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Approximation by Simple Functions



Convergence of Measurable Functions

Let {fn}n∈N be a sequence of functions defined on a set E.
▶ The sequence {fn} converges to f pointwise on a set A if for every x ∈ A we have

lim
n→∞

fn(x) = f (x).

▶ The sequence {fn} converges to f pointwise a.e. on a set A if there exists a set Z of
measure zero such that lim

n→∞
fn(x) = f (x) for every x ∈ A\Z.

▶ The sequence {fn} converges to f uniformly on a set A if for every ϵ > 0 there exists
N ∈ N such that |fn − f | < ϵ on A for all n ≥ N.

▶ supn fn is defined on E by supn fn(x) = sup{fn(x) : n ∈ N} and infn fn is defined on E
by infn fn(x) = inf{fn(x) : n ∈ N}.

▶ limn→∞fn = lim sup
n→∞

fn = inf
m∈N

{sup
n≥m

fn}

▶ limn→∞fn = lim inf
n→∞

fn = sup
m∈N

{ inf
n≥m

fn}

Theorem (1)
Let {fn} be a sequence of measurable functions on a set E ⊂ Rq. Suppose that fn is finite a.e.
on E for each n ∈ N. Then

1. Each function supn fn, infn fn, lim sup
n→∞

fn and lim inf
n→∞

fn is measurable on E.

2. If {fn} converges pointwise a.e. on E to a function f . Then f is measurable on E.



Simple Functions

Proof.
1. Let c ∈ R. We have supn fn(x) = sup{fn(x) : n ∈ N}. Hence {supn fn > c} =

⋃
n∈N{fn > c} is

measurable as countable union of measurable sets. Therefore supn fn is measurable. Since −fn is measurable and
infn fn = − supn(−fn), then infn fn is measurable.
We have lim sup

n→∞
fn = inf

n
Fn with Fn = sup{fp : p ≥ n}. It follows that Fn is measurable for all n . Therefore

infn Fn is also measurable. Similarly lim inf
n→∞

fn = sup
n

Gn , with Gn = inf{fp : p ≥ n}, is measurable.

2. We know from part 1 that lim supn fn is measurable. If in addition {fn} converges to f a.e. on E, then
f = lim supn fn a.e. on E and therefore f is measurable.

Let E ⊂ Rq. A function ϕ : E −→ R is said to be simple if it takes only finitely many distinct
value: ϕ(E) is a finite subset of R. In most statements we take simple functions to be also
measurable.

Lemma (1)
If ϕ : E −→ R is a simple and measurable function, then there exist a family of disjoint
measurable sets E1, · · · ,En contained in E such that E = E1 ∪ · · · ∪ En, and there exist real
numbers a1, · · · , an such that

ϕ = a1χE1
+ a2χE2

+ · · ·+ anχEn
=

j=n∑
j=1

ajχEj

The Proof is left as an exercise.
The representation of ϕ given in Lemma 1 is called the canonical representation of a simple
function



The Simple Approximation Lemma

Lemma (2)
Let f : E −→ R be measurable and bounded. For every ϵ > 0, there exist simple functions ϕϵ
and ψϵ on E such that 0 ≤ ψϵ − ϕϵ ≤ ϵ and ϕϵ ≤ f ≤ ψϵ on the set E.

Proof.
Since f is bounded, then there exists an interval (a, b) such that f (E) ⊂ (a, b). For the given ϵ > 0, we can find n ∈ N

such that δ =
b − a

n
< ϵ. Consider the partition of [a, b] given by c0 = a < c1 < · · · < cn = b with cj = c0 + jδ

for j = 1, · · · , n. We have cj − cj−1 = δ. For each j = 1, · · · , n, let Ej = f−1([cj−1, cj)). Then the collection
E1, · · · , En of measurable subset E is disjoint and covers E.
Define the simple functions ϕϵ and ψϵ on E by

ϕϵ =

j=n∑
j=1

cj−1 χEj
and ψϵ =

j=n∑
j=1

cj χEj
.

We have then

ψϵ − ϕϵ =

j=n∑
j=1

(cj − cj−1)χEj
=

j=n∑
j=1

δχEj
= δ < ϵ .

Also for any x ∈ E there is a unique j ∈ {1, · · · , n} such that x ∈ Ej and so f (x) ∈ [cj−1, cj) therefore

ϕϵ(x) ≤ f (x) < ψϵ(x).



The Simple Approximation Theorem

Before we state the main theorem, note that if ϕ and ψ are simple functions on E ⊂ Rq, then

aϕ+ bψ is a simple function for any a, b ∈ R. Indeed, if ϕ =
n∑

j=1

αjχAj
and ψ =

m∑
k=1

βkχBk
,

then aϕ+ bψ =
m∑

k=1

n∑
j=1

(aαj + bβk)χAj∩Bk
.

Theorem (2)
Let E ⊂ Rq be a measurable set and f : E −→ R. Then

1. If f ≥ 0, then there is a sequence {ϕn} of simple functions defined on E such that {ϕn}
converges pointwise to f . The sequence {ϕn} can be chosen to be increasing. That is
ϕn ≤ ϕn+1 for all n ∈ N.

2. For an arbitrary function f that may change sign, there is a sequence {ϕn} of simple
functions defined on E such that {ϕn} converges pointwise to f ,

3. If f is measurable, then the ϕn’s can be taken to be measurable.

4. If f is bounded, the convergence is uniform.



Proof.
1. Let n ∈ N. Divide the interval [0, n] into n2n subintervals of equal length 1/2n by the points j/2n with

j = 0, · · · , n2n . Considers the collection of subsets of E defined by Aj,n = f−1
(
[

j − 1

2n
,

j

2n
)

)
for

j = 1, · · · , n2n and Bn = f−1
([n, ∞]). Note that this collection of subsets is disjoint and covers E. Define the

simple function ϕn by

ϕn =
n2n∑
j=1

j − 1

2n
χAj,n

+ nχBn
.

The sequence of simple functions {ϕn} is increasing (exercise) and converges to f . Indeed, let x ∈ E. If f (x) ̸= ∞,
then there exits m ∈ N such that f (x) < m and so for every n ≥ m there is a unique j ∈ {1, · · · , n2n} such that

x ∈ Aj,n . Hence
j − 1

2n
≤ f (x) <

j

2n
and ϕn(x) =

j − 1

2n
. Therefore

0 ≤ f (x) − ϕn(x) <
1

2n
for all n ≥ m

and so {ϕn(x)} converges to f (x). If f (x) = ∞, then x ∈ Bn and ϕn(x) = n converges to ∞.

2. Suppose that f changes sign. Consider the nonnegative functions f+ = max(f , 0) and f− = max(−f , 0). We
have f = f+ − f− . By part 1 there are sequences of simple functions {ϕ+

n } and {ϕ−
n } that converge to f+ and

f− . The sequence of simple functions {ϕ+
n − ϕ−

n } converges to f .

Parts 3 and 4 are left as exercises




