Real Analysis MAA 6616 Lecture 14 The Lebesgue Integral of Nonnegative Functions

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

In Lecture 13 we defined the Lebesgue integral of a **bounded** measurable function over a set of **finite** measure. Now we will consider integrals of measurable functions, not necessarily bounded, over measurable sets, not necessarily with finite measure. We start with nonnegative functions.

A measurable function $h: E \longrightarrow \overline{R}$ is said to have a finite support if there exists a set $E_0 \subset E$ with $m(E_0) < \infty$ such that h = 0 on $E \setminus E_0$. Define $\mathcal{M}_0(E)$ as the space of bounded and measurable functions with finite suport in E:

 $\mathcal{M}_0(E) = \{h : E \longrightarrow \mathbb{R} : h \text{ bounded, measurable, and with finite support}\}$

Note that since *h* is bounded and with finite support $E_0 \subset E$, then

$$\int_{E_0} h dx = \int_E h \chi_{E_0} dx = \int_E h dx.$$

Let $E \subset \mathbb{R}^q$ be a measurable set and let $f : E \longrightarrow [0, \infty]$. Define the (Lebesgue) integral of f over E as:

$$\int_{E} f dx = \sup \left\{ \int_{E} h dx : h \in \mathcal{M}_{0}(E) \text{ and } 0 \le h \le f \right\}$$

Note $\int_E f dx$ and could be ∞ .

Theorem (1. Chebychev's Inequality)

Let $E \subset \mathbb{R}^q$ be a measurable set and $f : E \longrightarrow [0, \infty]$ be a measurable function. Then for every $\lambda > 0$

$$m(\{f > \lambda\}) \leq \frac{1}{\lambda} \int_E f \, dx$$

Proof.

Let $E_{\lambda} = \{f > \lambda\}$. consider two cases depending on wether the measure of E_{λ} is finite or not.

Case $m(E_{\lambda}) < \infty$: The function $h = \lambda \chi_{E_{\lambda}} \in \mathcal{M}_0(E)$ (it is measurable, bounded, and with finite support) and $0 \le h \le f$. Therefore

$$\int_E h \, dx = \int_{E_\lambda} \lambda \, dx = \lambda m(E_\lambda) \leq \int_E f \, dx$$

and the conclusion of the theorem follows.

• Case $m(E_{\lambda}) = \infty$: For $n \in \mathbb{N}$, let $B_n(0)$ be the ball centered at 0 with radius n and let $E_{\lambda,n} = E_{\lambda} \cap B_n(0)$. Then $\overline{E_{\lambda,n}}$ is bounded and $\lim_{n\to\infty} m(E_{\lambda,n}) = m(E) = \infty$. The function $h_n = \lambda \chi_{E_{\lambda,n}} \in \mathcal{M}_0(E), 0 \le h \le f$, and $\int_E h_n dx = \lambda m(E_{\lambda,n})$. Therefore

$$\lambda m(E_{\lambda}) = \infty = \lim_{n \to \infty} \left(\lambda m(E_{\lambda,n}) \right) = \lim_{n \to \infty} \int_E h_n \, dx \le \int_E f \, dx.$$

▲□▶▲□▶▲□▶▲□▶ □ のQで

As a consequence of Chebychev's inequality we have

Proposition (1)

Let $E \subset \mathbb{R}^q$ be a measurable set and $f : E \longrightarrow [0, \infty]$ be a measurable function. Then $\int_E f \, dx = 0 \iff f = 0$ a.e. on E

Proof.

" \Longrightarrow " Suppose that $\int_E f \, dx = 0$. It follows from Chebychev's inequality that for every $n \in \mathbb{N}$ we have $m\left(\{f > \frac{1}{n}\}\right) \le n \int_E f \, dx = 0$. Therefore $m\left(\{f > 0\}\right) = m\left(\bigcup_{n=1}^{\infty} \{f > \frac{1}{n}\}\right) \le \sum_{n=1}^{\infty} m\left(\{f > \frac{1}{n}\}\right) = 0$, and f = 0 a.e.

" \Leftarrow " Suppose that f = 0 a.e. on E. Let $h \in \mathcal{M}_0(E)$ such that $0 \le h \le f$. Then h = 0 a.e. on E. It follows that every simple function ϕ such that $0 \le \phi \le h$ satisfy $\phi = 0$ a.e. on E. Consequently $\int_E \phi \, dx = 0$. It follows from the definition of the Lebesgue integral that $\int_E h \, dx = 0$ and then $\int_E f \, dx = 0$.

Theorem (2)

Let $E \subset \mathbb{R}^q$ be a measurable set and $f, g : E \longrightarrow [0, \infty]$ be measurable functions. Then

1. Linearity:
$$\int_{E} (af + bg) dx = a \int_{E} f dx + b \int_{E} g dx$$
 for $a \ge 0$ and $b \ge 0$.
2. Monotonicity: If $f \le g$, then $\int_{E} f dx \le \int_{E} g dx$

Proof.

- 1. Let a > 0. For $h \in \mathcal{M}_0(E)$ such that $0 \le h \le af$, it follows from the definition of the integral of nonnegative functions, as the supremum of the integrals of such functions h, that $\int_{-\pi}^{\pi} dx \leq \int_{-\pi}^{\pi} dx$ and so $\int_{-\pi}^{\pi} h dx \leq a \int_{-\pi}^{\pi} f dx$. This implies that $\int_{\Gamma} (af) dx \leq a \int_{\Gamma} f dx$. The inequality $a \int_{\Gamma} f dx \leq \int_{-} (af) dx$ is left as an exercise. Now we prove $\int_{a}^{b} (f+g)dx = \int_{a}^{b} f dx + \int_{a}^{b} g dx$. Let h, k be arbitrary functions in $\mathcal{M}_{0}(E)$ such that $0 \le h \le f$ and 0 < k < g. Then $h + k \in \mathcal{M}_0(E)$ and 0 < h + k < f + g. It follows from the definition of the Lebesgue integral of f + g as a supremum that $\int_{a}^{b} (h + k) dx \leq \int_{a}^{b} (f + g) dx$. The linearity of the integral of functions with finite support gives $\int_{\Gamma} h dx + \int_{\Gamma} k dx \leq \int_{\Gamma} (f+g) dx$. The arbitrariness of $h, k \in \mathcal{M}_0(E)$ with $0 \leq h \leq f$ and $0 \le k \le g$ implies $\int_{-f} dx + \int_{-g} dx \le \int_{-f} (f+g) dx$. It remains to prove $\int_{-f} f dx + \int_{-g} g dx \ge \int_{-f} (f+g) dx$. Let $\phi \in \mathcal{M}_0(E)$ such that $0 \le \phi \le (f+g)$. Define functions h and k by: $h = \min\{f, \phi\}$ and $k = \phi - h$. Then both $h, k \in \mathcal{M}_0(E)$. Indeed if the supports of h and k are contained in the support of ϕ . If $x \in E$ is not in the support of ϕ , then $\phi(x) = 0$ and $h(x) = \min\{\phi(x), f(x)\} = 0$ and $k(x) = \phi(x) - h(x) = 0$. Also both h and k are nonnegative and h < f and $k = \phi - h < f + g - h < g$. We have then (linearity of integral for functions in $\mathcal{M}_0(E)$) $\int_{\Gamma} \phi dx = \int_{\Gamma} h dx + \int_{\Gamma} k dx \leq \int_{\Gamma} f dx + \int_{\Gamma} g dx$. Since ϕ is arbitrary in $\mathcal{M}_0(E)$ with $\phi \leq f + g$, then $\int (f+g)dx = \int fdx + \int gdx.$ 2. Suppose that $f \leq g$. To prove $\int_{-\pi}^{\pi} f \, dx \leq \int_{-\pi}^{\pi} g \, dx$, it is enough to prove the inequality for an arbitrary $h \in \mathcal{M}_0(E)$
 - Suppose that $f \leq g$. To prove $\int_{E} f dx \leq \int_{E} g dx$, it is charge to prove the inequality for an anomaly $h \in \mathcal{F}(0)$ with $0 \leq h \leq f$. For such an h we have $0 \leq h \leq f \leq g$ and so it follows from the definition of the Lebesgue integral of g as a supremum that $\int_{E} h dx \leq \int_{E} g dx$.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Theorem (3)

Let $E \subset \mathbb{R}^q$ be a measurable set, $f : E \longrightarrow [0, \infty]$ be measurable function and A, B measurable and disjoint subsets of E. Then

$$\int_{A\cup B} fdx = \int_A fdx + \int_B fdx \, .$$

Proof. It follows from $A \cap B = \emptyset$ that $\chi_{A \cup B} = \chi_A + \chi_B$. Hence

$$\int_{A\cup B} fdx = \int_E f\chi_{A\cup B} dx = \int_E f(\chi_A + \chi_B) dx = \int_E f\chi_A dx + \int_E f\chi_B dx = \int_A fdx + \int_B fdx \, .$$

A direct consequence is the following

Corollary (1)

Let $E \subset \mathbb{R}^q$ be a measurable set, $f : E \longrightarrow [0, \infty]$ be measurable function. If $E_0 \subset E$ has measure zero, then

$$\int_E f dx = \int_{E \setminus E_0} f dx$$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <