Real Analysis MAA 6616 Lecture 15
 Monotone Convergence Theorem The General Lebesgue Integral

First recall that liminf of a sequence $\left\{a_{n}\right\}_{n} \subset \mathbb{R}$ is $\liminf _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty}\left(\inf _{m \geq n} a_{m}\right)$. If $\left\{b_{n}\right\}_{n} \subset \mathbb{R}$ converges and $b_{n} \leq a_{n}$ for all n, then $\lim _{n \rightarrow \infty} b_{n} \leq \liminf _{n \rightarrow \infty} a_{n}$.

Theorem (Fatou's Lemma 1)

Let $E \subset \mathbb{R}^{q}$ be a measurable set and $\left\{f_{n}\right\}_{n}$ a sequence of nonnegative measurable functions on E. Iff $f_{n} \longrightarrow f$ pointwise a.e. on E, then $\int_{E} f d x=\int_{E} \lim _{n \rightarrow \infty} f_{n} \leq \liminf _{n \rightarrow \infty} \int_{E} f_{n} d x$.

Proof.

There exists a set $S \subset E$ of measure 0 such that $f_{n} \longrightarrow f$ pointwise on $E_{0}=E \backslash S$. The limit f is measurable is nonnegative. To prove the theorem, it is enough to prove that $\int_{E} h d x \leq \liminf _{n \rightarrow \infty} \int_{E} f_{n} d x$, where h is an arbitrary bounded nonnegative, measurable function with finite support in E_{0} (i.e. $h \in \mathcal{M}_{0}\left(E_{0}\right)$) such that $h \leq f$.
Let h be such function. Then there exists $M>0$ such that $0 \leq h \leq M$. Let $F \subset E_{0}$ be the support of h so that $m(F)<\infty$ and $h=0$ on $E_{0} \backslash F$. Consider the sequence of functions $\left\{h_{n}\right\}_{n}$ on E_{0} given by $h_{n}=\min \left(h, f_{n}\right)$. Then h_{n} is nonnegative, measurable, with support in F, and $0 \leq h_{n} \leq f_{n}$. Note that $h_{n} \longrightarrow h$ on F. The sequence $\left\{h_{n}\right\}_{n}$ is uniformly bounded by M and converges to h. It follows then from the Bounded Convergence Theorem (Theorem 7 in Lecture 13) that $\lim _{n \rightarrow \infty} \int_{F} h_{n} d x=\int_{F} h d x$. On the other hand, since $0 \leq h_{n} \leq f_{n}$, it follows from the definition of $\int_{F} f_{n}$ that

$$
\int_{E} h d x=\int_{F} h d x=\lim _{n \rightarrow \infty} \int_{F} h_{n} \leq \liminf _{n \rightarrow \infty} \int_{F} f_{n} \leq \liminf _{n \rightarrow \infty} \int_{E_{0}} f_{n}=\liminf _{n \rightarrow \infty} \int_{E} f_{n} d x
$$

The Monotone Convergence Theorem

Recall that a sequence of functions $\left\{f_{n}\right\}_{n}$ is increasing (notation \nearrow) on a set E if $f_{n}(x) \leq f_{n+1}(x)$ for all $x \in E$. If $\left\{f_{n}\right\}$ is \nearrow and converges to f we write $f_{n} \nearrow f$.

Theorem (Monotone Convergence Theorem 2)

Let $\left\{f_{n}\right\}_{n}$ be a sequence of measurable, nonnegative functions on a measurable set E. If $f_{n} \nearrow f$ a.e. on E, then $\lim _{n \rightarrow \infty} \int_{E} f_{n} d x=\int_{E} f d x$.

Proof.

Since $f_{n} \nearrow f$, then $f_{n} \leq f$ a.e. on E. It follows from the monotonicity of the integral of nonnegative functions that $\int_{E} f_{n} d x \leq \int_{E} f d x$ and so $\limsup _{n \rightarrow \infty} \int_{E} f_{n} d x \leq \int_{E} f d x$. On the other hand, it follows from Fatou's Lemma that
$\int_{E} f d x \leq \liminf _{n \rightarrow \infty} \int_{E} f_{n} d x$. Therefore $\int_{E} f d x=\lim _{n \rightarrow \infty} \int_{E} f_{n} d x$.

Corollary (1)

Let $\left\{u_{n}\right\}_{n}$ be a sequence of measurable, nonnegative functions on a measurable set E. If
$\sum_{j=1}^{\infty} u_{j}=f$ a.e. on E, then $\int_{E} f d x=\int_{E}\left(\sum_{j=1}^{\infty} u_{j}\right) d x=\sum_{j=1}^{\infty} \int_{E} u_{j} d x$.
Proof.
Let $f_{n}=\sum_{j=1}^{n} u_{j}$, then $f_{n} \nearrow f$ a.e. on E. Apply Theorem 2 the sequence $\left\{f_{n}\right\}$.

Beppo Levi's Lemma

A measurable function $f: E \longrightarrow[0, \infty]$ is said to be integrable over E if $\int_{E} f d x<\infty$.

Proposition (1)

Let $E \subset \mathbb{R}^{q}$ be a measurable. If a measurable function $f: E \longrightarrow[0, \infty]$ is integrable over E, then it is finite a.e. on E.

Proof.

Let $\epsilon>0$ and let $\lambda>0$ such that $\int_{E} f d x<\epsilon \lambda$. It follows from Chebychev's inequality that
$m(\{f>\lambda\}) \leq \frac{1}{\lambda} \int_{E} f d x<\epsilon$. Since $\{f=\infty\} \subset\{f>\lambda\}$, then $m(\{f=\infty\})<\epsilon$. Therefore
$m(\{f=\infty\})=0$.

Theorem (Beppo Levi’s Lemma 3)

Let $\left\{f_{n}\right\}_{n}$ be a sequence of measurable, nonnegative functions on a measurable set E. Suppose that $\left\{f_{n}\right\}_{n}$ is increasing and that the sequence of integrals $\left\{\int_{E} f_{n} d x\right\}_{n}$ is bounded. Then $f_{n} \nearrow f$ pointwise on E such that the limitf is finite a.e. on E, integrable over E, and $\lim _{n \rightarrow \infty} \int_{E} f_{n} d x=\int_{E} f d x$.

Proof.

Since $\left\{f_{n}\right\}_{n}$ is increasing, then $f(x)=\lim _{n \rightarrow \infty} f(x)$ is well defined on $[0, \infty]$. It follows from the Monotone Convergence Theorem that $\lim _{n \rightarrow \infty} \int_{E} f_{n} d x=\int_{E} f d x$. Since the sequence of integrals $\left\{\int_{E} f_{n} d x\right\}_{n}$ is bounded, then $\int_{E} f d x$ is finite and so f is integrable over E and consequently finite a.e. on E.

Let $E \subset \mathbb{R}^{q}$ be measurable and $f: E \longrightarrow \overline{\mathbb{R}}$. Recall that the positive and negative parts of f are the nonnegative functions f^{+}and f^{-}defined on E by $f^{+}(x)=\max (f(x), 0)$ and $f^{-}(x)=\max (-f(x), 0)$. We have

$$
f=f^{+}-f^{-} \text {and }|f|=f^{+}+f^{-} \text {on } E
$$

Note that since the space of measurable functions on E is a vector space, then f is measurable if and only if f^{+}and f^{-}are measurable.

Lemma (1)

Let $f: E \longrightarrow \overline{\mathbb{R}}$ be measurable. Then f^{+}and f^{-}are integrable over E if and only if $|f|$ is integrable over E.

Proof.

$" \Longleftarrow "$ Suppose that $|f|$ is integrable. Since the nonnegative functions f^{+}and f^{-}satisfy $0 \leq f^{ \pm} \leq|f|$, the monotonicity of the integral of nonnegative functions implies that $\int_{E} f^{ \pm} d x \leq \int_{E}|f| d x<\infty$. Therefore, f^{+}and f^{-}are integrable.
$" \Longrightarrow$ " Suppose that f^{+}and f^{-}are integrable. It follows from the linearity of the integral of nonnegative functions that $\int_{E}|f| d x=\int_{E}\left(f^{+}+f^{-}\right) d x=\int_{E} f^{+} d x+\int_{E} f^{-} d x<\infty$
A measurable function $f: E \longrightarrow \overline{\mathbb{R}}$ is said to be integrable over E if $|f|$ is integrable over E. In this case its integral over E is

$$
\int_{E} f d x=\int_{E} f^{+} d x-\int_{E} f^{-} d x
$$

Proposition (2)

Let $f: E \longrightarrow \overline{\mathbb{R}}$ be integrable. Then f is finite a.e. on E and if $S \subset E$ has measure 0 , then $\int_{E} f d x=\int_{E \backslash S} f d x$.

Proof.

Since $|f|$ is nonnegative and integrable, then $|f|$ (and so f) is finite a.e. on E. If $S \subset E$ has measure 0 , then

$$
\int_{E} f d x=\int_{E} f^{+} d x-\int_{E} f^{-} d x=\int_{E \backslash S} f^{+} d x-\int_{E \backslash S} f^{-} d x=\int_{E \backslash S} f d x
$$

Proposition (3)

Let $f: E \longrightarrow \overline{\mathbb{R}}$ be measurable and let $g: E \longrightarrow[0, \infty]$ be integrable. If $|f| \leq g$ on E, then f is integrable and

$$
\left|\int_{E} f d x\right| \leq \int_{E}|f| d x
$$

Proof.

Since $|f| \leq g$ and g is integrable and so is $|f|$. It follows that

$$
\left|\int_{E} f d x\right|=\left|\int_{E}\left(f^{+}-f^{-}\right) d x\right|=\left|\int_{E} f^{+} d x-\int_{E} f^{-} d x\right| \leq \int_{E} f^{+} d x+\int_{E} f^{-} d x=\int_{E}\left(f^{+}+f^{-}\right) d x=\int_{E}|f| d x
$$

Note that it follows from Proposition 2 that the values of a function on a set of measure 0 do not affect the value of the integral. Now given integrable functions $f, g: E \longrightarrow \overline{\mathbb{R}}$, the set S of points where $f=\infty$ and $g=-\infty$ or $f=-\infty$ and $g=\infty$ has measure 0 . In fact if $A=\{|f|<\infty\} \cap\{|g|<\infty\}$ then $E \backslash A$ has measure 0 . If $f+g$ is integrable over A, then we set

$$
\int_{E}(f+g) d x=\int_{A}(f+g) d x
$$

Theorem (4)

Let $f, g: E \longrightarrow \overline{\mathbb{R}}$ be integrable. Then

1. Linearity: For every $a, b \in \mathbb{R}$, the function $a f+b g$ is integrable and

$$
\int_{E}(a f+b g) d x=a \int_{E} f d x+b \int_{E} g d x
$$

2. Monotonicity: Iff $\leq g$ on E, then $\int_{E} f d x \leq \int_{E} g d x$.

Proof.

- Note that $|a f|=|a||f|$ and $|b g|=|b||g|$ are integrable and so is $|a f+b g| \leq|a f|+|b g|$ and then $a f+b g$.

To prove linearity, we start by proving that $\int_{E}(a f)^{ \pm} d x=a \int_{E} f d x$. Note also that if $a>0$, then $(a f)^{ \pm}=a f^{ \pm}$and if $a<0$, then $(a f)^{ \pm}=-a f^{\mp}$. For $a<0$, the linearity of the integral for nonnegative functions gives $\int_{E}(a f)^{ \pm} d x=\int_{E}(-a) f^{\mp} d x=-a \int_{E} f^{\mp} d x$. Hence

$$
\int_{E}(a f) d x=\int_{E}(a f)^{+} d x-\int_{E}(a f)^{-} d x=-a \int_{E}^{f^{-}} d x+a \int_{E} a f^{+} d x=a\left(\int_{E}\left(f^{+}-f^{-}\right) d x\right)=a \int_{E} f d x
$$

Next, we prove that $\int_{E}(f+g) d x=\int_{E} f d x+\int_{E} g d x$. After removing the set of measure 0 (if necessary):
$S=\{|f|=\infty\} \cup\{|g|=\infty\}$ we can assume that both f and g are finite on E. We have to verify that

Proof.

We have

$$
(f+g)^{+}-(f+g)^{-}=f+g=\left(f^{+}-f^{-}\right)+\left(g^{+}-g^{-}\right)
$$

This implies

$$
(f+g)^{+}+f^{-}+g^{-}=(f+g)^{-}+f^{+}+g^{+}
$$

Since all six functions appearing in the above identity are nonnegative, then the linearity of the integral for nonnegative functions give

$$
\int_{E}(f+g)+d x+\int_{E}^{f^{-}} d x+\int_{E}^{g}-d x=\int_{E}(f+g)-d x+\int_{E}^{f^{+}} d x+\int_{E}^{g^{+}} d x
$$

From this we deduce

$$
\int_{E}(f+g) d x=\int_{E} f d x+\int_{E} g d x
$$

- Suppose that f and g are finite on E and $g \geq f$. Let $h=g-f$. Then h is a nonnegative integrable function on E. It follows from part 1 that

$$
\int_{E} f d x=\int_{E}(g-h) d x=\int_{E} g d x-\int_{E} h d x \leq \int_{E} g d x
$$

Additivity Over Domains of Integration

Theorem (5)

Let $f: E \longrightarrow \overline{\mathbb{R}}$ be integrable and let A and B be disjoint measurable subsets of E. Then

$$
\int_{A \cup B} f d x=\int_{A} f d x+\int_{B} f d x
$$

Proof.

First note that if $F \subset E$ is measurable, then $\left|f \chi_{F}\right|(\leq|f|)$ is integrable and so is $f \chi_{F}$. moreover $\int_{F} f d x=\int_{E} f \chi_{F} d x$.
Since A and B are disjoint, then $\chi_{A \cup B}=\chi_{A}+\chi_{B}$, then

$$
\int_{A \cup B} f d x=\int_{E}\left(f \chi_{A}+f \chi_{B}\right) d x=\int_{E} f \chi_{A} d x+\int_{E} f \chi_{B} d x=\int_{A} f d x+\int_{B} f d x
$$

