
Real Analysis MAA 6616
Lecture 12

The Riemann Integral and
The Lebesgue Integral for Simple Functions



The Riemann Integral
Let f : B ⊂ Rq −→ R be a bounded function defined on the bounded box in
B = I1 × · · · × Iq, where Ij (j = 1, · · · , q) is a closed interval in R: Ij = [aj, bj]. The Riemann
Integral of f over B denoted

(R)
∫ b1

a1

· · ·
∫ bq

aq

f (x)dxq · · · dx1 or simply (R)
∫

B
f (x)dx

is defined as follows: Partition B into a finite collection P = {Bk}N
k=1 of nonoverlapping boxes

so that B =
⋃N

k=1 Bk (two boxes are nonoverlapping if Bj ∩ Bk has an empty interior for j ̸= k)

and vol(B) =
N∑

k=1

vol(Bk), where vol(B) = m(B) is the measure or volume of B. Let

mk = inf{f (x) : x ∈ Bk} and Mk = sup{f (x) : x ∈ Bk} .

The Lower and Upper Darboux Sums associated with the partition P are

L(f ,P) =
N∑

k=1

mkvol(Bk) and U(f ,P) =
N∑

k=1

Mkvol(Bk) .

The Lower and Upper Riemann Integrals of f over B are:

(R)
∫

B

f (x)dx = sup{L(f ,P) : P partition of B}

(R)
∫

B
f (x)dx = inf{U(f ,P) : P partition of B}



Since f is bounded, then the lower and upper Riemann integrals are finite and

(R)
∫

B

f (x)dx ≤ (R)
∫

B
f (x)dx .

The function f is said to be Riemann integrable if the lower and upper Riemann integrals are

equal and call this common value the Riemann integral of f and denote it
∫

B
f (x)dx

Note that if ϕ is a simple function with canonical representation ϕ =
∑N

k=1 αkχBk
, then

L(ϕ,P) =
N∑

k=1

αk vol(Bk) = U(ϕ,P) = (R)
∫

B
ϕ(x) dx .

It follows that the lower and upper Riemann integral of a function f can be rewritten as:

(R)
∫

B

f (x)dx = sup{(R)
∫

B
ϕ(x) dx : ϕ simple function and ϕ ≤ f}

(R)
∫

B
f (x)dx = inf{(R)

∫
B
ϕ(x) dx : ϕ simple function and ϕ ≥ f}

Theorem (1)
If f : B ⊂ Rq −→ R is continuous on the box B, then f is Riemann integrable over B.



Proof.
Since B is compact, then f is uniformly continuous on B. Let ϵ > 0. There exists δ > 0 such that for every x, y ∈ B with

|x − y| < δ, we have |f (x) − f (y)| <
ϵ

vol(B)
. Consider a partition P = {Bk}N

k=1 of B such that |x − y| < δ for every

x, y ∈ Bk for all k = 1, · · · , N. It follows that for every k = 1, · · · , N we have

Mk − mk = sup{f (x) : x ∈ Bk} − inf{f (x) : x ∈ Bk} ≤
ϵ

vol(B)
.

Hence

U(f ,P) − L(f ,P) =
N∑

k=1

(Mk − mk)vol(Bk) ≤
N∑

k=1

ϵ

vol(B)
vol(Bk) ≤ ϵ .

Remark (1)
There are non continuous functions that are Riemann integrable. For example, let {Bk}N

k=1 be a
covering of B by nonoverlapping boxes and let α1, · · · , αN be real number, then

f =
N∑

k=1

αkχBk
is not necessarily continuous but it is Riemann integrable.

Remark (2)
The Dirichlet function on [0, 1] is defined by f = χQ∩[0, 1] . That is f (x) = 1 if x ∈ [0, 1] is a
rational number and f (x) = 0 if x ∈ [0, 1] is an irrational number. The Dirichlet function is not
Riemann integrable. Indeed it follows from the density of Q in R that for every partition P of
[0, 1], L(f ,P) = 0 and U(f ,P) = 1.



The Lebesgue Integral of Nonnegative Simple Functions

Let ϕ be a measurable nonnegative simple function defined on a measurable set E ⊂ Rq with
finite measure. Thus there exists a partition of E by a finite collection of disjoint measurable

sets {Ej}n
j=1 and real numbers aj ≥ 0 such that ϕ =

n∑
j=1

ajχEj
. The Lebesgue integral of ϕ

over E is defined as: ∫
E
ϕ dx =

n∑
j=1

aj m(Ej) .

Proposition (1)
Let ϕ and ψ be nonnegative measurable simple functions on a measurable set E. Then∫

E
(ϕ+ ψ)dx =

∫
E
ϕdx +

∫
E
ψdx .



Proof.
There are partitions of E by finite collections of disjoints measurable sets {Aj}N

j=1 and {Bk}M
k=1 and nonnegative real

numbers {aj}N
j=1 and {bk}M

k=1 such that ϕ =
N∑

j=1

ajχAj
and ψ =

M∑
k=1

bkχBk
. Since Aj =

⋃M
k=1(Aj ∩ Bk) and

Bk =
⋃N

j=1(Aj ∩ Bk), then the function ϕ + ψ can be written as

ϕ + ψ =
N∑

j=1

M∑
k=1

(aj + bk)χAj∩Bk
.

Therefore ∫
E
(ϕ + ψ)dx =

N∑
j=1

M∑
k=1

(aj + bk) m(Aj ∩ Bk)

=
N∑

j=1

aj

M∑
k=1

m(Aj ∩ Bk) +
M∑

k=1

bk

N∑
j=1

m(Aj ∩ Bk)

=

N∑
j=1

aj m(Aj) +

M∑
k=1

bk m(Bk)

=

∫
E
ϕ dx +

∫
E
ψ dx

Proposition (2)
Let ϕ be a nonnegative measurable simple functions on a measurable set E and λ > 0. Then∫

E
λϕdx = λ

∫
E
ϕdx



Note that if ϕ is a nonnegative measurable simple function on the measurable set E and if
F ⊂ E is a measurable subset, then the restriction of ϕ|F to F is a nonnegative simple function

and define
∫

F
ϕdx =

∫
F
ϕ|F dx.

Proposition (3)
Let ϕ and be a nonnegative measurable simple functions on a measurable set E. Then

▶
∫

E
ϕdx = 0 if and only if ϕ = 0 a.e.

▶ Let F ⊂ E be a measurable subset, then ϕχF is a nonnegative simple function and∫
E
ϕχF dx =

∫
F
ϕ dx.

▶ Let E1, E2 be disjoint measurable subsets of E such that E = E1 ∪ E2. Then∫
E
ϕ dx =

∫
E1

ϕ dx +

∫
E2

ϕ dx

Proposition (4)
Let ϕ and ψ be nonnegative simple functions on a measurable set E. If ϕ ≤ ψ, then∫

E
ϕdx ≤

∫
E
ψdx

Proof.
In this caseψ− ϕ is a nonnegative simple function andψ = (ψ− ϕ) + ϕ. Proposition 1 implies

∫
E
ϕdx ≤

∫
E
ψdx



Proposition (5)
Let ϕ and be a nonnegative simple functions on a measurable set E.

1. Let {Ak}∞k=1 be a collection of disjoint measurable sets such that E =
⋃∞

k=1 Ak . Then

∫
E
ϕ dx =

∞∑
k=1

∫
Ak

ϕ dx

2. Let {Ak}∞k=1 be an ascending collection of measurable sets (An ⊂ An+1) such that
E =

⋃∞
k=1 Ak . Then ∫

E
ϕ dx = lim

n→∞

∫
An

ϕ dx

Proof.
Let ϕ =

N∑
j=1

ajχEj
be the canonical representation of ϕ. The set E is the disjoint union of E1, · · · , EN . For each

j = 1, · · · , N let Ak,j = Ak ∩ Ej . The collection {Ak,j}∞k=1 consists of disjoint measurable sets such that
Ej =

⋃∞
k=1 Ak,j . We have m(Ej) =

∑∞
k=1 m(Ak,j). Therefore

∫
E
ϕdx =

N∑
j=1

aj m(Ej) =
N∑

j=1

aj

 ∞∑
k=1

m(Ak,j)

 =
∞∑

k=1

 N∑
j=1

ajm(Ak,j)

 =
∞∑

k=1

∫
Aj
ϕ dx

Part 2 is left as an exercise.


