Real Analysis MAA 6616
 Lecture 11
 Egorov and Luzin Theorems

Egorov's Theorem

Egorov's Theorem states that if a sequence of measurable functions converges pointwise a.e. on a set of finite measure to a function that is a.e. finite, then it converges uniformly except on a subset with arbitrarily small measure.
Start with an example. Consider the sequence of piecewise linear functions $\left\{f_{n}\right\}$ defined on $[0,2]$ as follows:

- For n even:

$$
\begin{gathered}
f_{n}(0)=f_{n}\left(\frac{1}{n}\right)=f_{n}\left(1-\frac{1}{2 n}\right)=f_{n}\left(1+\frac{1}{2 n}\right)=f_{n}\left(2-\frac{1}{n}\right)=f_{n}(2)=0 \\
f_{n}\left(\frac{1}{2 n}\right)=f_{n}\left(2-\frac{1}{2 n}\right)=1 \text { and } f(1)=1-\frac{1}{n}
\end{gathered}
$$

and f_{n} is the linear function connecting any two consecutive points so that $f(x)=2 n x$ for $x \in[0,1 / 2 n] ;$

- For n odd:

$$
\begin{gathered}
f_{n}(0)=f_{n}\left(\frac{1}{n}\right)=f_{n}\left(1-\frac{1}{2 n}\right)=f_{n}\left(1+\frac{1}{2 n}\right)=f_{n}\left(2-\frac{1}{n}\right)=f_{n}(2)=0 \\
f_{n}\left(\frac{1}{2 n}\right)=f_{n}\left(2-\frac{1}{2 n}\right)=-1 \text { and } f(1)=-1+\frac{1}{n}
\end{gathered}
$$

and f_{n} is the linear function connecting any two consecutive points so that $f(x)=-2 n x$ for $x \in[0,1 / 2 n]$.

The sequence $\left\{f_{n}\right\}$ converges pointwise on $[0,1) \cup(1,2]$ to the function $f=0$ and the sequence diverges for $x=1$.
Indeed $f_{2 j}(1)=1-(1 /(2 j))$ converges to 1 while $f_{2 j+1}(1)=-1+(1 /(2 j+1))$ converges to -1 . If $x=0$ or $x=2$, then $f_{n}(x)=0$ and the sequence converges to 0 . If $x \neq 0,1,2$, let $\delta=\min (|x|,|1-x|,|2-x|)$. Let $N \in \mathbb{N}$ such that $N \geq \frac{1}{\delta}$. Then for every $n \geq N$ we have $f_{n}(x)=0$ and $f_{n}(x)$ converges to 0 .
Now for any $\epsilon>0$ (no matter how small), let $N \geq \frac{1}{4 \epsilon}$, then $\left\{f_{n}\right\}$ converges uniformly to $f=0$ on the set $\left[\frac{\epsilon}{4}, 1-\frac{\epsilon}{4}\right] \cup\left[1+\frac{\epsilon}{4}, 2-\frac{\epsilon}{4}\right]$ with measure $2-\epsilon$.

Lemma (1)

Let $\left\{f_{n}\right\}$ be a sequence of measurable functions on a measurable set $E \subset \mathbb{R}^{q}$ with finite measure. Assume that $\left\{f_{n}\right\}$ converges pointwise a.e. on E to a function f such that f is finite a.e. on E. Then for every $\epsilon>0$ and $\eta>0$, there exists a measurable set $A \subset E$ and an integer $N \in \mathbb{N}$ such that $m(E \backslash A)<\eta$ and $\left|f_{n}(x)-f(x)\right|<\epsilon$ for all $x \in A$ and for all $n>N$.

Proof.

Let Z_{1} be the subset of E where f is not finite and let Z_{2} be the subset of E where $\left\{f_{n}\right\}$ fails to converge to f. Let $Z=Z_{1} \cup Z_{2}$. Then $m(Z)=0$ by hypothesis. For every $j \in \mathbb{N}$, let $A_{j}=\left\{x \in E \backslash Z:\left|f(x)-f_{k}(x)\right|<\epsilon\right.$ for all $\left.k \geq j\right\}$. The set A_{j} is measurable since it can be expressed as a countable intersection of measurable sets: $A_{j}=\bigcap_{k \geq j}\left\{\left|f-f_{k}\right|<\epsilon\right\} \cap(E \backslash Z)$.
Note that $A_{j} \subset A_{j+1}$ and $\bigcup_{j \geq 1} A_{j}=E \backslash Z$ (since $f_{n} \longrightarrow f$ on $E \backslash Z$). It follows from the continuity of the Lebesgue measure that $\lim _{n \rightarrow \infty} m\left(A_{n}\right)=m(E \backslash Z)=m(E)$. Therefore for the given $\eta>0$ there exists $N \in \mathbb{N}$ such that $m\left(E \backslash A_{N}\right)<\eta$ and for every $x \in A=A_{N}$ and for every $n \geq N$ we have $\left|f_{n}(x)-f(x)\right|<\epsilon$.

Egorov's Theorem

Theorem (1)

Let $\left\{f_{n}\right\}$ be a sequence of measurable functions on a measurable set $E \subset \mathbb{R}^{q}$ with finite measure. Assume that $\left\{f_{n}\right\}$ converge pointwise a.e. on E to a function f such that f is finite a.e. on E. Then for every $\eta>0$ there exists a closed set $A \subset E$ such that $m(E \backslash A)<\eta$ and $\left\{f_{n}\right\}$ converges uniformly to of on A.

Proof.

Let $m \in \mathbb{N}$. It follows from Lemma 1 that there exists a measurable set $A_{m} \subset E$ and $N(m) \in \mathbb{N}$ such that $m\left(E \backslash A_{m}\right)<\frac{\eta}{2^{m+1}}$ and $\left|f_{n}-f\right|<\frac{1}{m}$ for all $n \geq N(m)$.
Let $\tilde{A}=\bigcap_{m=1}^{\infty} A_{m}$. The set \tilde{A} is measurable and

$$
m(E \backslash \tilde{A})=m\left(\bigcup_{m=1}^{\infty}\left(E \backslash A_{m}\right)\right) \leq \sum_{m=1}^{\infty} \frac{\eta}{2^{m+1}}=\frac{\eta}{2}
$$

Now we prove that $\left\{f_{n}\right\}$ converges uniformly to f on \tilde{A}. Let $\epsilon>0$ and let $m \in \mathbb{N}$ such that $\frac{1}{m}<\epsilon$. It follows from the definition of \tilde{A} and of A_{m} that for every $n \geq N(m)$ and for every $x \in \tilde{A} \subset A_{m}$ we have $\left|f_{n}-f\right|<\frac{1}{m}<\epsilon$. This proves the uniform convergence on \tilde{A}
Next, since \tilde{A} is measurable we can find a closed set $A \subset \tilde{A}$ such that $m(\tilde{A} \backslash A)<\eta / 2$. The sequence is uniformly convergent on A and

$$
m(E \backslash A)=m((E \backslash \tilde{A}) \cup(\tilde{A} \backslash A)) \leq m(E \backslash \tilde{A})+m(\tilde{A} \backslash A) \leq \frac{\eta}{2}+\frac{\eta}{2}=\eta
$$

Luzin's Theorem states that a measurable function on E is "nearly continuous" in the following sense: For any $\epsilon>0$, there is a subset whose measure is within ϵ to that of E and on which the function is continuous. We start with the case of simple functions.

Proposition (1)

Let ϕ be a simple and measurable function defined on a set E. Then for every $\epsilon>0$ there exists a closed $F \subset E$ such that $m(E \backslash F)<\epsilon$ and ϕ continuous on F.

Proof.

We use the canonical representation of simple function to express ϕ as $\phi=\sum_{j=1}^{n} a_{j} \chi_{E_{j}}$ for some collection of n disjoint measurable sets E_{1}, \cdots, E_{n} in E. For $\epsilon>0$, there exist closed sets F_{1}, \cdots, F_{n} with $F_{j} \subset E_{j}$ and $m\left(E_{j} \backslash F_{j}\right)<\epsilon / n$. Then $F=\bigcup_{j=1}^{n} F_{j}$ is a closed subset in E and $m(E \backslash F)<\epsilon$. Note that the restriction of ϕ to each F_{j} is continuous since it is constant on each F_{j}. It remains to verify that ϕ is continuous on their disjoint union F.
For $N \in \mathbb{N}$, let $B_{N}=B_{N}(0)$ be the ball in \mathbb{R}^{q} with center 0 and radius N. Let $F_{j}^{N}=F_{j} \cap B_{N}$ and $F^{N}=\bigcup_{j=1}^{n} F_{j}^{N}$. To prove the continuity of ϕ on F it is enough to prove continuity on F^{N} for an arbitrary N (since $F=\bigcup_{N} F^{N}$). To prove continuity on F^{N}, it is enough to verify that the closed sets F_{j}^{N},s are separated. That is, there exists $\delta_{0}>0$ such that for $j \neq k$, and for every $x \in F_{j}^{N}$ and $y \in F_{k}^{N}$ we have $|x-y| \geq \delta_{0}$.
For $j \neq k$, let $\delta_{j, k}=\inf \left\{|x-y|: x \in F_{j}^{N}, y \in F_{k}^{N}\right\}$. We claim that $\delta_{j, k}>0$. Indeed, if $\delta_{j, k}=0$, then there would be sequences $\left\{x_{p}\right\}_{p} \subset F_{j}^{N}$ and $\left\{y_{p}\right\}_{p} \subset F_{k}^{N}$ such that ${ }_{p \rightarrow \infty}\left|x_{p}-y_{p}\right|=0$. Since F_{j}^{N} and F_{k}^{N} are compact, then we can extract convergent subsequences $\left\{x_{p_{m}}\right\}_{m} \subset F_{j}^{N}$ and $\left\{y_{p_{m}}\right\}_{m} \subset F_{k}^{N}$ that converge to the same limit $z \in F_{j}^{N} \cap F_{k}^{N}$ (since $\delta_{j, k}=0$) and this is a contradiction since F_{j} and F_{k} are disjoint. Hence $\delta_{j, k}>0$ and $\delta_{0}=\min \left\{\delta_{j, k}: j \neq k\right\}$ is strictly positive. Therefore the F_{j}^{N},s are separated and ϕ is continuous on F^{N}.

Theorem (2)

Let $f: E \subset \mathbb{R}^{q} \longrightarrow \overline{\mathbb{R}}$ be measurable and finite a.e. on E. Then for every $\epsilon>0$, there exists a closed $F \subset E$ such that $m(E \backslash F)<\epsilon$ and f continuous on F.

Proof.

Since f is measurable, by the Simple Approximation Theorem, there exists a sequence $\left\{\phi_{n}\right\}$ of simple functions on E which converges pointwise on E to f. According to Egorov's Theorem, given any $\epsilon>0$, there exists a closed set $C \subset E$ with $m(E \backslash C)<\epsilon / 2$ and $\left\{\phi_{n}\right\}$ converges uniformly on C. For each $n \in \mathbb{N}$, there exists a closed set $F_{n} \subset E$ with $m\left(E \backslash F_{n}\right)<\left(\epsilon / 2^{n+1}\right)$ such that the simple function ϕ_{n} is continuous on F_{n}. Consider the closed set $F=C \cap\left(\bigcap_{n=1}^{\infty} F_{n}\right)$. We have $E \backslash F=(E \backslash C) \cup\left(\bigcup_{n=1}^{\infty}\left(E \backslash F_{n}\right)\right)$ so that

$$
m(E \backslash F) \leq m(E \backslash C)+\sum_{n=1}^{\infty} m\left(E \backslash F_{n}\right) \leq \frac{\epsilon}{2}+\sum_{n=1}^{\infty} \frac{\epsilon}{2^{n+1}}=\epsilon .
$$

Since each function ϕ_{n} is continuous on $F \subset F_{n}$ and $\left\{\phi_{n}\right\}$ converges uniformly on F, then the limit f is also continuous on F.

