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Monotone Convergence Theorem
The General Lebesgue Integral



Fatou’s Lemma

First recall that liminf of a sequence {an}n ⊂ R is lim inf
n→∞

an = lim
n→∞

(
inf
m≥n

am

)
. If

{bn}n ⊂ R converges and bn ≤ an for all n, then lim
n→∞

bn ≤ lim inf
n→∞

an.

Theorem (Fatou’s Lemma 1)
Let E ⊂ Rq be a measurable set and {fn}n a sequence of nonnegative measurable functions on

E. If fn −→ f pointwise a.e. on E, then
∫

E
fdx =

∫
E

lim
n→∞

fn ≤ lim inf
n→∞

∫
E

fndx.

Proof.
There exists a set S ⊂ E of measure 0 such that fn −→ f pointwise on E0 = E\S. The limit f is measurable is nonnegative.

To prove the theorem, it is enough to prove that
∫

E
hdx ≤ lim inf

n→∞

∫
E

fndx, where h is an arbitrary bounded nonnegative,

measurable function with finite support in E0 (i.e. h ∈ M0(E0)) such that h ≤ f .
Let h be such function. Then there exists M > 0 such that 0 ≤ h ≤ M. Let F ⊂ E0 be the support of h so that m(F) < ∞
and h = 0 on E0\F. Consider the sequence of functions {hn}n on E0 given by hn = min(h, fn). Then hn is nonnegative,
measurable, with support in F, and 0 ≤ hn ≤ fn . Note that hn −→ h on F. The sequence {hn}n is uniformly bounded by M
and converges to h. It follows then from the Bounded Convergence Theorem (Theorem 7 in Lecture 13) that

lim
n→∞

∫
F

hndx =

∫
F

hdx. On the other hand, since 0 ≤ hn ≤ fn , it follows from the definition of
∫

F
fn that

∫
E

hdx =

∫
F

hdx = lim
n→∞

∫
F

hn ≤ lim inf
n→∞

∫
F

fn ≤ lim inf
n→∞

∫
E0

fn = lim inf
n→∞

∫
E

fndx



The Monotone Convergence Theorem

Recall that a sequence of functions {fn}n is increasing (notation ↗ ) on a set E if
fn(x) ≤ fn+1(x) for all x ∈ E. If {fn} is ↗ and converges to f we write fn ↗ f .

Theorem ( Monotone Convergence Theorem 2)
Let {fn}n be a sequence of measurable, nonnegative functions on a measurable set E. If fn ↗ f

a.e. on E, then lim
n→∞

∫
E

fndx =

∫
E

fdx.

Proof.
Since fn ↗ f , then fn ≤ f a.e. on E. It follows from the monotonicity of the integral of nonnegative functions that∫

E
fndx ≤

∫
E

fdx and so lim sup
n→∞

∫
E

fndx ≤
∫

E
fdx. On the other hand, it follows from Fatou’s Lemma that∫

E
fdx ≤ lim inf

n→∞

∫
E

fndx. Therefore
∫

E
fdx = lim

n→∞

∫
E

fndx.

Corollary (1)
Let {un}n be a sequence of measurable, nonnegative functions on a measurable set E. If
∞∑
j=1

uj = f a.e. on E, then
∫

E
fdx =

∫
E
(
∞∑
j=1

uj)dx =
∞∑
j=1

∫
E

ujdx.

Proof.
Let fn =

n∑
j=1

uj , then fn ↗ f a.e. on E. Apply Theorem 2 the sequence {fn}.



Beppo Levi’s Lemma

A measurable function f : E −→ [0, ∞] is said to be integrable over E if
∫

E
fdx < ∞.

Proposition (1)
Let E ⊂ Rq be a measurable. If a measurable function f : E −→ [0, ∞] is integrable over E,
then it is finite a.e. on E.

Proof.
Let ϵ > 0 and let λ > 0 such that

∫
E

fdx < ϵλ. It follows from Chebychev’s inequality that

m ({f > λ}) ≤
1

λ

∫
E

fdx < ϵ. Since {f = ∞} ⊂ {f > λ}, then m ({f = ∞}) < ϵ. Therefore

m ({f = ∞}) = 0.

Theorem (Beppo Levi’s Lemma 3)
Let {fn}n be a sequence of measurable, nonnegative functions on a measurable set E. Suppose

that {fn}n is increasing and that the sequence of integrals
{∫

E
fndx

}
n

is bounded. Then

fn ↗ f pointwise on E such that the limit f is finite a.e. on E, integrable over E, and

lim
n→∞

∫
E

fndx =

∫
E

fdx.

Proof.
Since {fn}n is increasing, then f (x) = limn→∞ f (x) is well defined on [0, ∞]. It follows from the Monotone

Convergence Theorem that lim
n→∞

∫
E

fndx =

∫
E

fdx. Since the sequence of integrals
{∫

E
fndx

}
n

is bounded, then
∫

E
fdx is

finite and so f is integrable over E and consequently finite a.e. on E.



The General Lebesgue Integral

Let E ⊂ Rq be measurable and f : E −→ R. Recall that the positive and negative parts of f are
the nonnegative functions f+ and f− defined on E by f+(x) = max(f (x), 0) and
f−(x) = max(−f (x), 0). We have

f = f+ − f− and |f | = f+ + f− on E
Note that since the space of measurable functions on E is a vector space, then f is measurable if
and only if f+ and f− are measurable.

Lemma (1)
Let f : E −→ R be measurable. Then f+ and f− are integrable over E if and only if |f | is
integrable over E.

Proof.
"⇐=" Suppose that |f | is integrable. Since the nonnegative functions f+ and f− satisfy 0 ≤ f± ≤ |f |, the monotonicity of

the integral of nonnegative functions implies that
∫

E
f±dx ≤

∫
E
|f | dx < ∞. Therefore, f+ and f− are integrable.

"=⇒" Suppose that f+ and f− are integrable. It follows from the linearity of the integral of nonnegative functions that∫
E
|f | dx =

∫
E
(f+ + f−)dx =

∫
E

f+dx +

∫
E

f−dx < ∞

A measurable function f : E −→ R is said to be integrable over E if |f | is integrable over E. In
this case its integral over E is ∫

E
fdx =

∫
E

f+dx −
∫

E
f−dx



Proposition (2)
Let f : E −→ R be integrable. Then f is finite a.e. on E and if S ⊂ E has measure 0, then∫

E
fdx =

∫
E\S

fdx.

Proof.
Since |f | is nonnegative and integrable, then |f | (and so f ) is finite a.e. on E. If S ⊂ E has measure 0, then∫

E
fdx =

∫
E

f+dx −
∫

E
f−dx =

∫
E\S

f+dx −
∫

E\S
f−dx =

∫
E\S

fdx

Proposition (3)
Let f : E −→ R be measurable and let g : E −→ [0, ∞] be integrable. If |f | ≤ g on E, then
f is integrable and ∣∣∣∣∫

E
fdx

∣∣∣∣ ≤ ∫
E
|f | dx

Proof.
Since |f | ≤ g and g is integrable and so is |f |. It follows that∣∣∣∣∫

E
fdx

∣∣∣∣ =

∣∣∣∣∫
E
(f+ − f−)dx

∣∣∣∣ =

∣∣∣∣∫
E

f+dx −
∫

E
f−dx

∣∣∣∣ ≤
∫

E
f+dx +

∫
E

f−dx =

∫
E
(f+ + f−)dx =

∫
E
|f | dx

Note that it follows from Proposition 2 that the values of a function on a set of measure 0 do not
affect the value of the integral. Now given integrable functions f , g : E −→ R, the set S of
points where f = ∞ and g = −∞ or f = −∞ and g = ∞ has measure 0. In fact if
A = {|f | < ∞}∩{|g| < ∞} then E\A has measure 0. If f + g is integrable over A, then we set∫

E
(f + g)dx =

∫
A
(f + g)dx



Linearity and monotonicity of the Lebesgue Integral

Theorem (4)
Let f , g : E −→ R be integrable. Then

1. Linearity: For every a, b ∈ R, the function af + bg is integrable and∫
E
(af + bg)dx = a

∫
E

fdx + b
∫

E
gdx

2. Monotonicity: If f ≤ g on E, then
∫

E
fdx ≤

∫
E

gdx.

Proof.
• Note that |af | = |a| |f | and |bg| = |b| |g| are integrable and so is |af + bg| ≤ |af | + |bg| and then af + bg.

To prove linearity, we start by proving that
∫

E
(af )±dx = a

∫
E
fdx. Note also that if a > 0, then (af )± = af± and if

a < 0, then (af )± = −af∓ . For a < 0, the linearity of the integral for nonnegative functions gives∫
E
(af )±dx =

∫
E
(−a)f∓dx = −a

∫
E

f∓dx. Hence∫
E
(af )dx =

∫
E
(af )+dx −

∫
E
(af )−dx = −a

∫
E
f−dx + a

∫
E
af+dx = a

(∫
E
(f+ − f−)dx

)
= a

∫
E
fdx.

Next, we prove that
∫

E
(f + g)dx =

∫
E

fdx +

∫
E

gdx. After removing the set of measure 0 (if necessary):

S = {|f | = ∞} ∪ {|g| = ∞} we can assume that both f and g are finite on E. We have to verify that∫
E
(f + g)+dx −

∫
E
(f + g)−dx =

[∫
E
f+dx −

∫
E
f−dx

]
+

[∫
E
g+dx −

∫
E
g−dx

]



Proof.
We have

(f + g)+ − (f + g)− = f + g = (f+ − f−) + (g+ − g−).
This implies

(f + g)+ + f− + g− = (f + g)− + f+ + g+.
Since all six functions appearing in the above identity are nonnegative, then the linearity of the integral for nonnegative
functions give ∫

E
(f + g) + dx +

∫
E
f−dx +

∫
E
g−dx =

∫
E
(f + g) − dx +

∫
E
f+dx +

∫
E
g+dx .

From this we deduce ∫
E
(f + g)dx =

∫
E

fdx +

∫
E

gdx

• Suppose that f and g are finite on E and g ≥ f . Let h = g − f . Then h is a nonnegative integrable function on E. It follows
from part 1 that ∫

E
fdx =

∫
E
(g − h)dx =

∫
E

gdx −
∫

E
hdx ≤

∫
E

gdx



Additivity Over Domains of Integration

Theorem (5)
Let f : E −→ R be integrable and let A and B be disjoint measurable subsets of E. Then∫

A∪B
fdx =

∫
A

fdx +
∫

B
fdx

Proof.
First note that if F ⊂ E is measurable, then

∣∣fχF

∣∣ (≤ |f |) is integrable and so is fχF . moreover
∫

F
fdx =

∫
E

fχF dx.

Since A and B are disjoint, then χA∪B = χA + χB , then∫
A∪B

fdx =

∫
E

(
fχA + fχB

)
dx =

∫
E

fχA dx +

∫
E

fχB dx =

∫
A

fdx +

∫
B

fdx .


