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Convergence of Lebesgue Integrals



Theorem (1. Lebesgue Dominated Convergence Theorem)
Let {fn}n be a sequence of measurable functions on a set E such that fn −→ f a.e. on E.
Suppose that there exists a sequence {gn}n of nonnegative integrable functions on E such that

I gn −→ g a.e. on E with lim
n→∞

∫
E

gndx =

∫
E

gdx <∞;

I |fn| ≤ gn for all n ∈ N

Then f is integrable and lim
n→∞

∫
E

fndx =

∫
E

fdx.

Proof.
First note that if {an}n and {bn}n are sequences of real numbers such that an −→ a, then
lim inf
n→∞

(an + bn) = a + lim inf
n→∞

bn and lim inf
n→∞

(an − bn) = a− lim sup
n→∞

bn .

Since |fn| ≤ gn and gn integrable, then |fn| is integrable. It follows from Fatou’s Lemma that∫
E
|f | dx ≤ lim inf

n→∞

∫
E
|fn| dx ≤ lim inf

n→∞

∫
E
|gn| dx =

∫
E

gdx <∞

Hence, f is integrable. We are left to show that
∫

E
fdx = lim

n→∞

∫
E

fndx.

For this we use again Fatou’s Lemma and the linearity of the integral∫
E

fdx =

∫
E

gdx−
∫

E
(g− f )dx ≥

∫
E

gdx− lim inf
n→∞

∫
E
(gn − fn)dx =

∫
E

gdx−
∫

E
gdx + lim sup

n→∞

∫
E

fndx

Also∫
E

fdx =

∫
E
(g + f )dx−

∫
E

gdx ≤ lim inf
n→∞

∫
E
(gn + fn)dx−

∫
E

gdx =

∫
E

gdx + lim inf
n→∞

∫
E

fndx−
∫

E
gdx

This means lim sup
n→∞

∫
E

fndx ≤
∫

E
fdx ≤ lim inf

n→∞

∫
E

fndx. This proves
∫

E
fdx = lim

n→∞

∫
E

fndx.



Countable Additivity and Continuity of the Integral

Theorem (2)
Let f : E −→ R be an integrable function. If {En}∞n=1 is a disjoint collection of measurable
subsets of E, then ∫

⋃∞
n=1 En

fdx =
∞∑

n=1

∫
En

fdx .

Proof.
Let F =

∞⋃
n=1

En . For each n ∈ N, let An =
n⋃

j=1

Ej and let fn = fχAn
. Then fn is measurable on E and |fn| ≤ |f | on E and

fn −→ f pointwise on F. It follows from Lebesgue Dominated Convergence Theorem (with gn = |f | for all n) that∫
F

fdx = lim
n→∞

∫
F

fndx.

Since the En’s are disjoint, it follows from the (finite) additivity of the integral that∫
F

fndx =

∫
F

fχAn
dx =

n∑
j=1

∫
Ej

fdx .

Hence ∫
⋃∞

n=1 En
fdx = lim

n→∞

∫
F

fndx = lim
n→∞

 n∑
j=1

∫
Ej

fdx

 =
∞∑

n=1

∫
En

fdx .



Theorem (3)
Let f : E −→ R be an integrable function.

1. If {En}∞n=1 is an ascending collection of measurable subsets of E, then∫
⋃∞

n=1 En

fdx = lim
n→∞

∫
En

fdx

2. If {En}∞n=1 is a descending collection of measurable subsets of E, then∫
⋂∞

n=1 En

fdx = lim
n→∞

∫
En

fdx

Lemma (1)
Let E ⊂ Rq be measurable and with finite measure and let δ > 0. Then E can be written as a
disjoin union of a finite collection of measurable sets each of which has measure < δ: That is,
there exist disjoint measurable sets A1, · · · ,AN such that E = A1 ∪ · · · ∪ AN and for every
j = 1, · · · ,N, we have m(Aj) < δ.

Proof.
For n ∈ N consider the cube Cn in Rq given by Cn = [−n, n]q . Let En = E ∩ Cn . Then {En} is an ascending collection of
measurable sets and E =

⋃
n En . Then m(E) = lim

n→∞
m(En). Let Fn = E\En so that E = En ∪ Fn . Since E has finite

measure, then limn→∞ m(Fn) = 0. Let n0 ∈ N such that m(Fn0 ) < δ. We are left to prove the Lemma for En0 .

Let M ∈ N be such that
( 2n0

M

)q
< δ. Divide [−n0, n0] into M intervals by the points xj = −n0 + j(2n0/M), with

j = 0, · · · ,M. Let Ij = [xj, xj+1) so that `(Ij) = 2n0/M. For a multi index α = (j1, · · · , jq) ∈ H with
H = {0, · · · ,M − 1}q ⊂ Zq , define the cube Dα ∈ Rq given by Dα = Ij1 × · · · × Ijq . Then
m(Dα) = (2n0/M)q < δ. Note that Cn0 =

⋃
α∈H Dα . For every α ∈ H let Aα = Dα ∩ E. The collection of

{Aα}α∈H is disjoint and En0 =
⋃

α∈H Aα and m(Aα) ≤ m(Dα) < δ.



Proposition (1)
Let f : E −→ R be a measurable function and m(E) <∞. Then f is integrable over E if and
only if for every ε > 0 there exists δ > 0 such that for every measurable set A ⊂ E with

m(A) < δ, we have
∫

A
|f | dx < ε.

Proof.
Since f = f+ − f+ , and |f | = f+ + f− , if the theorem holds for nonnegative functions then it holds for general functions.
So we can assume that f is nonnegative.
"=⇒" Suppose f is integrable. Let ε > 0. By definition of the integral of nonnegative functions, there exists a measurable

bounded function fε with finite support such that 0 ≤ fε ≤ f on E and
∫

E
fεdx ≤

∫
E

fdx ≤
∫

E
fεdx + (ε/2). It follows

from the linearity of the integral that for any measurable set A ⊂ E we have∫
A

fdx−
∫

A
fεdx =

∫
A
(f − fε)dx ≤

∫
E
(f − fε)dx =

∫
E

fdx−
∫

E
fεdx ≤

ε

2
Since fε is bounded, let M > 0 such that 0 ≤ fε < M on E. It follows that

0 ≤
∫

A
fdx ≤

∫
A

fεdx +
ε

2
≤ Mm(A) +

ε

2
.

For δ =
ε

2M
we get 0 ≤

∫
A

fdx ≤ ε.

"⇐=" Suppose that for each ε there exists δ > 0 such that for every measurable set A ⊂ E with m(A) < δ, we have∫
A
|f | dx < ε. Select ε = 1 and the corresponding δ = δ0 . It follows from Lemma 1 that there exists a finite collection of

disjoints measurable sets E1, · · · , EN such that E = E1 ∪ · · · ∪ EN and m(Ej) ≤ δ0 for every j = 1, · · · , N. It follows

that
N∑

j=1

∫
Ej

fdx < N. Now if h is an arbitrary nonnegative bounded function with finite support such that 0 ≤ h ≤ f on E,

then
∫

E
hdx < N. This implies that f is integrable over E and

∫
E

fdx < N.

Remark (1)
The implication "=⇒" is still valid even without the assumption that E has finite measure.



Uniform Integrability

A collection F of measurable functions on a set E ⊂ Rq is said to be uniformly integrable over

E if for every ε > 0 there exists δ > 0 such that for every f ∈ F , we have
∫

A
|f | dx ≤ ε

whenever A ⊂ E has measure m(A) ≤ δ.

Note that a finite family F = {fj}n
j=1 of integrable functions on E is always uniformly

integrable. This follows from Proposition 1.

Proposition (2)
Let {fn}∞n=1 be a sequence of integrable functions on a set E ⊂ Rq with finite measure. Suppose
that this sequence is uniformly integrable and fn −→ f pointwise a.e. on E. Then the limit f is
integrable over E.

Proof.
We need to prove that

∫
E
|f | dx <∞. First note that since fn −→ f a.e. on E, then it follows from Fatou’s Lemma that∫

E
|f | dx ≤ lim inf

n→∞

∫
E
|fn| dx.

Now we use the uniform integrability of the sequence {fn}n with ε = 1 to find δ > 0 such that
∫

A
|fn| dx < 1 for every

measurable set A ⊂ E with m(A) < δ and for every n. Since m(E) <∞, then we can find a finite collection of disjoint
measurable sets {A1, · · · , AN} such that E = A1 ∪ · · · ∪ AN and m(Aj) < δ for j = 1, · · · , N.

For any n ∈ N we have
∫

E
|fn| dx =

N∑
j=1

∫
Aj
|fn| dx < N. Therefore

∫
E
|f | dx ≤ N and f is integrable.



Theorem (4. Vitali Convergence Theorem)
Let E ⊂ Rq be measurable with finite measure. Suppose that the sequence of functions {fn}n is
uniformly integrable over E and that fn −→ f pointwise a.e. on E. Then f is integrable over E

and
∫

E
fdx = lim

n→∞

∫
E

fndx.

Proof.
We already know from Proposition 2 that the limit function f is integrable over E. It remains to prove∫

E
fdx = lim

n→∞

∫
E

fndx. We can find a set S ⊂ E such that m(S) = 0, fn −→ f pointwise on F = E\S and |f | <∞ on

F (because f is finite a.e. on E as an integrable function). It suffices therefore to establish the result when E is replaced by F. If

A ⊂ F is any measurable set, then it follows from the linearity and monotonicity of the integral that∣∣∣∣∫
F
fdx−

∫
F
fndx
∣∣∣∣ ≤∫

F
|f − fn| dx ≤

∫
F\A
|f − fn| dx +

∫
A
|f − fn| dx ≤

∫
F\A
|f − fn| dx +

∫
A
|f | dx +

∫
A
|fn| dx

Now let ε > 0. By using the uniform integrability of the sequence {fn}, we can find δ > 0 such that
∫

A
|fn| dx ≤ (ε/3)

whenever A ⊂ F has measure m(A) < δ. We also have
∫

A
|f | dx ≤ (ε/3) (Fatou’s Lemma). Since m(F) = m(E) <∞,

then it follows from Egorov’s Theorem that we can find a set A0 ⊂ F with m(A0) < δ such that fn −→ f uniformly on

F\A0 . Hence, there exists N ∈ N such that |f − fn| ≤ (ε/(3m(E))) for every n > N. Finally, using the set A0 , we get∣∣∣∣∫
F
fdx−

∫
F
fndx
∣∣∣∣ ≤∫

F\A0
|f − fn| dx +

∫
A0
|f | dx +

∫
A0
|fn| dx ≤

ε

3m(E)
m(F\A0) +

ε

3
+
ε

3
= ε .

This implies that
∫

E
|f | dx = lim

n→∞

∫
E
|fn| dx.



The following theorem justifies the importance of uniform integrability in the passage to the
limit under the integral sign.

Theorem (5)
Let E ⊂ Rq with finite measure. Suppose that {hn}n is a sequence of nonnegative integrable

functions on E such that hn −→ 0 pointwise a.e. on E. Then lim
n→∞

∫
E

hndx = 0 if and only if

the sequence {hn}n is uniformly integrable over E

Proof.
"⇐=" This is a consequence of Theorem 4.

"=⇒" Suppose that lim
n→∞

∫
E

hndx = 0. Let ε > 0. Then there exists N ∈ N such that 0 ≤
∫

E
hndx < ε for all n > N.

Since hn ≥ 0, then we also have
∫

A
hndx < ε for any measurable set A ⊂ E.

The finite family {h1, · · · , hN} is uniformly integrable. Indeed, for each j = 1, · · · , N there exists δj > 0 such that∫
A

hjdx ≤ ε whenever m(A) < δj . Let δ = min(δ1, · · · , δN). For A ⊂ E with m(A) < δ we have
∫

A
hndx < ε for

any n.


