Real Analysis MAA 6616
 Lecture 13
 The Lebesgue Integral of a Bounded Function
 Over a Set of Finite Measure

Lebesgue Integrable Functions

Let $\phi=\sum_{j=1}^{N} a_{j} \chi_{E_{j}}$ be any measurable simple function on a measurable set E (so ϕ could take positive and negative values). Let $\phi^{+}=\max (\phi, 0)$ and $\phi^{-}=\max (-\phi, 0)$. So that both ϕ^{+} and ϕ^{-}are nonnegative simple functions on E and $\phi=\phi^{+}-\phi^{-}$. Define the Lebesgue integral of ϕ as

$$
\int_{E} \phi d x=\int_{E} \phi^{+} d x-\int_{E} \phi^{-} d x=\sum_{j=1}^{N} a_{j} m\left(E_{j}\right) .
$$

Let E be a measurable set with finite measure and let $f: E \longrightarrow \mathbb{R}$ be a bounded function. Define the lower and upper Lebesgue integrals of f over E as:

$$
\begin{aligned}
& \underline{\int}_{E} f(x) d x=\sup \left\{\int_{E} \phi(x) d x: \phi \text { simple function and } \phi \leq f\right\} \\
& \overline{\int_{E}} f(x) d x=\inf \left\{\int_{E} \psi(x) d x: \psi \text { simple function and } \psi \geq f\right\}
\end{aligned}
$$

Note that since f is bounded, then whenever the simple functions ϕ and ψ satisfy $\phi \leq f \leq \psi$ we have $\int_{E} \phi d x \leq \int_{E} \psi d x$ and it follows that $\int_{E} f d x \leq \int_{E} f d x$.
A bounded function f on a measurable set E with $m(E)<\infty$ is said to be Lebesgue integrable if $\int_{E} f d x=\overline{\int_{E}} f d x$. The common value is the Lebesgue integral of f on E and is denoted $\int_{E} f d x$.

The following theorem follows directly from the definitions of the Riemann and Lebesgue integrals.

Theorem (1)

Let $E \subset \mathbb{R}^{q}$ be a bounded and measurable set and $f: E \longrightarrow \mathbb{R}$ be a bounded function. Iff is Riemann integrable over E, then it is Lebesgue integrable over E.

Remark (1)

There exist Lebesgue integrable functions that are not Riemann integrable. For example, the Dirichlet function on $[0,1]$ given by $f(x)=1$ if x is rational and $f(x)=0$ if x is irrational is not Riemann integrable (Lecture 12). However, since $f=\chi_{E}$ where $E=\mathbb{Q} \cap[0,1]$ is measurable, we have $\int_{[0,1]} f d x=m(E)=0$.

Theorem (2)

Let $E \subset \mathbb{R}^{q}$ be a measurable set with finite measure and $f: E \longrightarrow \mathbb{R}$ be a bounded and measurable function. Thenf is Lebesgue integrable.

Proof.

Let $\epsilon>0$. It follows from the Simple Approximation Lemma (Lecture 10) that there exist simple functions ϕ_{ϵ} and ψ_{ϵ} on E such that $\phi_{\epsilon} \leq f \leq \psi_{\epsilon}$ and $\psi_{\epsilon}-\phi_{\epsilon} \leq \frac{\epsilon}{m(E)}$. Therefore

$$
0 \leq \bar{\int}_{E} f d x-\underline{\int}_{E} f d x \leq \int_{E} \psi_{\epsilon} d x-\int_{E} \phi_{\epsilon} d x=\int_{E}\left(\psi_{\epsilon}-\phi_{\epsilon}\right) d x \leq \epsilon
$$

Since $\epsilon>0$ is arbitrary we have $0=\overline{\int_{E}} f d x-\int_{E} f d x$ and f is Lebesgue integrable.

Theorem (3)

Let $f, g: E \longrightarrow \mathbb{R}$ be bounded and measurable on E with $m(E)<\infty$. Then

1. (Linearity) $\int_{E}(a f+b g) d x=a \int_{E} f d x+b \int_{E} g d x$ for any $a, b \in \mathbb{R}$.
2. (Monotonicity) Iff $\leq g$ a.e. on E, then $\int_{E} f d x \leq \int_{E} g d x$.

Proof.

1. The function $a f+b g$ is measurable and bounded and so integrable. Observe that if $S \subset \mathbb{R}$ is bounded and $a>0$, then $\sup (a S)=a \sup (S)$ and if $a<0, \sup (a S)=a \inf (S)$ where $a S=\{x=a s \in \mathbb{R}: s \in S\}$. We first show that \int_{E} af $d x=a \int_{E} f d x$. Suppose $a>0$. If ϕ and ψ are simple functions such that $\phi \leq a f \leq \psi$, then $\frac{\phi}{a}$ and $\frac{\psi}{a}$ are simple functions and $\frac{\phi}{a} \leq f \leq \frac{\psi}{a}$.
$a \int_{E} f d x=a \inf \left\{\int_{E} \psi d x: \psi \geq f\right\}=\inf \left\{\int_{E} \tilde{\psi} d x: \tilde{\psi} \geq a f\right\}=\int_{E} a f d x$
For $a<0$, we have $a \int_{E} f d x=a \inf \left\{\int_{E} \psi d x: \psi \geq f\right\}=\sup \left\{\int_{E} \tilde{\phi} d x: \tilde{\phi} \leq a f\right\}=\int_{E} a f d x$ We are left to prove $\int_{E}(f+g) d x=\int_{E} f d x+\int_{E} g d x$. Let $\epsilon>0$. There are simple functions ϕ_{1} and ϕ_{2} such that $\phi_{1} \leq f, \phi_{2} \leq g, \int_{E} \phi_{1} \geq \int_{E} f d x+\frac{\epsilon}{2}$ and $\int_{E} \phi_{2} \geq \int_{E} 2 d x+\frac{\epsilon}{2}$. Therefore

$$
\int_{E}(f+g) d x \geq \int_{E}\left(\phi_{1}+\phi_{2}\right) d x=\int_{E} \phi_{1} d x+\int_{E} \phi_{1} d x \geq \int_{E} f d x+\int_{E} g d x+\epsilon
$$

Similarly we can show by using upper simple functions that $\int_{E}(f+g) d x \leq \int_{E} f d x+\int_{E} g d x+\epsilon$. Since ϵ is arbitrary we have $\int_{E}(f+g) d x=\int_{E} f d x+\int_{E} g d x$
2. The function $h=g-f$ is measurable and $h \geq 0$ a.e. on E. Hence for any simple function $\psi \geq h$ we have $\psi \geq 0$ a.e. and so $\int_{E} \psi d x \geq 0$. It follows that $\int_{E} h d x \geq$. The linearity of the integral implies that $\int_{E}^{-} g d x \geq \int_{E} f d x$.

Theorem (4)

Let $E \subset \mathbb{R}^{q}$ be a measurable set with finite measure and $f: E \longrightarrow \mathbb{R}$ be a bounded and measurable function. Let $A \subset E$ and $B \subset E$ be disjoint and measurable. Then

$$
\int_{A \cup B} f d x=\int_{A} f d x+\int_{B} f d x .
$$

Proof.

First note that if $F \subset E$ is measurable and ϕ is a simple function on E, then $\phi \chi_{F}$ is a simple function on F (and on E) and $\int_{F} \phi d x=\int_{E} \phi \chi_{F} d x$. It follows that from this observation and the definition of the Lebesgue integral that for any bounded measurable function f we have $\int_{F} f d x=\int_{E} f \chi_{F} d x$.
Since A and B are disjoint then $\chi_{A \cup B}=\chi_{A}+\chi_{B}$. We have then

$$
\int_{A \cup B} f d x=\int_{E} f \chi_{A \cup B} d x=\int_{E} f\left(\chi_{A}+\chi_{B}\right) d x=\int_{E} f \chi_{A} d x+\int_{E} f \chi_{B} d x=\int_{A} f d x+\int_{B} f d x
$$

Theorem (5)

Let $E \subset \mathbb{R}^{q}$ be a measurable set with finite measure and $f: E \longrightarrow \mathbb{R}$ be a bounded and measurable function. Then

$$
\left|\int_{E} f d x\right| \leq \int_{E}|f| d x
$$

Proof.

The function $|f|$ is bounded and measurable and $-|f| \leq f \leq|f|$. Therefore $-\int_{E}|f| d x \leq \int_{E} f d x \leq \int_{E}|f| d x$.
The following example shows that if $\left\{f_{n}\right\}_{n}$ is a sequence of measurable functions with $f_{n} \longrightarrow f$, then the sequence of integrals $\int_{E} f_{n} d x$ might not converge to $\int_{E} d x$. Consider the sequence of functions $f_{n}(x)$ on $(0,1)$ given by $f_{n}(x)=n$ for $0<x<1 / n$ and $f_{n}(x)=0$ for $1 / n \leq x<1$.

The sequence f_{n} converges pointwise to $f=0$ but $\int_{0}^{1} f_{n} d x=1$ does not converge to $\int_{0}^{1} 0 d x=0$.

Theorem (6)

Let $\left\{f_{n}\right\}$ be a sequence of bounded measurable functions on a set E with finite measure. Suppose that $\left\{f_{n}\right\}$ converges uniformly on E to a function f. Then $\lim _{n \rightarrow \infty} \int_{E} f_{n} d x=\int_{E} f d x$.

Proof.

Since the convergence is uniform and each f_{n} is bounded, then the limit f is bounded. Also f is measurable (since a pointwise limit of measurable functions is measurable). Hence f is integrable. Let $\epsilon>0$. It follows from the uniform convergence that there exists $N>0$ such that for every $n>N$ we have $\left|f_{n}-f\right| \leq \frac{\epsilon}{m(E)}$ on E. Therefore,
$\left|\int_{E} f_{n} d x-\int_{E} f d x\right|=\left|\int_{E}\left(f_{n}-f\right) d x\right| \leq \int_{E}\left|f_{n}-f\right| d x \leq \epsilon$.

Theorem (7: Bounded Convergence Theorem)

Let $\left\{f_{n}\right\}$ be a sequence of measurable functions on a set E with finite measure. Suppose that $\left\{f_{n}\right\}$ is uniformly bounded (i.e. there exists $M>0$ such that $\left|f_{n}\right| \leq M$ for all $n \in \mathbb{N}$) and suppose that the sequence converges pointwise to f on E. Then $\lim _{n \rightarrow \infty} \int_{E} f_{n} d x=\int_{E} f d x$.

Proof.

First note that since $f_{n} \longrightarrow f$ pointwise and $\left|f_{n}\right| \leq M$ for all M, then $|f| \leq M$. Also since a pointwise limit of measurable functions is measurable, then f is measurable and so integrable.
Let $\epsilon>0$. It follows from Egorov's Theorem that there exists a measurable set $F \subset E$ with $m(E \backslash F)<\frac{\epsilon}{4 M}$ such that $f_{n} \longrightarrow f$ uniformly on F. Let $N \in \mathbb{N}$ such that $\left|f_{n}-f\right|<\frac{\epsilon}{2 m(E)}$ for all $n>N$. We have

$$
\begin{aligned}
\left|\int_{E} f_{n} d x-\int_{E} f d x\right| & =\left|\int_{E}\left(f_{n}-f\right) d x\right| \\
& =\left|\int_{F}\left(f_{n}-f\right) d x+\int_{E \backslash F} f_{n} d x-\int_{E \backslash F} f d x\right| \\
& \leq \int_{F}\left|f_{n}-f\right| d x+\int_{E \backslash F}\left|f_{n}\right| d x+\int_{E \backslash F}|f| d x \\
& \leq \frac{\epsilon}{2 m(E)} m(F)+M m(E \backslash F)+M m(E \backslash F) \leq \epsilon
\end{aligned}
$$

