Real Analysis MAA 6616
Lecture 11
Egorov and Luzin Theorems



Egorov’s Theorem

Egorov’s Theorem states that if a sequence of measurable functions converges pointwise a.e. on
a set of finite measure to a function that is a.e. finite, then it converges uniformly except on a
subset with arbitrarily small measure.

Start with an example. Consider the sequence of piecewise linear functions {f, } defined on
[0, 2] as follows:

» For n even:
1 1
F(0) = £l )—fn(lff) S+ ) @ = =) =/m(2) =0;
1 1
Fl) =h2— 2y =1 and (1) = 1— ©
2n 2n n
and f;, is the linear function connecting any two consecutive points so that f(x) = 2nx for

x €0, 1/2n];
» For n odd:

F(0) =£ul )—fn(l—*) S+ o ) fn(2—*)—fn()— ;
1 ) 1
fn(%) :fn(z_ a) =—1 and f(l) =—1+ ;

and f;, is the linear function connecting any two consecutive points so that f(x) = —2nx
forx € [0, 1/2n].
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Function f, when n is odd
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Function f, when n is even

e

The sequence {f,} converges pointwise on [0, 1) U (1, 2] to the function f = 0 and the
sequence diverges for x = 1.

Indeed f>;(1) = 1 — (1/(2j)) converges to 1 while f5;41(1) = —1 4 (1/(2j 4+ 1)) converges to
—1.If x = 0 or x = 2, then f;,(x) = 0 and the sequence converges to 0. If x # 0, 1, 2, let

1
6 = min(|x|, |1 —x|,|2 — x|). Let N € N such that N > 5 Then for every n > N we have
Jfn(x) = 0 and f,(x) converges to 0.

1

Now for any € > 0 (no matter how small), let N > o then {f, } converges uniformly to f = 0
€

€ €

ontheset [—, 1 — E]U[l-i-f, 2 — -] with measure 2 — €.
4 4 4 4



Lemma (1)

Let {f,} be a sequence of measurable functions on a measurable set E C RY with finite
measure. Assume that {f,} converges pointwise a.e. on E to a function f such that f is finite a.e.
on E. Then for every € > 0 and ) > 0, there exists a measurable set A C E and an integer

N € N such that m(E\A) < n and |f,(x) — f(x)| < e forall x € A and for alln > N.

Proof.

Let Z; be the subset of E where f is not finite and let Z, be the subset of E where {f, } fails to converge to f. Let Z = Z; U Z,.
Then m(Z) = 0 by hypothesis. For every j € N, letA; = {x € E\Z : |[f(x) — fy(x)| < € forallk > j}. The setA; is
measurable since it can be expressed as a countable intersection of measurable sets: A; = ﬂ {If —fil < e} N (E\Z).
k=>j
Note thatAj C Aj4 | and UJZI Aj = E\Z (since f — f on E\Z). It follows from the continuity of the Lebesgue measure
that I‘i}m m(A,) = m(E\Z) = m(E). Therefore for the given > 0 there exists N € N such that m(E\Ay) < 7 and for
n—0oo

everyx € A = Ay and for every n > N we have |f,(x) — f(x)| < e. O



Egorov’s Theorem

Theorem (1)

Let {f,} be a sequence of measurable functions on a measurable set E C R? with finite
measure. Assume that {f, } converge pointwise a.e. on E to a function f such that f is finite a.e.
on E. Then for every n > 0 there exists a closed set A C E such that m(E\A) < n and {f»}
converges uniformly to f on A.

Proof.

Letm € N. It follows from Lemma 1 that there exists a measurable set A,, C E and N(m) € N such that
1
m(E\Ap) < and |f, — f| < — foralln > N(m).
2m+] m

oo
LetA = ﬂ Ayy. The set A is measurable and
m=1

m(E\A) = m U (E\an) | < Z zm+1 - g

m=1

Now we prove that {f, } converges uniformly to f on A. Let e > 0 and letm € N such that i < e. It follows from the
~ -~ 1
definition of A and of A, that for every n > N(m) and for every x € A C A,, we have |f, — f| < — < e. This proves the
m

uniform convergence on A
Next, since A is measurable we can find a closed set A C A such that m(A\A) < 1n/2. The sequence is uniformly convergent

on A and n
+-=n
2

m(E\A) = m ((E\A) U (A\A)) < m(E\A) + m(A\A) < g



Luzin’s Theorem states that a measurable function on E is "nearly continuous" in the following
sense: For any € > 0, there is a subset whose measure is within € to that of £ and on which the
function is continuous. We start with the case of simple functions.

Proposition (1)
Let ¢ be a simple and measurable function defined on a set E. Then for every € > O there exists
a closed F C E such that m(E\F) < e and ¢ continuous on F.

Proof.

n

‘We use the canonical representation of simple function to express ¢ as ¢ = Z ajx. for some collection of n disjoint

—

J=1
measurable sets Ey, - - -, E, in E. For € > 0, there exist closed sets F, - - -, F, with F; C Ej and m(E;\F;) < €/n.
Then F = U;’Zl Fj is a closed subset in E and m(E\F) < e. Note that the restriction of ¢ to each F; is continuous since it is
constant on each F;. It remains to verify that ¢ is continuous on their disjoint union F.
For N € N, let By = By (0) be the ball in RY with center 0 and radius N. Let FIN =FNByad F¥ = I FJN . To
prove the continuity of ¢ on F it is enough to prove continuity on FY foran arbitrary N (since F = Uy FN). To prove
continuity on FN itis enough to verify that the closed sets FJN’s are separated. That is, there exists g > 0 such that forj # k,
and for every x € FJN andy € F{y we have |x — y| > .
Forj # klet§; x = inf{|x —y| : x € FI]-V7 pS FkN} We claim that §; > 0. Indeed, if §; 4 = 0, then there would be

sequences {x, }, C FJN and {y,}, C ny such that pl;l}ngg |xp — yp| = 0. Since FIN and F,lcv are compact, then we can

extract convergent subsequences {Xxp,, }m C Fj}»V and {yp,, }m C F,I{V that converge to the same limit z € Fjl-v al F,I{V (since
8j x = 0) and this is a contradiction since F; and F}, are disjoint. Hence §; ; > 0and §p = min{d; ; : j # k} is strictly
positive. Therefore the F/N’s are separated and ¢ is continuous on FN. O



Luzin’s Theorem

Theorem (2)

Letf : EC RY — R be measurable and finite a.e. on E. Then for every € > 0, there exists a
closed F C E such that m(E\F) < € and f continuous on F.

Proof.

Since f is measurable, by the Simple Approximation Theorem, there exists a sequence { ¢, } of simple functions on E which
converges pointwise on E to f. According to Egorov’s Theorem, given any € > 0, there exists a closed set C C E with
m(E\C) < €/2and {¢, } converges uniformly on C. For each n € N, there exists a closed set F,, C E with

m(E\Fy) < (e/2"F1) such that the simple function ¢, is continuous on F,,. Consider the closed set F = C N (N2 Fu)-
We have E\F = (E\C) U (U2, (E\Fy)) so that

n=1

€

m(E\F) < m(E\C) + > m (E\F,) < 5 e

n=1 n=1

Since each function ¢, is continuous on F C F,, and {¢, } converges uniformly on F, then the limit / is also continuous on

F. O



