Real Analysis MAA 6616
Lecture 16
Convergence of Lebesgue Integrals



Theorem (1. Lebesgue Dominated Convergence Theorem)

Let {fu }n be a sequence of measurable functions on a set E such that f, —> f a.e. on E.
Suppose that there exists a sequence {gn }n of nonnegative integrable functions on E such that

> ¢, — gae onEwith lim /gndx:/gdx<oo;
n— oo E E
> |fu| < gnforalln € N

Then f is integrable and lim /f,,dx: /ﬁix.
n— oo E E

Proof.

First note that if {a,, }, and {b, }, are sequences of real numbers such that a, — a, then
lim inf(a,, +by) =a+ lim inf b, and lim inf(an — by) = a — limsup b,.

n— oo
Smce [fu] < gnandg, lntegrable then |f;, | is integrable. It follows from Fatou’s Lemma that

/V\dx<11m1nf/ Vn|dx<11m1nf/ |gn| dx = /gdx<oo

Hence, f is integrable. We are left to show that /fdx = hm /f,l
E
For this we use again Fatou’s Lemma and the linearity of lhe integral
/fdx: /gdx—/(g—f)dxz /gdx—hmmf/( n — fu)dx = /gdx—/gdx+limsup/fndx
Al E JE E E n—roo JE JE E n—oo JE
50

/Eﬂix=/E(g+f)dx—/Egu’XS lglrggéf/E(gn +fn)dx—/Egdx=/Egd)r+1}1rg}>gf/£j}xdx—/)3gdx

This means lim sup /fndx < /fdx < lim inf /f,Ldm This proves /fdx: lim /f,,dxA
n—oo JE JE n—oo [p JE n—oo [p



Countable Additivity and Continuity of the Integral

Theorem (2)

Letf : E — R be an integrable function. If{E,,}’?il is a disjoint collection of measurable

subsets of E, then
fdx = fdx .
[ =3

E,

Proof

LetF = U E,.Foreachn € N,letA, = U Ej and let fy, —f)(A Then f;, is measurable on E and |f,,| < |f| on E and
n=1 =1
fn — f pointwise on F. It follows from Lebesgue Dominated Convergence Theorem (with g, = |f| for all n) that

/ fix = lim_ /F fud.

F
Since the En’s are disjoint, it follows from the (finite) additivity of the integral that

Jots = [ 1, :Z/Ejfdx-
=l [ = i, L;l/%f‘“} Z/ -

Hence

Joe

n=1 n=1



Theorem (3)
Letf : E — R be an integrable function.
1. If{E,}22, is an ascending collection of measurable subsets of E, then

n=1
/ fdx = lim /fdx
UOO E, n— oo En

n=1""
2. If{E, };’i] is a descending collection of measurable subsets of E, then

/ fdx = lim fdx
noo E n—oo Ep

n=1""

Lemma (1)

Let E C RY be measurable and with finite measure and let § > 0. Then E can be written as a
disjoin union of a finite collection of measurable sets each of which has measure < 0 That is,
there exist disjoint measurable sets Ay, - -+ ,An such that E = A} U - - - U Ay and for every
j=1,--+,N, we have m(4;) < 6.

Proof.

Forn € N consider the cube C,, in R? given by C, = [—n, n]?. Let E, = E N Cy. Then {E, } is an ascending collection of
measurable sets and E = J,, E,. Then m(E) = li}m m(Ey). Let F, = E\E, sothat E = E, U F),. Since E has finite
n— oo

measure, then lim,_, oo m(F,) = 0. Letnyg € N such that m(FnU) < 6. We are left to prove the Lemma for Eng-

2ng \ 4
Let M € N be such that VO < 8. Divide [—ng, ng] into M intervals by the points x; = —ng + j(2n9 /M), with
j=0,--- M Letl; = [x;, x4 1) sothat £(];) = 2ng/M. For amulti index o = (jy, - - - ,jq) € H with
H={0,---,M—1}? C Z define the cube Do, € R? givenby Dy = j; X - - X Ij,- Then

m(Da) = (2ng/M)? < &.Notethat Cyy = U, cpy Da- Forevery a € HletAq = Do N E. The collection of
{Aa }aen is disjoint and B, = UaeH Aq andm(Aq) < m(Dy) < 6.



Proposition (1)
Letf : E — R be a measurable function and m(E) < oo. Then f is integrable over E if and
only if for every € > 0 there exists 6 > 0 such that for every measurable set A C E with

m(A) < 6, we have / [fldx < e
A

Proof.

Since f = fJr — f*, and |f| = f+ -+ f7 . if the theorem holds for nonnegative functions then it holds for general functions.
So we can assume that f is nonnegative.
"==>" Suppose f is integrable. Let ¢ > 0. By definition of the integral of nonnegative functions, there exists a measurable

bounded function fe with finite support such that 0 < fe < f onEand/ fedx < / Sfdx < / fedx + (e/2). It follows
E E E
from the linearity of the integral that for any measurable set A C E we have
[t [reax= [ ¢ =roa < [¢—goar= [as— [ reax <
A A A E E E
Since fe is bounded, let M > 0 such that 0 < fe < M on E. It follows that
€ €
0< /fdxg /fgdx+f < Mm(A) + - .
A A 2 2

€
2

€
For§d = — weget0 < /fdx <e
2M A
"<=" Suppose that for each € there exists 6 > 0 such that for every measurable set A C E with m(A) < &, we have
/ |f| dx < €. Select € = 1 and the corresponding § = &. It follows from Lemma 1 that there exists a finite collection of
JA
disjoints measurable sets Eq, - - - , Ey suchthat E = Ey U - - - U Ey and m(E;) < & foreveryj = 1,--- , N. It follows
N
that Z / fdx < N.Now if & is an arbitrary nonnegative bounded function with finite support such that 0 < & < fon E,
=175
then/ hdx < N. This implies that f is integrable overEand/fdx < N. O
E E

Remark (1)

The implication "==>" is still valid even without the assumption that E has finite measure.



Uniform Integrability

A collection F of measurable functions on a set £ C R is said to be uniformly integrable over
E if for every € > 0 there exists § > 0 such that for every f € F, we have / [fldx < e
whenever A C E has measure m(A) < 4. !

Note that a finite family 7 = {fj}?_, of integrable functions on E is always uniformly
integrable. This follows from Proposition 1.

Proposition (2)

Let {f };’il be a sequence of integrable functions on a set E C R? with finite measure. Suppose

that this sequence is uniformly integrable and f, — f pointwise a.e. on E. Then the limit f is
integrable over E.

Proof.

We need to prove that |f| dx < oo. First note that since f, — f a.e. on E, then it follows from Fatou’s Lemma that
E

/E [f] dx < l;rgégf/p [fu| dx.

Now we use the uniform integrability of the sequence {f;, }, with e = 1to find § > 0 such that / |fu| dx < 1 for every
A

measurable set A C E with m(A) < & and for every n. Since m(E) < oo, then we can find a finite collection of disjoint
measurable sets {Ay, - -+ ,Ay}suchthat E = Ay U - - - UAy andm(4;) < dforj=1,---,N.

N
Forany n € Nwe have/ [ful dx = Z / [fu] dx < N. Therefnre/ |f| dx < N and f is integrable. O
E P Aj E
=174



Theorem (4. Vitali Convergence Theorem)
Let E C R? be measurable with finite measure. Suppose that the sequence of functions {f, }n is
uniformly integrable over E and that f, — f pointwise a.e. on E. Then f is integrable over E

and/fdx: lim /f,,dx.
E n— o0 E

Proof.

We already know from Proposition 2 that the limit function f is integrable over E. It remains to prove

/fdx = I‘i}m /fndx. We can find a set S C E such that m(S) = 0, f, — f pointwise on ¥ = E\S and |[f| < oo on
. n—oo Jp

F (because f is finite a.e. on E as an integrable function). It suffices therefore to establish the result when E is replaced by F. If

A C Fis any measurable set, then it follows from the linearity and monotonicity of the integral that

fias ~fpas| <fir =gt ax <[ 1 - ndav+fy = mlac <[ 1= polas+ [yt a+fln s

F F F F\A A F\A A A

Now let € > 0. By using the uniform integrability of the sequence {f; }, we can find § > 0 such that /[fn| dx < (€/3)
A

whenever A C F has measure m(A) < 6. We also have /Lf\ dx < (e/3) (Fatou’s Lemma). Since m(F) = m(E) < oo,
A

then it follows from Egorov’s Theorem that we can find a set Ag C F with m(Ag) < & such that f, — f uniformly on
F\Ay. Hence, there exists N € N such that |f — f,| < (e/(3m(E))) for every n > N. Finally, using the set A(, we get

€ € €
dx —[fdx| < —fld d flde < ——— St
s [ <l Wlaef lnla < oo mrva + 58§ = e

This implies lhal/E |f| dx = nli)rgo /b [fu] dx. =




The following theorem justifies the importance of uniform integrability in the passage to the
limit under the integral sign.

Theorem (5)
Let E C RY with finite measure. Suppose that {h, }n is a sequence of nonnegative integrable

functions on E such that h, — 0 pointwise a.e. on E. Then lim / hpdx = 0 if and only if
n—o0o E

the sequence {hn}n is uniformly integrable over E

Proof.

"<==""This is a consequence of Theorem 4.

"==>" Suppose that E}m / hpdx = 0. Let € > 0. Then there exists N € N such that 0 < / hpdx < eforalln > N.
n—oo [ Je

Since h,, > 0, then we also have / hpdx < e for any measurable setA C E.

A
The finite family {hy, - - - , hy } is uniformly integrable. Indeed, for eachj = 1, - - - , N there exists dj > 0 such that
/hjdx < e whenever m(A) < §;. Let§ = min(dy,--- ,dy). ForA C E withm(A) < & we have / hpdx < e for
JA JA

any n. O



