Real Analysis MAA 6616 Lecture 13 The Lebesgue Integral of a Bounded Function Over a Set of Finite Measure

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Lebesgue Integrable Functions

Let
$$\phi = \sum_{j=1}^{N} a_j \chi_{E_j}$$
 be any measurable simple function on a measurable set *E* (so ϕ could take

positive and negative values). Let $\phi^+ = \max(\phi, 0)$ and $\phi^- = \max(-\phi, 0)$. So that both ϕ^+ and ϕ^- are nonnegative simple functions on *E* and $\phi = \phi^+ - \phi^-$. Define the Lebesgue integral of ϕ as

$$\int_{E} \phi \, dx = \int_{E} \phi^{+} \, dx - \int_{E} \phi^{-} \, dx = \sum_{j=1}^{N} a_{j} \, m(E_{j}) \, .$$

Let *E* be a measurable set with finite measure and let $f : E \longrightarrow \mathbb{R}$ be a bounded function. Define the lower and upper Lebesgue integrals of *f* over *E* as:

$$\underbrace{\int_{E} f(x)dx}_{E} = \sup\left\{\int_{E} \phi(x) \, dx: \ \phi \text{ simple function and } \phi \leq f\right\}$$

$$\overline{\int}_{E} f(x)dx = \inf\left\{\int_{E} \psi(x) \, dx: \ \psi \text{ simple function and } \psi \geq f\right\}$$

Note that since f is bounded, then whenever the simple functions ϕ and ψ satisfy $\phi \le f \le \psi$ we have $\int_E \phi \, dx \le \int_E \psi \, dx$ and it follows that $\int_{-E} f \, dx \le \overline{\int}_E f \, dx$. A bounded function f on a measurable set E with $m(E) < \infty$ is said to be Lebesgue integrable if $\int_{-E} f \, dx = \overline{\int}_E f \, dx$. The common value is the Lebesgue integral of f on E and is denoted $\int_E f \, dx$. The following theorem follows directly from the definitions of the Riemann and Lebesgue integrals.

Theorem (1)

Let $E \subset \mathbb{R}^q$ be a bounded and measurable set and $f : E \longrightarrow \mathbb{R}$ be a bounded function. If f is Riemann integrable over E, then it is Lebesgue integrable over E.

Remark (1)

There exist Lebesgue integrable functions that are not Riemann integrable. For example, the Dirichlet function on [0, 1] given by f(x) = 1 if x is rational and f(x) = 0 if x is irrational is not Riemann integrable (Lecture 12). However, since $f = \chi_E$ where $E = \mathbb{Q} \cap [0, 1]$ is

measurable, we have $\int_{[0, 1]}^{1} f dx = m(E) = 0.$

Theorem (2)

Let $E \subset \mathbb{R}^q$ be a measurable set with finite measure and $f : E \longrightarrow \mathbb{R}$ be a bounded and measurable function. Then f is Lebesgue integrable.

Proof.

Let $\epsilon > 0$. It follows from the Simple Approximation Lemma (Lecture 10) that there exist simple functions ϕ_{ϵ} and ψ_{ϵ} on E such that $\phi_{\epsilon} \leq f \leq \psi_{\epsilon}$ and $\psi_{\epsilon} - \phi_{\epsilon} \leq \frac{\epsilon}{m(E)}$. Therefore

$$0 \leq \overline{\int}_E f dx - \int_{-E} f dx \leq \int_E \psi_\epsilon dx - \int_E \phi_\epsilon dx = \int_E (\psi_\epsilon - \phi_\epsilon) dx \leq \epsilon \; .$$

Since $\epsilon > 0$ is arbitrary we have $0 = \int_{E} f dx = \int_{E} f dx$ and f is Lebesgue integrable.

Theorem (3)

Let $f, g : E \longrightarrow \mathbb{R}$ be bounded and measurable on E with $m(E) < \infty$. Then

1. (Linearity)
$$\int_{E} (af + bg) dx = a \int_{E} f dx + b \int_{E} g dx$$
 for any $a, b \in \mathbb{R}$.

2. (Monotonicity) If
$$f \le g$$
 a.e. on E, then $\int_E f \, dx \le \int_E g \, dx$.

Proof.

1. The function af + bg is measurable and bounded and so integrable. Observe that if $S \subset \mathbb{R}$ is bounded and a > 0, then $\sup(aS) = a \sup(S)$ and if a < 0, $\sup(aS) = a \inf(S)$ where $aS = \{x = as \in \mathbb{R} : s \in S\}$. We first show that $\int_E af dx = a \int_E f dx$. Suppose a > 0. If ϕ and ψ are simple functions such that $\phi \le af \le \psi$, then $\frac{\phi}{a}$ and $\frac{\psi}{a}$ are simple functions and $\frac{\phi}{a} \le f \le \frac{\psi}{a}$. $a \int_E f dx = a \inf\{\int_E \psi dx : \psi \ge f\} = \inf\{\int_E \tilde{\psi} dx : \tilde{\psi} \ge af\} = \int_E af dx$ For a < 0, we have $a \int_E f dx = a \inf\{\int_E \psi dx : \psi \ge f\} = \sup\{\int_E \tilde{\phi} dx : \tilde{\phi} \le af\} = \int_E af dx$ We are left to prove $\int_E (f + g) dx = \int_E f dx + \int_E g dx$. Let $\epsilon > 0$. There are simple functions ϕ_1 and ϕ_2 such that $\phi_1 \le f$, $\phi_2 \le g$, $\int_E \phi_1 \ge \int_E f dx + \frac{\epsilon}{2}$ and $\int_E \phi_2 \ge \int_E 2dx + \frac{\epsilon}{2}$. Therefore

$$\int_E (f+g)dx \ge \int_E (\phi_1 + \phi_2)dx = \int_E \phi_1 dx + \int_E \phi_1 dx \ge \int_E f dx + \int_E g dx + \epsilon.$$

Similarly we can show by using upper simple functions that $\int_E (f+g)dx \le \int_E fdx + \int_E gdx + \epsilon$. Since ϵ is arbitrary we have $\int_E (f+g)dx = \int_E fdx + \int_E gdx$

▲□▶▲圖▶▲≣▶▲≣▶ ▲国 のへで

2. The function h = g - f is measurable and $h \ge 0$ a.e. on *E*. Hence for any simple function $\psi \ge h$ we have $\psi \ge 0$ a.e. and so $\int_E \psi dx \ge 0$. It follows that $\int_E h dx \ge$. The linearity of the integral implies that $\int_E g dx \ge \int_E f dx$.

Theorem (4)

Let $E \subset \mathbb{R}^q$ be a measurable set with finite measure and $f : E \longrightarrow \mathbb{R}$ be a bounded and measurable function. Let $A \subset E$ and $B \subset E$ be disjoint and measurable. Then

$$\int_{A\cup B} fdx = \int_A fdx + \int_B fdx$$

Proof.

First note that if $F \subset E$ is measurable and ϕ is a simple function on E, then $\phi \chi_F$ is a simple function on F (and on E) and $\int_F \phi dx = \int_E \phi \chi_F dx$. It follows that from this observation and the definition of the Lebesgue integral that for any bounded measurable function f we have $\int_F f dx = \int_E f \chi_F dx$. Since A and B are disjoint then $\chi_{A \cup B} = \chi_A + \chi_B$. We have then

$$\int_{A\cup B} fdx = \int_E f\chi_{A\cup B} dx = \int_E f(\chi_A + \chi_B) dx = \int_E f\chi_A dx + \int_E f\chi_B dx = \int_A fdx + \int_B fdx$$

Theorem (5)

Let $E \subset \mathbb{R}^q$ be a measurable set with finite measure and $f : E \longrightarrow \mathbb{R}$ be a bounded and measurable function. Then

$$\left|\int_{E} f dx\right| \leq \int_{E} |f| \, dx$$

Proof.

The function |f| is bounded and measurable and $-|f| \le f \le |f|$. Therefore $-\int_E |f| \, dx \le \int_E f \, dx \le \int_E |f| \, dx$. The following example shows that if $\{f_n\}_n$ is a sequence of measurable functions with $f_n \longrightarrow f$, then the sequence of integrals $\int_E f_n \, dx$ might not converge to $\int_E f \, dx$. Consider the sequence of functions $f_n(x)$ on (0, 1) given by $f_n(x) = n$ for 0 < x < 1/n and $f_n(x) = 0$ for $1/n \le x < 1$.

The sequence f_n converges pointwise to f = 0 but $\int_0^1 f_n dx = 1$ does not converge to $\int_0^1 0 dx = 0.$

Theorem (6)

Let $\{f_n\}$ be a sequence of bounded measurable functions on a set E with finite measure. Suppose that $\{f_n\}$ converges uniformly on E to a function f. Then $\lim_{n \to \infty} \int_{\Gamma} f_n dx = \int_{\Gamma} f dx$.

Proof.

Since the convergence is uniform and each f_n is bounded, then the limit f is bounded. Also f is measurable (since a pointwise limit of measurable functions is measurable). Hence f is integrable. Let $\epsilon > 0$. It follows from the uniform convergence that there exists N > 0 such that for every n > N we have $|f_n - f| \le \frac{\epsilon}{m(E)}$ on E. Therefore,

$$\left|\int_{E} f_{n} dx - \int_{E} f dx\right| = \left|\int_{E} (f_{n} - f) dx\right| \le \int_{E} |f_{n} - f| dx \le \epsilon.$$

Theorem (7: Bounded Convergence Theorem)

Let $\{f_n\}$ be a sequence of measurable functions on a set E with finite measure. Suppose that $\{f_n\}$ is uniformly bounded (i.e. there exists M > 0 such that $|f_n| \le M$ for all $n \in \mathbb{N}$) and suppose that the sequence converges pointwise to f on E. Then $\lim_{n\to\infty} \int_E f_n dx = \int_E f dx$.

Proof.

First note that since $f_n \longrightarrow f$ pointwise and $|f_n| \le M$ for all M, then $|f| \le M$. Also since a pointwise limit of measurable functions is measurable, then f is measurable and so integrable.

Let $\epsilon > 0$. It follows from Egorov's Theorem that there exists a measurable set $F \subset E$ with $m(E \setminus F) < \frac{\epsilon}{4M}$ such that

 $f_n \longrightarrow f$ uniformly on F. Let $N \in \mathbb{N}$ such that $|f_n - f| < \frac{\epsilon}{2m(E)}$ for all n > N. We have

$$\begin{aligned} \left| \int_{E} f_{n} dx - \int_{E} f dx \right| &= \left| \int_{E} (f_{n} - f) dx \right| \\ &= \left| \int_{F} (f_{n} - f) dx + \int_{E \setminus F} f_{n} dx - \int_{E \setminus F} f dx \right| \\ &\leq \int_{F} \left| f_{n} - f \right| dx + \int_{E \setminus F} \left| f_{n} \right| dx + \int_{E \setminus F} \left| f \right| dx \\ &\leq \frac{\epsilon}{2m(E)} m(F) + M m(E \setminus F) + M m(E \setminus F) \leq \epsilon \end{aligned}$$

▲□▶▲圖▶▲圖▶▲圖▶ 圖 のへで