
Real Analysis MAA 6616
Lecture 14

The Lebesgue Integral of Nonnegative Functions



In Lecture 13 we defined the Lebesgue integral of a bounded measurable function over a set of
finite measure. Now we will consider integrals of measurable functions, not necessarily
bounded, over measurable sets, not necessarily with finite measure. We start with nonnegative
functions.

A measurable function h : E −→ R is said to have a finite support if there exists a set E0 ⊂ E
with m(E0) < ∞ such that h = 0 on E\E0. Define M0(E) as the space of bounded and
measurable functions with finite suport in E:

M0(E) = {h : E −→ R : h bounded, measurable, and with finite support}

Note that since h is bounded and with finite support E0 ⊂ E, then∫
E0

hdx =

∫
E

hχE0
dx =

∫
E

hdx.

Let E ⊂ Rq be a measurable set and let f : E −→ [0, ∞]. Define the (Lebesgue) integral of f
over E as: ∫

E
fdx = sup

{∫
E

hdx : h ∈ M0(E) and 0 ≤ h ≤ f
}

Note
∫

E
fdx and could be ∞.



Theorem (1. Chebychev’s Inequality)
Let E ⊂ Rq be a measurable set and f : E −→ [0, ∞] be a measurable function. Then for
every λ > 0

m ({f > λ}) ≤
1
λ

∫
E

f dx .

Proof.
Let Eλ = {f > λ}. consider two cases depending on wether the measure of Eλ is finite or not.

▶ Case m(Eλ) < ∞: The function h = λχEλ
∈ M0(E) (it is measurable, bounded, and with finite support) and

0 ≤ h ≤ f . Therefore ∫
E

h dx =

∫
Eλ

λ dx = λm(Eλ) ≤
∫

E
f dx

and the conclusion of the theorem follows.
▶ Case m(Eλ) = ∞: For n ∈ N, let Bn(0) be the ball centered at 0 with radius n and let Eλ,n = Eλ ∩ Bn(0). Then

Eλ,n is bounded and limn→∞ m(Eλ,n) = m(E) = ∞. The function hn = λχEλ,n
∈ M0(E), 0 ≤ h ≤ f ,

and
∫

E
hn dx = λm(Eλ,n). Therefore

λm(Eλ) = ∞ = lim
n→∞

(
λm(Eλ,n)

)
= lim

n→∞

∫
E

hn dx ≤
∫

E
f dx .

As a consequence of Chebychev’s inequality we have



Proposition (1)
Let E ⊂ Rq be a measurable set and f : E −→ [0, ∞] be a measurable function. Then∫

E
f dx = 0 ⇐⇒ f = 0 a.e. on E

Proof.
"=⇒" Suppose that

∫
E

f dx = 0. It follows from Chebychev’s inequality that for every n ∈ N we have

m
(
{f >

1

n
}
)

≤ n
∫

E
f dx = 0. Therefore m ({f > 0}) = m

 ∞⋃
n=1

{f >
1

n
}

 ≤
∞∑

n=1

m
(
{f >

1

n
}
)

= 0 ,

and f = 0 a.e.

"⇐=" Suppose that f = 0 a.e. on E. Let h ∈ M0(E) such that 0 ≤ h ≤ f . Then h = 0 a.e. on E. It follows that every

simple function ϕ such that 0 ≤ ϕ ≤ h satisfy ϕ = 0 a.e. on E. Consequently
∫

E
ϕ dx = 0. It follows from the definition of

the Lebesgue integral that
∫

E
h dx = 0 and then

∫
E

f dx = 0.

Theorem (2)
Let E ⊂ Rq be a measurable set and f , g : E −→ [0, ∞] be measurable functions. Then

1. Linearity:
∫

E
(af + bg) dx = a

∫
E

f dx + b
∫

E
g dx for a ≥ 0 and b ≥ 0.

2. Monotonicity: If f ≤ g, then
∫

E
f dx ≤

∫
E

g dx



Proof.
1. Let a > 0. For h ∈ M0(E) such that 0 ≤ h ≤ af , it follows from the definition of the integral of nonnegative

functions, as the supremum of the integrals of such functions h, that
∫

E

h

a
dx ≤

∫
E

fdx and so
∫

E
hdx ≤ a

∫
E

fdx.

This implies that
∫

E
(af )dx ≤ a

∫
E

fdx. The inequality a
∫

E
fdx ≤

∫
E
(af )dx is left as an exercise.

Now we prove
∫

E
(f + g)dx =

∫
E

fdx +

∫
E

gdx. Let h, k be arbitrary functions in M0(E) such that 0 ≤ h ≤ f

and 0 ≤ k ≤ g. Then h + k ∈ M0(E) and 0 ≤ h + k ≤ f + g. It follows from the definition of the Lebesgue

integral of f + g as a supremum that
∫

E
(h + k)dx ≤

∫
E
(f + g)dx. The linearity of the integral of functions with

finite support gives
∫

E
hdx +

∫
E

kdx ≤
∫

E
(f + g)dx. The arbitrariness of h, k ∈ M0(E) with 0 ≤ h ≤ f and

0 ≤ k ≤ g implies
∫

E
fdx +

∫
E

gdx ≤
∫

E
(f + g)dx. It remains to prove

∫
E

fdx +

∫
E

gdx ≥
∫

E
(f + g)dx.

Let ϕ ∈ M0(E) such that 0 ≤ ϕ ≤ (f + g). Define functions h and k by: h = min{f , ϕ} and k = ϕ − h.
Then both h, k ∈ M0(E). Indeed if the supports of h and k are contained in the support of ϕ. If x ∈ E is not in the
support of ϕ, then ϕ(x) = 0 and h(x) = min{ϕ(x), f (x)} = 0 and k(x) = ϕ(x) − h(x) = 0. Also both h and
k are nonnegative and h ≤ f and k = ϕ − h ≤ f + g − h ≤ g. We have then (linearity of integral for functions in

M0(E))
∫

E
ϕdx =

∫
E

hdx +

∫
E

kdx ≤
∫

E
fdx +

∫
E

gdx. Since ϕ is arbitrary in M0(E) with ϕ ≤ f + g, then∫
E
(f + g)dx =

∫
E

fdx +

∫
E

gdx.

2. Suppose that f ≤ g. To prove
∫

E
f dx ≤

∫
E

g dx, it is enough to prove the inequality for an arbitrary h ∈ M0(E)

with 0 ≤ h ≤ f . For such an h we have 0 ≤ h ≤ f ≤ g and so it follows from the definition of the Lebesgue

integral of g as a supremum that
∫

E
h dx ≤

∫
E

g dx.



Theorem (3)
Let E ⊂ Rq be a measurable set, f : E −→ [0, ∞] be measurable function and A,B
measurable and disjoint subsets of E. Then∫

A∪B
fdx =

∫
A

fdx +
∫

B
fdx .

Proof.
It follows from A ∩ B = ∅ that χA∪B = χA + χB . Hence

∫
A∪B

fdx =

∫
E

fχA∪B dx =

∫
E

f (χA + χB )dx =

∫
E

fχA dx +

∫
E

fχB dx =

∫
A

fdx +

∫
B

fdx .

A direct consequence is the following

Corollary (1)
Let E ⊂ Rq be a measurable set, f : E −→ [0, ∞] be measurable function. If E0 ⊂ E has
measure zero, then ∫

E
fdx =

∫
E\E0

fdx .


