Real Analysis MAA 6616
Lecture 12
The Riemann Integral and
The Lebesgue Integral for Simple Functions



The Riemann Integral
Letf : BC R? — R be a bounded function defined on the bounded box in
B=1I X---xIywherel; j=1,---,q)is aclosed interval in R: I; = [q;, b;]. The Riemann
Integral of f over B denoted

by by
(R)/ oo f(x)dxg---dx; orsimply (R) /Bf(x)dx

is defined as follows: Partition B into a finite collection P = {By}}_, of nonoverlapping boxes
so that B = Uszl By (two boxes are nonoverlapping if B; N By has an empty interior for j # k)
N
and vol(B) = Z vol(By), where vol(B) = m(B) is the measure or volume of B. Let
k=1

my = inf{f(x) : x € By} and M = sup{f(x) : x € Bx}.
The Lower and Upper Darboux Sums associated with the partition P are

N N
L(f,P) = kavol(Bk) and U(f,P) = ZMkvol(Bk) .
k=1

k=1

The Lower and Upper Riemann Integrals of f over B are:

(R)/ f(x)dx = sup{L(f, P) : P partition of B}
J g

(R)YBf(x)dx = inf{U(f, P) : P partition of B}



Since f is bounded, then the lower and upper Riemann integrals are finite and

i fga < ® [ s

The function f is said to be Riemann integrable if the lower and upper Riemann integrals are

equal and call this common value the Riemann integral of f and denote it / f(x)dx
B

Note that if ¢ is a simple function with canonical representation ¢ = 22]:1 QU X, » then

L(¢,P) Z ay vol(By) / B(x) d
It follows that the lower and upper Riemann integral of a function f can be rewritten as:
/ F(x)dx = sup{(R) / ¢(x) dx : ¢ simple function and ¢ < f}

(R)/Bf(x)dx = inf{(R) A(ﬁ(x) dx : ¢ simple function and ¢ > f}

Theorem (1)

Iff : BC R? — Ris continuous on the box B, then f is Riemann integrable over B.



Proof.

Since B is compact, then f is uniformly continuous on B. Let € > 0. There exists § > 0 such that for every x, y € B with
€
|x —y| < &, wehave |[f(x) — f(y)| < TR Consider a partition P = {By }3_, of B such that |x — y| < & for every
ol

x,y € By forallk =1, .-, N. It follows that forevery k = 1, - - - , N we have

€

vol(B) '

My — my = sup{f(x) : x € By} — inf{f(x): x € B} <

Hence
€

N N
U(f, P) — L(f, P) = kZ:jl(Mk — my)vol(By) < kg] ol(E) vol(By) < e.

Remark (1)

There are non continuous functions that are Riemann integrable. For example, let {By }Ik\':1 be a
covering of B by nonoverlapping boxes and let oy, - - - , any be real number, then
N

f= Z QUXgp, is not necessarily continuous but it is Riemann integrable.
k=1

Remark (2)

The Dirichlet function on [0, 1] is defined by f = X ;- Thatis f(x) = 1ifx € [0, 1]isa
rational number and f(x) = 0 if x € [0, 1] is an irrational number. The Dirichlet function is not
Riemann integrable. Indeed it follows from the density of Q in R that for every partition P of
[0, 1], L(f,P) = O and U(f,P) = 1.



The Lebesgue Integral of Nonnegative Simple Functions

Let ¢ be a measurable nonnegative simple function defined on a measurable set E C R? with
finite measure. Thus there exists a partition of E by a finite collection of disjoint measurable

n
sets {IE?j}]’.’=1 and real numbers a; > 0 such that ¢ = Z 4GX ;- The Lebesgue integral of ¢
j=1

/Emzéa,-m(gj).

over E is defined as:

Proposition (1)

Let ¢ and 1) be nonnegative measurable simple functions on a measurable set E. Then

[@+wr= [ ot [var.




Proof.
There are partitions of E by finite collections of disjoints measurable sets {A; }}\1:1 and { By }2/[=1 and nonnegative real
N M
numbers {u,},,] and {bk}k,1 such that ¢ = Z a,XA and ¢ = Z thB Since A; = kal (Aj N By) and
j=1
By = U}V:l (Aj N By), then the function ¢ + 1) can be written as

Pty = Zzaf+bk)XAﬁB

j=1k=1
Therefore
N M
[@+ s =35 @+ hmea 05
£ j=1k=1
N M
= Zajz m(A; N By) + Zbkz m(Aj N By)
j=1 k= k=1 j=1

=

= Za,m(A ) + Zbkm(Bk)

:/Ed_‘odx + ./}5de

Proposition (2)
Let ¢ be a nonnegative measurable simple functions on a measurable set E and \ > 0. Then

/EA¢dx:)\/E¢dx



Note that if ¢ is a nonnegative measurable simple function on the measurable set £ and if
F C E is a measurable subset, then the restriction of ¢|r to F is a nonnegative simple function

anddeﬁne/d)dx:/qS‘Fdx.
F F

Proposition (3)
Let ¢ and be a nonnegative measurable simple functions on a measurable set E. Then
> / ¢dx = 0 if and only if = 0 a.e.
E
» Let F C E be a measurable subset, then ¢ X is a nonnegative simple function and

/Equpdx:/F(j)dx,

» Let E), E; be disjoint measurable subsets of E such that E = E; U E. Then

/d)dx = ¢dx + ¢dx
E E;

Ey

Proposition (4)
Let ¢ and 1) be nonnegative simple functions on a measurable set E. If ¢ < 1), then

/Eqsdxs/Ewdx

Proof.

In this case ¢ — ¢ is a nonnegative simple function and ¢y = (¢ — ¢) + ¢. Proposition 1 implies / pdx < / pdx [
E E



Proposition (5)
Let ¢ and be a nonnegative simple functions on a measurable set E.

1. Let {Ax}2, be a collection of disjoint measurable sets such that E = | J;2 | Ay. Then

/E¢dx:ki::/Ak¢dx

2. Let {Ak}}(’il be an ascending collection of measurable sets (A, C A,1) such that

E =2, Ak. Then
/¢dx: lim / bdx
E n—oo fu

Proof.
N
Letp = Z “/XEJ- be the canonical representation of ¢. The set E is the disjoint union of Ey, - - - , Ey. For each
j=1
j=1,-++ ,Nlet4; ; = A N Ej. The collection {A Y/},‘Oil consists of disjoint measurable sets such that
Ej = U2 Axj. We have m(E;) = 32722 m(Ay ;). Therefore

N N oo oo N oo
[oa =3 am) =3 q (Z m<A1<J)> -> (Za/mw,n) =3 [ ea
E j=1 j=1 k=1 k=1 1 k=1"4

Part 2 is left as an exercise.



