Real Analysis MAA 6616 Lecture 12 The Riemann Integral and The Lebesgue Integral for Simple Functions

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

The Riemann Integral

Let $f : B \subset \mathbb{R}^q \longrightarrow \mathbb{R}$ be a bounded function defined on the bounded box in $B = I_1 \times \cdots \times I_q$, where I_j $(j = 1, \cdots, q)$ is a closed interval in \mathbb{R} : $I_j = [a_j, b_j]$. The Riemann Integral of f over B denoted

$$(R) \int_{a_1}^{b_1} \cdots \int_{a_q}^{b_q} f(x) dx_q \cdots dx_1 \text{ or simply } (R) \int_B f(x) dx_q$$

is defined as follows: Partition *B* into a finite collection $\mathcal{P} = \{B_k\}_{k=1}^N$ of nonoverlapping boxes so that $B = \bigcup_{k=1}^N B_k$ (two boxes are nonoverlapping if $B_j \cap B_k$ has an empty interior for $j \neq k$) and $\operatorname{vol}(B) = \sum_{k=1}^N \operatorname{vol}(B_k)$, where $\operatorname{vol}(B) = m(B)$ is the measure or volume of *B*. Let

$$m_k = \inf\{f(x) : x \in B_k\}$$
 and $M_k = \sup\{f(x) : x \in B_k\}$.

The Lower and Upper Darboux Sums associated with the partition \mathcal{P} are

$$L(f, \mathcal{P}) = \sum_{k=1}^{N} m_k \operatorname{vol}(B_k) \text{ and } U(f, \mathcal{P}) = \sum_{k=1}^{N} M_k \operatorname{vol}(B_k).$$

The Lower and Upper Riemann Integrals of f over B are:

$$(R) \underbrace{\int}_{B} f(x) dx = \sup \{ L(f, \mathcal{P}) : \mathcal{P} \text{ partition of } B \}$$

$$(R) \underbrace{\int}_{B} f(x) dx = \inf \{ U(f, \mathcal{P}) : \mathcal{P} \text{ partition of } B \}$$

Since f is bounded, then the lower and upper Riemann integrals are finite and

$$(R) \underbrace{\int}_{B} f(x) dx \leq (R) \overline{\int}_{B} f(x) dx$$

The function *f* is said to be Riemann integrable if the lower and upper Riemann integrals are equal and call this common value the Riemann integral of *f* and denote it $\int_{B} f(x)dx$ Note that if ϕ is a simple function with canonical representation $\phi = \sum_{k=1}^{N} \alpha_k \chi_{B_k}$, then

$$L(\phi, \mathcal{P}) = \sum_{k=1}^{N} \alpha_k \operatorname{vol}(B_k) = U(\phi, \mathcal{P}) = (R) \int_B \phi(x) \, dx$$

It follows that the lower and upper Riemann integral of a function f can be rewritten as:

$$(R) \underbrace{\int}_{B} f(x) dx = \sup\{(R) \int_{B} \phi(x) dx : \phi \text{ simple function and } \phi \le f\}$$
$$(R) \overline{\int}_{B} f(x) dx = \inf\{(R) \int_{B} \phi(x) dx : \phi \text{ simple function and } \phi \ge f\}$$

Theorem (1) If $f: B \subset \mathbb{R}^q \longrightarrow \mathbb{R}$ is continuous on the box B, then f is Riemann integrable over B.

Proof.

Since *B* is compact, then *f* is uniformly continuous on *B*. Let $\epsilon > 0$. There exists $\delta > 0$ such that for every $x, y \in B$ with $|x - y| < \delta$, we have $|f(x) - f(y)| < \frac{\epsilon}{\operatorname{vol}(B)}$. Consider a partition $\mathcal{P} = \{B_k\}_{k=1}^N$ of *B* such that $|x - y| < \delta$ for every $x, y \in B_k$ for all $k = 1, \dots, N$. It follows that for every $k = 1, \dots, N$ we have

$$M_k - m_k = \sup\{f(x) : x \in B_k\} - \inf\{f(x) : x \in B_k\} \le \frac{\epsilon}{\operatorname{vol}(B)}$$

Hence

$$U(f,\mathcal{P}) - L(f,\mathcal{P}) = \sum_{k=1}^{N} (M_k - m_k) \operatorname{vol}(B_k) \le \sum_{k=1}^{N} \frac{\epsilon}{\operatorname{vol}(B)} \operatorname{vol}(B_k) \le \epsilon.$$

Remark (1)

There are non continuous functions that are Riemann integrable. For example, let $\{B_k\}_{k=1}^N$ be a covering of *B* by nonoverlapping boxes and let $\alpha_1, \dots, \alpha_N$ be real number, then

$$f = \sum_{k=1}^{N} \alpha_k \chi_{B_k}$$
 is not necessarily continuous but it is Riemann integrable

Remark (2)

The Dirichlet function on [0, 1] is defined by $f = \chi_{\mathbb{Q} \cap [0, 1]}$. That is f(x) = 1 if $x \in [0, 1]$ is a rational number and f(x) = 0 if $x \in [0, 1]$ is an irrational number. The Dirichlet function is not Riemann integrable. Indeed it follows from the density of Q in \mathbb{R} that for every partition \mathcal{P} of $[0, 1], L(f, \mathcal{P}) = 0$ and $U(f, \mathcal{P}) = 1$.

The Lebesgue Integral of Nonnegative Simple Functions

Let ϕ be a measurable nonnegative simple function defined on a measurable set $E \subset \mathbb{R}^q$ with finite measure. Thus there exists a partition of E by a finite collection of disjoint measurable

sets $\{E_j\}_{j=1}^n$ and real numbers $a_j \ge 0$ such that $\phi = \sum_{j=1}^n a_j \chi_{E_j}$. The Lebesgue integral of ϕ

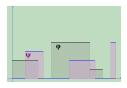
over E is defined as:

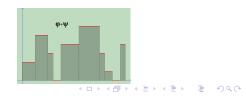
$$\int_E \phi \, dx = \sum_{j=1}^n a_j \, m(E_j) \, .$$

Proposition (1)

Let ϕ and ψ be nonnegative measurable simple functions on a measurable set E. Then

$$\int_E (\phi + \psi) dx = \int_E \phi dx + \int_E \psi dx \,.$$





Proof.

There are partitions of E by finite collections of disjoints measurable sets $\{A_j\}_{j=1}^N$ and $\{B_k\}_{k=1}^M$ and nonnegative real

numbers
$$\{a_j\}_{j=1}^N$$
 and $\{b_k\}_{k=1}^M$ such that $\phi = \sum_{j=1}^N a_j \chi_{A_j}$ and $\psi = \sum_{k=1}^M b_k \chi_{B_k}$. Since $A_j = \bigcup_{k=1}^M (A_j \cap B_k)$ and

 $B_k = \bigcup_{j=1}^N (A_j \cap B_k)$, then the function $\phi + \psi$ can be written as

$$\phi + \psi = \sum_{j=1}^{N} \sum_{k=1}^{M} (a_j + b_k) \chi_{A_j \cap B_k}$$

Therefore

$$\int_{E} (\phi + \psi) dx = \sum_{j=1}^{N} \sum_{k=1}^{M} (a_{j} + b_{k}) m(A_{j} \cap B_{k})$$

= $\sum_{j=1}^{N} a_{j} \sum_{k=1}^{M} m(A_{j} \cap B_{k}) + \sum_{k=1}^{M} b_{k} \sum_{j=1}^{N} m(A_{j} \cap B_{k})$
= $\sum_{j=1}^{N} a_{j} m(A_{j}) + \sum_{k=1}^{M} b_{k} m(B_{k})$
= $\int_{E} \phi \, dx + \int_{E} \psi \, dx$

Proposition (2)

Let ϕ be a nonnegative measurable simple functions on a measurable set E and $\lambda > 0$. Then $\int_{E} \lambda \phi dx = \lambda \int_{E} \phi dx$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Note that if ϕ is a nonnegative measurable simple function on the measurable set *E* and if $F \subset E$ is a measurable subset, then the restriction of $\phi|_F$ to *F* is a nonnegative simple function and define $\int_F \phi dx = \int_F \phi|_F dx$.

Proposition (3)

Let ϕ and be a nonnegative measurable simple functions on a measurable set E. Then

•
$$\int_E \phi dx = 0$$
 if and only if $\phi = 0$ a.e.

- Let $F \subset E$ be a measurable subset, then $\phi \chi_F$ is a nonnegative simple function and $\int_E \phi \chi_F \, dx = \int_F \phi \, dx.$
- Let E_1 , E_2 be disjoint measurable subsets of E such that $E = E_1 \cup E_2$. Then

$$\int_E \phi \, dx = \int_{E_1} \phi \, dx + \int_{E_2} \phi \, dx$$

Proposition (4)

Let ϕ and ψ be nonnegative simple functions on a measurable set E. If $\phi \leq \psi$, then $\int_{E} \phi dx \leq \int_{E} \psi dx$

Proof.

In this case $\psi - \phi$ is a nonnegative simple function and $\psi = (\psi - \phi) + \phi$. Proposition 1 implies $\int_E \phi dx \le \int_E \psi dx$ $\langle \Box \rangle < \langle \overline{\phi} \rangle < \overline{\phi} > \langle \overline{\phi} > \langle \overline{\phi} \rangle < \overline{\phi} > \langle \overline{\phi}$

Proposition (5)

Let ϕ and be a nonnegative simple functions on a measurable set E.

1. Let $\{A_k\}_{k=1}^{\infty}$ be a collection of disjoint measurable sets such that $E = \bigcup_{k=1}^{\infty} A_k$. Then

$$\int_{E} \phi \, dx = \sum_{k=1}^{\infty} \int_{A_k} \phi \, dx$$

2. Let $\{A_k\}_{k=1}^{\infty}$ be an ascending collection of measurable sets $(A_n \subset A_{n+1})$ such that $E = \bigcup_{k=1}^{\infty} A_k$. Then

$$\int_E \phi \, dx = \lim_{n \to \infty} \int_{A_n} \phi \, dx$$

Proof.

Let $\phi = \sum_{j=1}^{N} a_j \chi_{E_j}$ be the canonical representation of ϕ . The set *E* is the disjoint union of E_1, \dots, E_N . For each $j = 1, \dots, N$ let $A_{k,j} = A_k \cap E_j$. The collection $\{A_{k,j}\}_{k=1}^{\infty}$ consists of disjoint measurable sets such that $E_j = \bigcup_{k=1}^{\infty} A_{k,j}$. We have $m(E_j) = \sum_{k=1}^{\infty} m(A_{k,j})$. Therefore

$$\int_{E} \phi dx = \sum_{j=1}^{N} a_{j} m(E_{j}) = \sum_{j=1}^{N} a_{j} \left(\sum_{k=1}^{\infty} m(A_{k,j}) \right) = \sum_{k=1}^{\infty} \left(\sum_{j=1}^{N} a_{j} m(A_{k,j}) \right) = \sum_{k=1}^{\infty} \int_{A_{j}} \phi \, dx$$

Part 2 is left as an exercise.