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The Lebesgue Integral of a Bounded Function
Over a Set of Finite Measure



Lebesgue Integrable Functions

Let ϕ =
N∑

j=1

ajχEj
be any measurable simple function on a measurable set E (so ϕ could take

positive and negative values). Let ϕ+ = max(ϕ, 0) and ϕ− = max(−ϕ, 0). So that both ϕ+

and ϕ− are nonnegative simple functions on E and ϕ = ϕ+ − ϕ−. Define the Lebesgue
integral of ϕ as ∫

E
ϕ dx =

∫
E
ϕ+ dx −

∫
E
ϕ− dx =

N∑
j=1

aj m(Ej) .

Let E be a measurable set with finite measure and let f : E −→ R be a bounded function.
Define the lower and upper Lebesgue integrals of f over E as:∫

E

f (x)dx = sup

{∫
E
ϕ(x) dx : ϕ simple function and ϕ ≤ f

}
∫

E
f (x)dx = inf

{∫
E
ψ(x) dx : ψ simple function and ψ ≥ f

}
Note that since f is bounded, then whenever the simple functions ϕ and ψ satisfy ϕ ≤ f ≤ ψ

we have
∫

E
ϕ dx ≤

∫
E
ψ dx and it follows that

∫
E

fdx ≤
∫

E
fdx.

A bounded function f on a measurable set E with m(E) <∞ is said to be Lebesgue integrable

if
∫

E

fdx =

∫
E
fdx. The common value is the Lebesgue integral of f on E and is denoted

∫
E
fdx.



The following theorem follows directly from the definitions of the Riemann and Lebesgue
integrals.

Theorem (1)
Let E ⊂ Rq be a bounded and measurable set and f : E −→ R be a bounded function. If f is
Riemann integrable over E, then it is Lebesgue integrable over E.

Remark (1)
There exist Lebesgue integrable functions that are not Riemann integrable. For example, the
Dirichlet function on [0, 1] given by f (x) = 1 if x is rational and f (x) = 0 if x is irrational is
not Riemann integrable (Lecture 12). However, since f = χE where E = Q ∩ [0, 1] is

measurable, we have
∫
[0, 1]

fdx = m(E) = 0.

Theorem (2)
Let E ⊂ Rq be a measurable set with finite measure and f : E −→ R be a bounded and
measurable function. Then f is Lebesgue integrable.

Proof.
Let ϵ > 0. It follows from the Simple Approximation Lemma (Lecture 10) that there exist simple functions ϕϵ and ψϵ on E

such that ϕϵ ≤ f ≤ ψϵ and ψϵ − ϕϵ ≤
ϵ

m(E)
. Therefore

0 ≤
∫

E
fdx −

∫
E

fdx ≤
∫

E
ψϵdx −

∫
E
ϕϵdx =

∫
E
(ψϵ − ϕϵ)dx ≤ ϵ .

Since ϵ > 0 is arbitrary we have 0 =

∫
E
fdx −

∫
E
fdx and f is Lebesgue integrable.



Theorem (3)
Let f , g : E −→ R be bounded and measurable on E with m(E) <∞. Then

1. (Linearity)
∫

E
(af + bg) dx = a

∫
E

f dx + b
∫

E
g dx for any a, b ∈ R.

2. (Monotonicity) If f ≤ g a.e. on E, then
∫

E
f dx ≤

∫
E

g dx.

Proof.
1. The function af + bg is measurable and bounded and so integrable. Observe that if S ⊂ R is bounded and a > 0,

then sup(aS) = a sup(S) and if a < 0, sup(aS) = a inf(S) where aS = {x = as ∈ R : s ∈ S}. We first

show that
∫

E
af dx = a

∫
E

f dx. Suppose a > 0. If ϕ and ψ are simple functions such that ϕ ≤ af ≤ ψ, then
ϕ

a

and
ψ

a
are simple functions and

ϕ

a
≤ f ≤

ψ

a
.

a
∫

E
f dx = a inf

{∫
E
ψdx : ψ ≥ f

}
= inf

{∫
E
ψ̃dx : ψ̃ ≥ af

}
=

∫
E

af dx

For a < 0, we have a
∫

E
f dx = a inf

{∫
E
ψdx : ψ ≥ f

}
= sup

{∫
E
ϕ̃dx : ϕ̃ ≤ af

}
=

∫
E

af dx

We are left to prove
∫

E(f + g)dx =
∫

E fdx +
∫

E gdx. Let ϵ > 0. There are simple functions ϕ1 and ϕ2 such that

ϕ1 ≤ f , ϕ2 ≤ g,
∫

E
ϕ1 ≥

∫
E

fdx +
ϵ

2
and

∫
E
ϕ2 ≥

∫
E

2dx +
ϵ

2
. Therefore

∫
E
(f + g)dx ≥

∫
E
(ϕ1 + ϕ2)dx =

∫
E
ϕ1dx +

∫
E
ϕ1dx ≥

∫
E

fdx +

∫
E

gdx + ϵ.

Similarly we can show by using upper simple functions that
∫

E
(f + g)dx ≤

∫
E

fdx +

∫
E

gdx + ϵ. Since ϵ is

arbitrary we have
∫

E
(f + g)dx =

∫
E

fdx +

∫
E

gdx



2. The function h = g − f is measurable and h ≥ 0 a.e. on E. Hence for any simple function ψ ≥ h we have ψ ≥ 0

a.e. and so
∫

E
ψdx ≥ 0. It follows that

∫
E

hdx ≥. The linearity of the integral implies that
∫

E
gdx ≥

∫
E

fdx.

Theorem (4)
Let E ⊂ Rq be a measurable set with finite measure and f : E −→ R be a bounded and
measurable function. Let A ⊂ E and B ⊂ E be disjoint and measurable. Then∫

A∪B
fdx =

∫
A

fdx +
∫

B
fdx .

Proof.
First note that if F ⊂ E is measurable and ϕ is a simple function on E, then ϕχF is a simple function on F (and on E) and∫

F
ϕdx =

∫
E
ϕχF dx. It follows that from this observation and the definition of the Lebesgue integral that for any bounded

measurable function f we have
∫

F
fdx =

∫
E

fχF dx.

Since A and B are disjoint then χA∪B = χA + χB . We have then

∫
A∪B

fdx =

∫
E

fχA∪B dx =

∫
E

f (χA + χB )dx =

∫
E

fχA dx +

∫
E

fχB dx =

∫
A

fdx +

∫
B

fdx.



Theorem (5)
Let E ⊂ Rq be a measurable set with finite measure and f : E −→ R be a bounded and
measurable function. Then ∣∣∣∣∫

E
fdx

∣∣∣∣ ≤
∫

E
|f | dx .

Proof.
The function |f | is bounded and measurable and − |f | ≤ f ≤ |f |. Therefore −

∫
E
|f | dx ≤

∫
E

fdx ≤
∫

E
|f | dx.

The following example shows that if {fn}n is a sequence of measurable functions with fn −→ f ,

then the sequence of integrals
∫

E
fndx might not converge to

∫
E
fdx. Consider the sequence of

functions fn(x) on (0, 1) given by fn(x) = n for 0 < x < 1/n and fn(x) = 0 for 1/n ≤ x < 1.

The sequence fn converges pointwise to f = 0 but
∫ 1

0
fndx = 1 does not converge to∫ 1

0
0 dx = 0.



Convergence Theorems

Theorem (6)
Let {fn} be a sequence of bounded measurable functions on a set E with finite measure.

Suppose that {fn} converges uniformly on E to a function f . Then lim
n→∞

∫
E

fndx =

∫
E

fdx.

Proof.
Since the convergence is uniform and each fn is bounded, then the limit f is bounded. Also f is measurable (since a pointwise

limit of measurable functions is measurable). Hence f is integrable. Let ϵ > 0. It follows from the uniform convergence that

there exists N > 0 such that for every n > N we have |fn − f | ≤
ϵ

m(E)
on E. Therefore,∣∣∣∣∫

E
fndx −

∫
E

fdx
∣∣∣∣ =

∣∣∣∣∫
E
(fn − f )dx

∣∣∣∣ ≤
∫

E
|fn − f | dx ≤ ϵ.

Theorem (7: Bounded Convergence Theorem)
Let {fn} be a sequence of measurable functions on a set E with finite measure. Suppose that
{fn} is uniformly bounded (i.e. there exists M > 0 such that |fn| ≤ M for all n ∈ N) and

suppose that the sequence converges pointwise to f on E. Then lim
n→∞

∫
E

fndx =

∫
E

fdx.



Proof.
First note that since fn −→ f pointwise and |fn| ≤ M for all M, then |f | ≤ M. Also since a pointwise limit of measurable
functions is measurable, then f is measurable and so integrable.

Let ϵ > 0. It follows from Egorov’s Theorem that there exists a measurable set F ⊂ E with m(E\F) <
ϵ

4M
such that

fn −→ f uniformly on F. Let N ∈ N such that |fn − f | <
ϵ

2m(E)
for all n > N. We have

∣∣∣∣∫
E

fndx −
∫

E
fdx

∣∣∣∣ =

∣∣∣∣∫
E
(fn − f )dx

∣∣∣∣
=

∣∣∣∣∣
∫

F
(fn − f )dx +

∫
E\F

fndx −
∫

E\F
fdx

∣∣∣∣∣
≤

∫
F
|fn − f | dx +

∫
E\F

|fn| dx +

∫
E\F

|f | dx

≤
ϵ

2m(E)
m(F) + M m(E\F) + M m(E\F) ≤ ϵ


