Real Analysis MAA 6616 Lecture 11 Egorov and Luzin Theorems

Egorov's Theorem

Egorov's Theorem states that if a sequence of measurable functions converges pointwise a.e. on a set of finite measure to a function that is a.e. finite, then it converges uniformly except on a subset with arbitrarily small measure.

Start with an example. Consider the sequence of piecewise linear functions $\{f_n\}$ defined on [0, 2] as follows:

► For *n* even:

$$f_n(0) = f_n(\frac{1}{n}) = f_n(1 - \frac{1}{2n}) = f_n(1 + \frac{1}{2n}) = f_n(2 - \frac{1}{n}) = f_n(2) = 0;$$

$$f_n(\frac{1}{2n}) = f_n(2 - \frac{1}{2n}) = 1 \text{ and } f(1) = 1 - \frac{1}{n}$$

and f_n is the linear function connecting any two consecutive points so that f(x) = 2nx for $x \in [0, 1/2n]$;

For *n* odd:

$$f_n(0) = f_n(\frac{1}{n}) = f_n(1 - \frac{1}{2n}) = f_n(1 + \frac{1}{2n}) = f_n(2 - \frac{1}{n}) = f_n(2) = 0;$$

$$f_n(\frac{1}{2n}) = f_n(2 - \frac{1}{2n}) = -1 \text{ and } f(1) = -1 + \frac{1}{n}$$

and f_n is the linear function connecting any two consecutive points so that f(x) = -2nx for $x \in [0, 1/2n]$.

・ロト・日本・モト・モー うくぐ

The sequence $\{f_n\}$ converges pointwise on $[0, 1) \cup (1, 2]$ to the function f = 0 and the sequence diverges for x = 1. Indeed $f_{2j}(1) = 1 - (1/(2j))$ converges to 1 while $f_{2j+1}(1) = -1 + (1/(2j+1))$ converges to -1. If x = 0 or x = 2, then $f_n(x) = 0$ and the sequence converges to 0. If $x \neq 0, 1, 2$, let $\delta = \min(|x|, |1 - x|, |2 - x|)$. Let $N \in \mathbb{N}$ such that $N \ge \frac{1}{\delta}$. Then for every $n \ge N$ we have $f_n(x) = 0$ and $f_n(x)$ converges to 0. Now for any $\epsilon > 0$ (no matter how small), let $N \ge \frac{1}{4\epsilon}$, then $\{f_n\}$ converges uniformly to f = 0 on the set $[\frac{\epsilon}{4}, 1 - \frac{\epsilon}{4}] \cup [1 + \frac{\epsilon}{4}, 2 - \frac{\epsilon}{4}]$ with measure $2 - \epsilon$.

Lemma (1)

Let $\{f_n\}$ be a sequence of measurable functions on a measurable set $E \subset \mathbb{R}^q$ with finite measure. Assume that $\{f_n\}$ converges pointwise a.e. on E to a function f such that f is finite a.e. on E. Then for every $\epsilon > 0$ and $\eta > 0$, there exists a measurable set $A \subset E$ and an integer $N \in \mathbb{N}$ such that $m(E \setminus A) < \eta$ and $|f_n(x) - f(x)| < \epsilon$ for all $x \in A$ and for all n > N.

Proof.

Let Z_1 be the subset of E where f is not finite and let Z_2 be the subset of E where $\{f_n\}$ fails to converge to f. Let $Z = Z_1 \cup Z_2$. Then m(Z) = 0 by hypothesis. For every $j \in \mathbb{N}$, let $A_j = \{x \in E \setminus Z : |f(x) - f_k(x)| < \epsilon$ for all $k \ge j\}$. The set A_j is measurable since it can be expressed as a countable intersection of measurable sets: $A_j = \bigcap_{k \ge j} \{|f - f_k| < \epsilon\} \cap (E \setminus Z)$.

Note that $A_j \subset A_{j+1}$ and $\bigcup_{j\geq 1} A_j = E \setminus Z$ (since $f_n \longrightarrow f$ on $E \setminus Z$). It follows from the continuity of the Lebesgue measure that $\lim_{n\to\infty} m(A_n) = m(E \setminus Z) = m(E)$. Therefore for the given $\eta > 0$ there exists $N \in \mathbb{N}$ such that $m(E \setminus A_N) < \eta$ and for every $x \in A = A_N$ and for every $n \geq N$ we have $|f_n(x) - f(x)| < \epsilon$.

Egorov's Theorem

Theorem (1)

Let $\{f_n\}$ be a sequence of measurable functions on a measurable set $E \subset \mathbb{R}^q$ with finite measure. Assume that $\{f_n\}$ converge pointwise a.e. on E to a function f such that f is finite a.e. on E. Then for every $\eta > 0$ there exists a closed set $A \subset E$ such that $m(E \setminus A) < \eta$ and $\{f_n\}$ converges uniformly to f on A.

Proof.

Let $m \in \mathbb{N}$. It follows from Lemma 1 that there exists a measurable set $A_m \subset E$ and $N(m) \in \mathbb{N}$ such that

$$m(E \setminus A_m) < \frac{\eta}{2^{m+1}}$$
 and $|f_n - f| < \frac{1}{m}$ for all $n \ge N(m)$.
Let $\tilde{A} = \bigcap_{m=1}^{\infty} A_m$. The set \tilde{A} is measurable and

$$m(E\setminus\tilde{A}) = m\left(\bigcup_{m=1}^{\infty} (E\setminus A_m)\right) \le \sum_{m=1}^{\infty} \frac{\eta}{2^{m+1}} = \frac{\eta}{2}.$$

Now we prove that $\{f_n\}$ converges uniformly to f on \tilde{A} . Let $\epsilon > 0$ and let $m \in \mathbb{N}$ such that $\frac{1}{m} < \epsilon$. It follows from the definition of \tilde{A} and of A_m that for every $n \ge N(m)$ and for every $x \in \tilde{A} \subset A_m$ we have $|f_n - f| < \frac{1}{m} < \epsilon$. This proves the uniform convergence on \tilde{A}

Next, since \tilde{A} is measurable we can find a closed set $A \subset \tilde{A}$ such that $m(\tilde{A} \setminus A) < \eta/2$. The sequence is uniformly convergent on A and

$$m(E \setminus A) = m\left((E \setminus \tilde{A}) \cup (\tilde{A} \setminus A)\right) \le m(E \setminus \tilde{A}) + m(\tilde{A} \setminus A) \le \frac{\eta}{2} + \frac{\eta}{2} = \eta$$

Luzin's Theorem states that a measurable function on *E* is "nearly continuous" in the following sense: For any $\epsilon > 0$, there is a subset whose measure is within ϵ to that of *E* and on which the function is continuous. We start with the case of simple functions.

Proposition (1)

Let ϕ be a simple and measurable function defined on a set E. Then for every $\epsilon > 0$ there exists a closed $F \subset E$ such that $m(E \setminus F) < \epsilon$ and ϕ continuous on F.

Proof.

We use the canonical representation of simple function to express ϕ as $\phi = \sum_{i=1}^{n} a_i \chi_{E_j}$ for some collection of *n* disjoint

measurable sets E_1, \dots, E_n in E. For $\epsilon > 0$, there exist closed sets F_1, \dots, F_n with $F_j \subset E_j$ and $m(E_j \setminus F_j) < \epsilon/n$. Then $F = \bigcup_{j=1}^n F_j$ is a closed subset in E and $m(E\setminus F) < \epsilon$. Note that the restriction of ϕ to each F_j is continuous since it is constant on each F_j . It remains to verify that ϕ is continuous on their disjoint union F. For $N \in \mathbb{N}$, let $B_N = B_N(0)$ be the ball in \mathbb{R}^q with center 0 and radius N. Let $F_j^N = F_j \cap B_N$ and $F^N = \bigcup_{j=1}^n F_j^N$. To prove the continuity of ϕ on F it is enough to prove continuity on F^N for an arbitrary N (since $F = \bigcup_N F^N$). To prove continuity on F^N , it is enough to verify that the closed sets F_j^N 's are separated. That is, there exists $\delta_0 > 0$ such that for $j \neq k$, and for every $x \in F_j^N$ and $y \in F_k^N$ we have $|x - y| \ge \delta_0$. For $j \neq k$, let $\delta_{j,k} = \inf\{|x - y| : x \in F_j^N, y \in F_k^N\}$. We claim that $\delta_{j,k} > 0$. Indeed, if $\delta_{j,k} = 0$, then there would be sequences $\{x_p\}_p \subset F_j^N$ and $\{y_p\}_p \subset F_k^N$ such that $\lim_{p \to \infty} |x_p - y_p| = 0$. Since F_j^N and F_k^N are compact, then we can extract convergent subsequences $\{x_{p_m}\}_m \subset F_j^N$ and $\{y_m\}_m \subset F_j^N$ and $\{y_m\}_m \subset F_j^N$ that converge to the same limit $z \in F_j^N \cap F_k^N$ (since $\delta_{j,k} = 0$) and this is a contradiction since F_j and F_k are disjoint. Hence $\delta_{j,k} > 0$ and $\delta_0 = \min\{\delta_{j,k} : j \neq k\}$ is strictly positive. Therefore the F_i^N 's are separated and ϕ is continuous on F^N .

Theorem (2)

Let $f : E \subset \mathbb{R}^q \longrightarrow \mathbb{R}$ be measurable and finite a.e. on E. Then for every $\epsilon > 0$, there exists a closed $F \subset E$ such that $m(E \setminus F) < \epsilon$ and f continuous on F.

Proof.

Since *f* is measurable, by the Simple Approximation Theorem, there exists a sequence $\{\phi_n\}$ of simple functions on *E* which converges pointwise on *E* to *f*. According to Egorov's Theorem, given any $\epsilon > 0$, there exists a closed set $C \subset E$ with $m(E \setminus C) < \epsilon/2$ and $\{\phi_n\}$ converges uniformly on *C*. For each $n \in \mathbb{N}$, there exists a closed set $F_n \subset E$ with $m(E \setminus F_n) < (\epsilon/2^{n+1})$ such that the simple function ϕ_n is continuous on F_n . Consider the closed set $F = C \cap (\bigcap_{n=1}^{\infty} F_n)$. We have $E \setminus F = (E \setminus C) \cup (\bigcup_{n=1}^{\infty} (E \setminus F_n))$ so that

$$m(E \setminus F) \le m(E \setminus C) + \sum_{n=1}^{\infty} m(E \setminus F_n) \le \frac{\epsilon}{2} + \sum_{n=1}^{\infty} \frac{\epsilon}{2^{n+1}} = \epsilon$$

Since each function ϕ_n is continuous on $F \subset F_n$ and $\{\phi_n\}$ converges uniformly on F, then the limit f is also continuous on F.