Real Analysis MAA 6616 Lecture 15 Monotone Convergence Theorem The General Lebesgue Integral

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Fatou's Lemma

First recall that *liminf* of a sequence $\{a_n\}_n \subset \mathbb{R}$ is $\liminf_{n \to \infty} a_n = \lim_{n \to \infty} \left(\inf_{m \ge n} a_m \right)$. If $\{b_n\}_n \subset \mathbb{R}$ converges and $b_n \le a_n$ for all *n*, then $\lim_{n \to \infty} b_n \le \liminf_{n \to \infty} a_n$.

Theorem (Fatou's Lemma 1)

Let $E \subset \mathbb{R}^q$ be a measurable set and $\{f_n\}_n$ a sequence of nonnegative measurable functions on E. If $f_n \longrightarrow f$ pointwise a.e. on E, then $\int_E fdx = \int_E \lim_{n \to \infty} f_n \leq \liminf_{n \to \infty} \int_E f_n dx$.

Proof.

There exists a set $S \subset E$ of measure 0 such that $f_n \longrightarrow f$ pointwise on $E_0 = E \setminus S$. The limit f is measurable is nonnegative. To prove the theorem, it is enough to prove that $\int_E hdx \leq \liminf_{n \to \infty} \int_E f_n dx$, where h is an arbitrary bounded nonnegative, measurable function with finite support in E_0 (i.e. $h \in \mathcal{M}_0(E_0)$) such that $h \leq f$. Let h be such function. Then there exists M > 0 such that $0 \leq h \leq M$. Let $F \subset E_0$ be the support of h so that $m(F) < \infty$ and h = 0 on $E_0 \setminus F$. Consider the sequence of functions $\{h_n\}_n$ on E_0 given by $h_n = \min(h, f_n)$. Then h_n is nonnegative, measurable, with support in F, and $0 \leq h_n \leq f_n$. Note that $h_n \longrightarrow h$ on F. The sequence $\{h_n\}_n$ is uniformly bounded by Mand converges to h. It follows then from the Bounded Convergence Theorem (Theorem 7 in Lecture 13) that

 $\lim_{n \to \infty} \int_F h_n dx = \int_F h dx.$ On the other hand, since $0 \le h_n \le f_n$, it follows from the definition of $\int_F f_n$ that

$$\int_E h dx = \int_F h dx = \lim_{n \to \infty} \int_F h_n \leq \liminf_{n \to \infty} \int_F f_n \leq \liminf_{n \to \infty} \int_{E_0} f_n = \liminf_{n \to \infty} \int_E f_n dx$$

The Monotone Convergence Theorem

Recall that a sequence of functions $\{f_n\}_n$ is increasing (notation \nearrow) on a set *E* if $f_n(x) \le f_{n+1}(x)$ for all $x \in E$. If $\{f_n\}$ is \nearrow and converges to *f* we write $f_n \nearrow f$.

Theorem (Monotone Convergence Theorem 2)

Let $\{f_n\}_n$ be a sequence of measurable, nonnegative functions on a measurable set E. If $f_n \nearrow f$ a.e. on E, then $\lim_{n \to \infty} \int_E f_n dx = \int_E f dx$.

Proof.

Since $f_n \nearrow f$, then $f_n \le f$ a.e. on E. It follows from the monotonicity of the integral of nonnegative functions that $\int_E f_n dx \le \int_E f dx$ and so $\limsup_{n \to \infty} \int_E f_n dx \le \int_E f dx$. On the other hand, it follows from Fatou's Lemma that $\int_E f dx \le \liminf_{n \to \infty} \int_E f_n dx$. Therefore $\int_E f dx = \lim_{n \to \infty} \int_E f_n dx$.

Corollary (1)

Let $\{u_n\}_n$ be a sequence of measurable, nonnegative functions on a measurable set E. If $\sum_{j=1}^{\infty} u_j = f$ a.e. on E, then $\int_E f dx = \int_E (\sum_{j=1}^{\infty} u_j) dx = \sum_{j=1}^{\infty} \int_E u_j dx$.

Proof. Let $f_n = \sum_{j=1}^n u_j$, then $f_n \nearrow f$ a.e. on *E*. Apply Theorem 2 the sequence $\{f_n\}$.

Beppo Levi's Lemma

A measurable function $f: E \longrightarrow [0, \infty]$ is said to be integrable over E if $\int_{F} f dx < \infty$.

Proposition (1)

Let $E \subset \mathbb{R}^q$ be a measurable. If a measurable function $f : E \longrightarrow [0, \infty]$ is integrable over E, then it is finite a.e. on E.

Proof.

Let $\epsilon > 0$ and let $\lambda > 0$ such that $\int_E f dx < \epsilon \lambda$. It follows from Chebychev's inequality that $m(\{f > \lambda\}) \leq \frac{1}{\lambda} \int_E f dx < \epsilon$. Since $\{f = \infty\} \subset \{f > \lambda\}$, then $m(\{f = \infty\}) < \epsilon$. Therefore $m(\{f = \infty\}) = 0$.

Theorem (Beppo Levi's Lemma 3)

Let $\{f_n\}_n$ be a sequence of measurable, nonnegative functions on a measurable set E. Suppose that $\{f_n\}_n$ is increasing and that the sequence of integrals $\left\{\int_E f_n dx\right\}_n$ is bounded. Then $f_n \nearrow f$ pointwise on E such that the limit f is finite a.e. on E, integrable over E, and $\lim_{n \to \infty} \int_E f_n dx = \int_E f_n dx$.

Proof.

Since $\{f_n\}_n$ is increasing, then $f(x) = \lim_{n \to \infty} f(x)$ is well defined on $[0, \infty]$. It follows from the Monotone Convergence Theorem that $\lim_{n \to \infty} \int_E f_n dx = \int_E f dx$. Since the sequence of integrals $\{\int_E f_n dx\}_n$ is bounded, then $\int_E f dx$ is finite and so *f* is integrable over *E* and consequently finite a.e. on *E*.

The General Lebesgue Integral

Let $E \subset \mathbb{R}^q$ be measurable and $f : E \longrightarrow \mathbb{R}$. Recall that the positive and negative parts of f are the **nonnegative** functions f^+ and f^- defined on E by $f^+(x) = \max(f(x), 0)$ and $f^-(x) = \max(-f(x), 0)$. We have $f = f^+ - f^-$ and $|f| = f^+ + f^-$ on E

Note that since the space of measurable functions on E is a vector space, then f is measurable if and only if f^+ and f^- are measurable.

Lemma (1)

Let $f: E \longrightarrow \mathbb{R}$ be measurable. Then f^+ and f^- are integrable over E if and only if |f| is integrable over E.

Proof.

" \Leftarrow " Suppose that |f| is integrable. Since the nonnegative functions f^+ and f^- satisfy $0 \le f^{\pm} \le |f|$, the monotonicity of the integral of nonnegative functions implies that $\int_E f^{\pm} dx \le \int_E |f| dx < \infty$. Therefore, f^+ and f^- are integrable. " \Longrightarrow " Suppose that f^+ and f^- are integrable. It follows from the linearity of the integral of nonnegative functions that $\int_E |f| dx = \int_E (f^+ + f^-) dx = \int_E f^+ dx + \int_E f^- dx < \infty$

A measurable function $f : E \longrightarrow \mathbb{R}$ is said to be integrable over E if |f| is integrable over E. In this case its integral over E is

$$\int_{E} f dx = \int_{E} f^{+} dx - \int_{E} f^{-} dx$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Proposition (2)

Let $f: E \longrightarrow \overline{\mathbb{R}}$ be integrable. Then f is finite a.e. on E and if $S \subset E$ has measure 0, then $\int_E f dx = \int_{E \setminus S} f dx$.

Proof.

Since |f| is nonnegative and integrable, then |f| (and so f) is finite a.e. on E. If $S \subset E$ has measure 0, then

$$\int_{E} f dx = \int_{E} f^{+} dx - \int_{E} f^{-} dx = \int_{E \setminus S} f^{+} dx - \int_{E \setminus S} f^{-} dx = \int_{E \setminus S} f dx$$

Proposition (3)

Let $f: E \longrightarrow \mathbb{R}$ be measurable and let $g: E \longrightarrow [0, \infty]$ be integrable. If $|f| \le g$ on E, then f is integrable and

$$\left|\int_{E} f dx\right| \leq \int_{E} |f| \, dx$$

Proof.

Since $|f| \le g$ and g is integrable and so is |f|. It follows that $\left| \int_{E} f dx \right| = \left| \int_{E} (f^{+} - f^{-}) dx \right| = \left| \int_{E} f^{+} dx - \int_{E} f^{-} dx \right| \le \int_{E} f^{+} dx + \int_{E} f^{-} dx = \int_{E} (f^{+} + f^{-}) dx = \int_{E} |f| dx$

Note that it follows from Proposition 2 that the values of a function on a set of measure 0 do not affect the value of the integral. Now given integrable functions $f, g: E \longrightarrow \mathbb{R}$, the set S of points where $f = \infty$ and $g = -\infty$ or $f = -\infty$ and $g = \infty$ has measure 0. In fact if $A = \{|f| < \infty\} \cap \{|g| < \infty\}$ then $E \setminus A$ has measure 0. If f + g is integrable over A, then we set $\int_{E} (f + g) dx = \int_{A} (f + g) dx$

Linearity and monotonicity of the Lebesgue Integral

Theorem (4) Let $f, g: E \longrightarrow \mathbb{R}$ be integrable. Then

1. Linearity: For every $a, b \in \mathbb{R}$, the function af + bg is integrable and $\int_{E} (af + bg)dx = a \int_{E} fdx + b \int_{E} gdx$

2. Monotonicity: If $f \le g$ on E, then $\int_E f dx \le \int_E g dx$.

Proof.

• Note that |af| = |a| |f| and |bg| = |b| |g| are integrable and so is $|af + bg| \le |af| + |bg|$ and then af + bg. To prove linearity, we start by proving that $\int_E (af)^{\pm} dx = a \int_E fdx$. Note also that if a > 0, then $(af)^{\pm} = af^{\pm}$ and if a < 0, then $(af)^{\pm} = -af^{\mp}$. For a < 0, the linearity of the integral for nonnegative functions gives $\int_E (af)^{\pm} dx = \int_E (-a)f^{\mp} dx = -a \int_E f^{\mp} dx$. Hence $\int_E (af)^{\pm} dx = \int_E (af)^{+} dx - \int_E (af)^{-} dx = -a \int_E f^{-} dx + a \int_E af^{+} dx = a \left(\int_E (f^{+} - f^{-}) dx\right) = a \int_E fdx$. Next, we prove that $\int_E (f + g) dx = \int_E fdx + \int_E gdx$. After removing the set of measure 0 (if necessary): $S = \{|f| = \infty\} \cup \{|g| = \infty\}$ we can assume that both f and g are finite on E. We have to verify that $\int_E (f + g)^{+} dx - \int_E (f + g)^{-} dx = \left[\int_E f^{+} dx - \int_E f^{-} dx\right] + \left[\int_E g^{+} dx - \int_E g^{-} dx\right]$

▲□▶▲□▶▲□▶▲□▶ □ のQで

Proof.

We have

$$(f+g)^+ - (f+g)^- = f + g = (f^+ - f^-) + (g^+ - g^-).$$

This implies

$$(f+g)^{+} + f^{-} + g^{-} = (f+g)^{-} + f^{+} + g^{+}.$$

Since all six functions appearing in the above identity are nonnegative, then the linearity of the integral for nonnegative functions give

$$\int_{E} (f+g) + dx + \int_{E} f^{-} dx + \int_{E} g^{-} dx = \int_{E} (f+g) - dx + \int_{E} f^{+} dx + \int_{E} g^{+} dx$$

From this we deduce

$$\int_{E} (f+g)dx = \int_{E} fdx + \int_{E} gdx$$

• Suppose that f and g are finite on E and $g \ge f$. Let h = g - f. Then h is a nonnegative integrable function on E. It follows from part 1 that

$$\int_{E} f dx = \int_{E} (g - h) dx = \int_{E} g dx - \int_{E} h dx \le \int_{E} g dx$$

Theorem (5)

Let $f: E \longrightarrow \mathbb{R}$ be integrable and let A and B be disjoint measurable subsets of E. Then $\int_{A \cup B} fdx = \int_A fdx + \int_B fdx$

Proof.

First note that if $F \subset E$ is measurable, then $|f\chi_F| (\leq |f|)$ is integrable and so is $f\chi_F$. moreover $\int_F f dx = \int_E f\chi_F dx$. Since A and B are disjoint, then $\chi_{A \cup B} = \chi_A + \chi_B$, then $\int_{A \cup B} f dx = \int_E (f\chi_A + f\chi_B) dx = \int_E f\chi_A dx + \int_E f\chi_B dx = \int_A f dx + \int_B f dx$.