Real Analysis MAA 6616
Lecture 15
Monotone Convergence Theorem
The General Lebesgue Integral



Fatou’s Lemma

First recall that liminf of a sequence {a,}, C Ris hm mf ap = lim (inf am). If

n—o00 \m>n
{bn}n C R converges and b, < aj, for all n, then hm b,, < llrg inf a,.
n oo

Theorem (Fatou’s Lemma 1)

Let E C RY be a measurable set and {fu }n a sequence of nonnegative measurable functions on

E. If f, — f pointwise a.e. on E, then /fdx = / lim f; < lim inf/f,,dx
E E n— oo n— oo E

Proof.

There exists a set § C E of measure 0 such that f, — f pointwise on Ey = E\S. The limit f is measurable is nonnegative.
To prove the theorem, it is enough to prove that / hdx < lirg inf / fndx, where A is an arbitrary bounded nonnegative,

E n—oo JEg
measurable function with finite support in Ey (i.e. h € M (Ep)) suchthath < f.
Let / be such function. Then there exists M > 0 such that 0 < i < M. Let F C Ej be the support of / so that m(F) < oo
and i = 0 on Ey\ F. Consider the sequence of functions {%, }, on E( given by h, = min(h, f;). Then h, is nonnegative,

measurable, with support in 7, and 0 < h,, < f,. Note that b, — h on F. The sequence {h, }, is uniformly bounded by M
and converges to 4. It follows then from the Bounded Convergence Theorem (Theorem 7 in Lecture 13) that

lim / hpdx = / hdx. On the other hand, since 0 < £, < fy, it follows from the definition of/f,, that
F F F

n—oo
/hdx:/hdx: lim /hn Sliminf/fn < liminf/ fun = lim inf /fndx
JE F n—oo | n—oo Jp n=oo Jg, n—oo Jp



The Monotone Convergence Theorem

Recall that a sequence of functions {f, } is increasing (notation ) on a set E if
fa(x) < fug1(x) forall x € E. If {f, } is " and converges to f we write f;,  f.

Theorem ( Monotone Convergence Theorem 2)

Let {f, }n be a sequence of measurable, nonnegative functions on a measurable set E. If f, /' f

a.e. on E, then lim /fndx: /fdx.
n— oo E E

Proof.

Since f,, ' f, then f, < f a.e. on E. It follows from the monotonicity of the integral of nonnegative functions that
/f,,dx < /fdx and so lim sup /fncbc < /faba On the other hand, it follows from Fatou’s Lemma that
E E n— oo E E

/fdxg liminf/f,,cba Therefore/fdx: lim /fncbc. O
E n— oo E E n— oo E

Corollary (1)

Let {up }n be a sequence of measurable, nonnegative functions on a measurable set E. If

o0 [e o] oo
Zuj =fa.e. onE, then /fdx = /(Z uj)dx = Z/ujdx.
j=1 E E j=1 =1"E

Proof.
n
Letf, = Z uj, thenf,  f a.e. on E. Apply Theorem 2 the sequence {f, }. O
j=1



Beppo Levi’s Lemma

A measurable function f : E — [0, oo] is said to be integrable over E if / Jfdx < oo.
E

Proposition (1)
Let E C R? be a measurable. If a measurable functionf : E — [0, oo] is integrable over E,
then it is finite a.e. on E.

Proof.

Let e > 0Oandlet A\ > 0 such that /fdx < €. It follows from Chebychev’s inequality that
JE

m({f > A}) < %/fdx < e. Since {f = oo} C {f > A}, thenm ({f = oo}) < e. Therefore
E
m({f = co}) =0. O

Theorem (Beppo Levi’s Lemma 3)
Let {fy }n be a sequence of measurable, nonnegative functions on a measurable set E. Suppose
that {fu }n is increasing and that the sequence of integrals { / f,,dx} is bounded. Then

E

n
Jo A f pointwise on E such that the limit f is finite a.e. on E, integrable over E, and

lim /Ef,,dxszfdx.

n—oo

Proof.

Since {f;, }, is increasing, then f(x) = lim,_, o f(x) is well defined on [0, oo]. It follows from the Monotone

Convergence Theorem that lim / fodx = / fdx. Since the sequence of integrals { / fndx} is bounded, then / fdx is
n—oo Jp E E n E
finite and so f is integrable over E and consequently finite a.e. on E.



The General Lebesgue Integral

Let E C RY be measurable and f : E — R. Recall that the positive and negative parts of f are
the nonnegative functions f* and f ~ defined on E by £+ (x) = max(f(x),0) and
/7 (x) = max(—f(x),0). We have

f=fr—fand|f| =ft +f onE
Note that since the space of measurable functions on E is a vector space, then f is measurable if
and only if f and f ~ are measurable.

Lemma (1)

Letf : E — R be measurable. Then f* and f~ are integrable over E if and only if |f| is
integrable over E.

Proof.

"<=" Suppose that |f| is integrable. Since the nonnegative functions £+ and £~ satisfy 0 < j'i < |f], the monotonicity of

the integral of nonnegative functions implies that /fidx < / |f] dx < oo. Therel’ore,fJr and f~ are integrable.
E E

"==>" Suppose that f" + and [~ are integrable. It follows from the linearity of the integral of nonnegative functions that

/EWdX=/E(f+ +f7)dx=/Ef+dx+/Ef7dx<oo O

A measurable function f : E — R is said to be integrable over E if |f] is integrable over E. In

this case its integral over E is
/fdx = /f+dx - /f*dx
E E E



Proposition (2)
Letf : E — R be integrable. Then f is finite a.e. on E and if S C E has measure 0, then

/ fdx= [ fdx.
E E\S

Proof.

Since |f| is nonnegative and integrable, then |f| (and so f) is finite a.e. on E. If S C E has measure 0, then

g g — + e - =
/Efdxf/Ef dx /Ef dx ./E\sf dx ./E\sf dx /5\5de
Proposition (3)
Letf : E — R be measurable and let g : E — [0, oo] be integrable. If |f| < g on E, then

f is integrable and
' [ < [ iax
E E
Proof.

Since |f| < gand g is integrable and so is |f]. It follows that
/fdx‘ = | L —ra = ‘//‘*dx—/f*dx’ < [rtas [ra= [¢Fwrw= [
E E E E E E E E O

Note that it follows from Proposition 2 that the values of a function on a set of measure 0 do not
affect the value of the integral. Now given integrable functions f, g : E — R, the set S of
points where f = co and g = —oo or f = —oo and g = co has measure 0. In fact if

A = {|f] < oo} N{|g| < oo} then E\A has measure 0. If f 4 g is integrable over A, then we set
¢+ )x= [ ¢+
E Ja




Linearity and monotonicity of the Lebesgue Integral

Theorem (4)
Letf,g: E — R be integrable. Then
1. Linearity: For every a,b € R, the function af + bg is integrable and

/E(af+bg)dX=a/Efdx+b/Egdx

2. Monotonicity: If f < g on E, then / Sfdx < / gdx.
E E

Proof.

® Note that |af| = |a| |f| and |bg| = |b| |g| are integrable and so is |af + bg| < |af| + |bg| and then af + bg.
To prove linearity, we start by proving that / (af)idx =a /fdx. Note also that if a > 0, then (a_/)i = afi and if
E E

a < 0, then (a_/)i = —af T . Fora < 0, the linearity of the integral for nonnegative functions gives

/E(af)idx: /E(fa)f:Fdx = —a Af';zk. Hence

/E(af)dx: /E(af)+dx— /E(af)*dx: —a/Ef*dx-s-a/qu*dx: a (/E(f+ —f*)dx) :a/éfdn

Next, we prove that /(f + g)dx = [ fdx + [ gdx. After removing the set of measure 0 (if necessary):

S = {|f] = oo} U {|g| = oo} we can assume that both f and g are finite on E. We have to verify that

/E(erg)+dX*/E(f+g)7dx: UEerdxf/Ef’fLr} + [/Efdxf/Eg*dX]



Proof.

We have
F+0T -+ =f+e=0"—r )+ -¢).
This implies
Frot +f +e =+ +rH+eT.

Since all six functions appearing in the above identity are nonnegative, then the linearity of the integral for nonnegative
functions give

/E(f+g)+dx+/g‘dx+/5g‘dx:/5(f+g)fdx+/Ef+dx+/Eg+dx'

From this we deduce
[ +oa= [+ [
E E E

@ Suppose that f and g are finite on E and g > f. Leth = g — f. Then h is a nonnegative integrable function on E. It follows

from part 1 that
/fa’x:/(g—h)dx:/gdx—/hdxg/gdx
E E E E E



Additivity Over Domains of Integration

Theorem (5)

Letf : E — R be integrable and let A and B be disjoint measurable subsets of E. Then
fdx = / Sfdx + / Sfdx
AUB A B

Proof. .

First note that if ¥ C E is measurable, then }j’xF| (< If]) is integrable and so is fX ;. moreover / fdx = / fxpdx.
F E

Since A and B are disjoint, then Xaup = Xa + Xxp: then

/A b= /E (rxs +Fxp) de = /E Fxydv+ /E Fxpds = /A fv + /B fix



