Real Analysis MAA 6616
Lecture 13
The Lebesgue Integral of a Bounded Function
Over a Set of Finite Measure



Lebesgue Integrable Functions
N
Let ¢ = Z X, be any measurable simple function on a measurable set E (so ¢ could take
j=1
positive and negative values). Let ¢ = max(¢,0) and ¢~ = max(—¢,0). So that both ¢+
and ¢~ are nonnegative simple functions on E and ¢ = ¢+ — ¢—. Define the Lebesgue

integral of ¢ as
N
/E¢dx:/E¢+dx—/E¢_dx:;ajm(E)

Let E be a measurable set with finite measure and let f : E — R be a bounded function.
Define the lower and upper Lebesgue integrals of f over E as:

/ f(x)dx = sup { / o(x : ¢ simple function and ¢ < f }

/ f(x)dx = inf {/ 1(x) dx : ) simple function and v Zf}
E E

Note that since f is bounded, then whenever the simple functions ¢ and 1 satisfy ¢ < f < o
we have / ¢dx < / % dx and it follows that / fdx < / fdx.
A bounded function f on a measurable set E with m(E) < oo is said to be Lebesgue integrable

if / fdx = / fdx. The common value is the Lebesgue integral of f on E and is denoted / fdx.
J g E E



The following theorem follows directly from the definitions of the Riemann and Lebesgue
integrals.
Theorem (1)

Let E C RY be a bounded and measurable set andf : E — R be a bounded function. If f is
Riemann integrable over E, then it is Lebesgue integrable over E.

Remark (1)

There exist Lebesgue integrable functions that are not Riemann integrable. For example, the
Dirichlet function on [0, 1] given by f(x) = 1 if x is rational and f(x) = 0 if x is irrational is
not Riemann integrable (Lecture 12). However, since f = x, where E = QN [0, 1] is

measurable, we have / fdx =m(E) = 0.
[0, 1]

Theorem (2)

Let E C RY be a measurable set with finite measure and f : E — R be a bounded and
measurable function. Then f is Lebesgue integrable.

Proof.

Let € > 0. It follows from the Simple Approximation Lemma (Lecture 10) that there exist simple functions ¢¢ and Y ¢ on E

such that pe < f < e and e — pe < ———. Therefore
m(E)
0< [ [ < [wear— [ peas= [(we - vom <.
E J g E E E
Since € > 0 is arbitrary we have 0 = [ fdx — /fdx and f is Lebesgue integrable.
E L E



Theorem (3)
Letf, g : E — R be bounded and measurable on E with m(E) < co. Then

L.

(Linearity)/(af+bg)dx:a/fdx+b/gdxforany a, b €R.
E E E

2. (Monotonicity) If f < g a.e. on E, then /fdx < /gdx.
E E

Proof.

The function af + bg is measurable and bounded and so integrable. Observe that if S C R is bounded and a > 0,
then sup(aS) = asup(S) andifa < 0, sup(aS) = ainf(S) whereaS = {x =as € R: s € S}. We first

show that / afdx = a / f dx. Suppose a > 0. If ¢ and ¢ are simple functions such that ¢ < af < 1), then f
E E a
P

and — are simple functions and ? <f< -

a/E;dx:uinf{/Ewcbc: ':Zf} :ainf{/E’LZvdx: ILZaf}:/Eafdx

Fora < 0, we have a/fdx:ainf{/ pdx : P Zf} :sup{/ ddx: ¢ < af} :/afdx
E E E E
We are left to prove [i.(f + g)dx = [p fdx 4+ [ gdx. Let € > 0. There are simple functions ¢ and ¢, such that
¢1 <f, 2 < g /¢1 > /de+ Eand /452 > /2dx+ E.Therefore
E E 2 E E 2

/E(f-‘rg)d’CZ/E(d)l+¢2)dx=/E¢1dx+/Ed>1de/Efdx-‘r/Egd’f-‘re»

Similarly we can show by using upper simple functions that / (f + g)dx < /fdx + / gdx + €. Since € is

arbitrary we have/(f+g)dx = /_fdx+/gdx
E E E



2. The function h = g — f is measurable and 4 > 0 a.e. on E. Hence for any simple function ¢ > h we have ¢» > 0
a.e. and so / pdx > 0. It follows that / hdx >. The linearity of the integral implies that / gdx > /fdx.
E E JE E

Theorem (4)

Let E C RY be a measurable set with finite measure and f : E — R be a bounded and
measurable function. Let A C E and B C E be disjoint and measurable. Then

AUdex:/Afdx+/lgfdx.

Proof.

First note that if ¥ C E is measurable and ¢ is a simple function on E, then ¢ is a simple function on F' (and on E) and

/ pdx = / X dx. It follows that from this observation and the definition of the Lebesgue integral that for any bounded
F E

measurable function f we have / fdx = /fXFdx.
F E
Since A and B are disjoint then Xaup = X4 T Xp- ‘We have then

AUB/dx=/;f‘xAUB¢x=/;f‘(xA +><B)dx:/;/'XAdX+/EfXBdX=//;fdx+/I;de~



Theorem (5)

Let E C R? be a measurable set with finite measure and f : E — R be a bounded and

measurable function. Then
'/fdx < /[f|dx.
E E

Proof.

The function |f| is bounded and measurable and — |f| < f < |f|. Therefore — / Ifldx < /fdx < / |f] dx. O
E E E

The following example shows that if {f, }. is a sequence of measurable functions with f, — f,

then the sequence of integrals [ f,dx might not converge to [ fdx. Consider the sequence of

E E
functions f, (x) on (0, 1) given by f,(x) = nfor0 < x < 1/nand f,(x) = 0for1/n < x < 1.

L

T

1
The sequence f;, converges pointwise to f = 0 but / Jfadx = 1 does not converge to
0

1
/de:O.
0



Convergence Theorems

Theorem (6)

Let {f,} be a sequence of bounded measurable functions on a set E with finite measure.

Suppose that {f, } converges uniformly on E to a function f. Then lim / Jfudx = / fdx.
n oo E E

Proof.

Since the convergence is uniform and each f;, is bounded, then the limit f is bounded. Also f is measurable (since a pointwise

limit of measurable functions is measurable). Hence f is integrable. Let € > 0. It follows from the uniform convergence that
€

there exists N > 0 such that for every n > N we have |f,, — f| <

‘/Efndxf /Efdx - ’/E(f — f)dx

Theorem (7: Bounded Convergence Theorem)

Let {fu} be a sequence of measurable functions on a set E with finite measure. Suppose that
{fu} is uniformly bounded (i.e. there exists M > 0 such that |f,| < M for alln € N) and

on E. Therefore,

m(E)

S‘/Elfnff\dXSe- O

suppose that the sequence converges pointwise to f on E. Then lim / Judx = / Jdx.
n— 00 E E



Proof.

First note that since f, — f pointwise and |f,,| < M for all M, then |f| < M. Also since a pointwise limit of measurable
functions is measurable, then f is measurable and so integrable.

€
Let € > 0. It follows from Egorov’s Theorem that there exists a measurable set ¥ C E with m(E\F) < Y such that

€
fo — funiformly on F. Let N € N such that |f, — f] <

- o

foralln > N. We have

2m(E)

-| Lo —f)dX‘
/F G — P+ /E e E\F.de‘
/F\ﬁl—f|dx+/E\F vn|dx+/w I dx

€

~ 2m(E)

IN

m(F) + Mm(E\F) + Mm(E\F) < ¢



