R}^q$, then $a\phi + b\psi$ is a simple function for any $a, b \in \mathbb{R}$. Indeed, if $\phi = \sum_{j=1}^n \alpha_j \chi_{A_j}$ and $\psi = \sum_{k=1}^m \beta_k \chi_{B_k}$,

then
$$a\phi + b\psi = \sum_{k=1}^{m} \sum_{j=1}^{n} (a\alpha_j + b\beta_k) \chi_{A_j \cap B_k}$$
.

Theorem (2)

Let $E \subset \mathbb{R}^q$ be a measurable set and $f : E \longrightarrow \overline{\mathbb{R}}$. Then

- 1. If $f \ge 0$, then there is a sequence $\{\phi_n\}$ of simple functions defined on E such that $\{\phi_n\}$ converges pointwise to f. The sequence $\{\phi_n\}$ can be chosen to be increasing. That is $\phi_n \le \phi_{n+1}$ for all $n \in \mathbb{N}$.
- For an arbitrary function f that may change sign, there is a sequence {φ_n} of simple functions defined on E such that {φ_n} converges pointwise to f,

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ◆ ○ ◆ ○ ◆

- 3. If *f* is measurable, then the ϕ_n 's can be taken to be measurable.
- 4. If f is bounded, the convergence is uniform.

Proof.

1. Let $n \in \mathbb{N}$. Divide the interval [0, n] into $n2^n$ subintervals of equal length $1/2^n$ by the points $j/2^n$ with

 $j = 0, \cdots, n2^n$. Considers the collection of subsets of *E* defined by $A_{j,n} = f^{-1}\left(\left[\frac{j-1}{2^n}, \frac{j}{2^n}\right]\right)$ for

 $j = 1, \dots, n2^n$ and $B_n = f^{-1}$ ($[n, \infty]$). Note that this collection of subsets is disjoint and covers *E*. Define the simple function ϕ_n by

$$\phi_n = \sum_{j=1}^{n2^n} \frac{j-1}{2^n} \chi_{A_{j,n}} + n\chi_{B_n} .$$

The sequence of simple functions $\{\phi_n\}$ is increasing (exercise) and converges to f. Indeed, let $x \in E$. If $f(x) \neq \infty$, then there exits $m \in \mathbb{N}$ such that f(x) < m and so for every $n \ge m$ there is a unique $j \in \{1, \dots, n2^n\}$ such that $x \in A_{j,n}$. Hence $\frac{j-1}{2^n} \le f(x) < \frac{j}{2^n}$ and $\phi_n(x) = \frac{j-1}{2^n}$. Therefore

$$0 \le f(x) - \phi_n(x) < \frac{1}{2^n}$$
 for all $n \ge m$

and so $\{\phi_n(x)\}$ converges to f(x). If $f(x) = \infty$, then $x \in B_n$ and $\phi_n(x) = n$ converges to ∞ .

Suppose that f changes sign. Consider the nonnegative functions f⁺ = max(f, 0) and f⁻ = max(-f, 0). We have f = f⁺ − f⁻. By part 1 there are sequences of simple functions {φ_n⁺} and {φ_n⁻} that converge to f⁺ and f⁻. The sequence of simple functions {φ_n⁺ − φ_n⁻} converges to f.

▲□▶▲□▶▲□▶▲□▶ □ のQで

Parts 3 and 4 are left as exercises

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?