Real Analysis MAA 6616 Lecture 17
 Repeated Integration: Fubini's Theorem

Product Measure

It follows from the definition of the measure that if I and J are boxes in Euclidean spaces, then $I \times J$ is a box and $v(I \times J)=v(I) \times v(J)$. This property extend to products of measurable sets. We will show that the Lebesgue measure of a product of two sets $E \times F$ is the product of the measures of E and F.

Proposition (1)

Let $Z \subset \mathbb{R}^{r}$ and $F \subset \mathbb{R}^{s}$ be measurable sets with $m(Z)=0$. Then $Z \times F \subset \mathbb{R}^{r+s}$ is measurable and $m(Z \times F)=0$.

Proof.

First consider the case $m(F)<\infty$. Let $p, q \in \mathbb{N}$. Then there exist open sets $U_{p} \subset \mathbb{R}^{r}, V_{q} \subset \mathbb{R}^{s}$ such that $Z \subset U_{p}$, $F \subset V_{q}, m\left(U_{p}\right)<(1 / p)$, and $m\left(V_{q}\right)<m(F)+(1 / q)$.
There exist countable collections of nonoverlapping boxes $\left\{I_{i, p}\right\}_{i}$ and $\left\{J_{j, q}\right\}_{j}$ such that $U_{p}=\bigcup_{i=1}^{\infty} I_{i, p}$ and $V_{q}=\bigcup_{j=1}^{\infty} J_{j, q}$.
We have then $U_{p} \times V_{q}=\bigcup_{i=1}^{\infty} \bigcup_{j=1}^{\infty} I_{i, p} \times J_{j, q}$. Therefore

$$
m\left(U_{p} \times V_{q}\right)=\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} m\left(I_{i, p}\right) \cdot m\left(J_{j, q}\right)=\sum_{i=1}^{\infty} m\left(I_{i, p}\right) \cdot \sum_{j=1}^{\infty} m\left(J_{j, q}\right)=m\left(U_{p}\right) \cdot m\left(V_{q}\right) \leq \frac{1}{p}\left(m(F)+\frac{1}{q}\right)
$$

Since $Z \times F \subset U_{p} \times V_{q}$ and p, q are arbitrary, it follows that $m(Z \times F)=0$.
If $m(F)=\infty$. For $n \in \mathbb{N}$, let $F_{n}=F \cap B_{n}(0)$, where $B_{n}(0)$ is the ball with center 0 and radius n in \mathbb{R}^{s}. We have
$Z \times F=\bigcup_{n=1}^{\infty} Z \times F_{n}$. Since $m\left(F_{n}\right)<\infty$, then (previous case) $m\left(Z \times F_{n}\right)=0$ for all n, therefore $m(Z \times F)=0$.

Remark (1)

The measurability of a product $A \times B$ of two sets does not imply the measurability of each set. For example. Let $A=Z$ be set of measure 0 and B be any bounded nonmeasurable set. Then $A \times B$ is measurable with measure 0 .

Proposition (2)

Let $E \subset \mathbb{R}^{r}$ and $F \subset \mathbb{R}^{s}$ be measurable sets. Then $E \times F$ is a measurable set in \mathbb{R}^{r+s} and $m(E \times F)=m(E) m(F)$ if $m(E) \neq 0$ and $m(F) \neq 0$. If one of the sets has measure 0 , then $m(E \times F)=0$.

Proof.

Since the case $m(E)=0$ or $m(F)=0$ is dealt with in Proposition 1 , we assume that none of the sets has measure 0 . There exist G_{δ} sets G^{1} and G^{2} such that $E \subset G^{1}, F \subset G^{2}$ and $m\left(G^{1} \backslash E\right)=0, m\left(G^{2} \backslash F\right)=0$. Since the G_{δ} set $G^{1} \times G^{2}$ contains $E \times F$, then $E \times F$ would be measurable if $m\left(\left(G^{1} \times G^{2}\right) \backslash(E \times F)\right)=0$.
We have $G^{1} \times G^{2} \backslash E \times F=\left(G^{1} \backslash E\right) \times G^{2} \cup G^{1} \times\left(G^{2} \backslash F\right)$. Since $G^{1} \backslash E$ and $G^{2} \backslash F$ have measure 0 , then $\left(G^{1} \backslash E\right) \times G^{2}$ and $G^{1} \times\left(G^{2} \backslash F\right)$ have measure 0 and so does $\left(G^{1} \times G^{2}\right) \backslash(E \times F)$. Hence $E \times F$ is measurable and $m(E \times F)=m\left(G^{1} \times G^{2}\right)$.
We can write $G^{1}=\bigcap_{p=1}^{\infty} U_{p}$ and $G^{2}=\bigcap_{q=1}^{\infty} V_{q}$ with U_{p}, V_{q} open in \mathbb{R}^{r} and \mathbb{R}^{s}, respectively. For each p and q, there exist countable collections of non overlapping boxes $\left\{I_{i, p}\right\}_{i}$ and $\left\{J_{j, q}\right\}_{j}$ such that $U_{p}=\bigcup_{i=1}^{\infty} I_{i, p}$ and $V_{q}=\bigcup_{j=1}^{\infty} J_{j, q}$. As in the proof of Proposition 1, we have $m\left(U_{p} \times V_{q}\right)=m\left(U_{p}\right) m\left(V_{q}\right)$. It follows that $G^{1} \times G^{2}=\bigcap_{p, q=1}^{\infty} U_{p} \times V_{q}$ has measure

$$
m\left(G^{1} \times G^{2}\right)=\lim _{p \rightarrow \infty} m\left(U_{p}\right) \cdot \lim _{q \rightarrow \infty} m\left(V_{q}\right)=m\left(G^{1}\right) m\left(G^{2}\right)=m(E) \times m(F)
$$

Let $S \subset \mathbb{R}^{d}$ be a measurable set. We denote by $\mathcal{L}(S)$ the vector space of \bar{R}-valued functions that are Lebesgue integrable on S :

$$
\mathcal{L}(S)=\left\{f: S \longrightarrow \overline{\mathbb{R}}: \int_{S}|f| d x<\infty\right\}
$$

Let $E \subset \mathbb{R}^{r}$ and $F \subset \mathbb{R}^{s}$ be measurable sets. The points in \mathbb{R}^{r} will be denoted by $x=\left(x_{1}, \cdots, x_{r}\right)$ and the points in \mathbb{R}^{s} will be denoted by $y=\left(y_{1}, \cdots, y_{s}\right)$. Let $f: E \times F \longrightarrow \overline{\mathbb{R}}$ be a measurable function. The integral of f over $E \times F$ will be denoted by $\int_{E \times F} f(x, y) d x d y$. For a given $x \in E$, we denote by $\int_{F} f(x, y) d y$ the integral of $f(x, \cdot): F \longrightarrow \overline{\mathbb{R}}$ and for a given $y \in F$, we denote by $\int_{E} f(x, y) d x$ the integral of $f(\cdot, y): E \longrightarrow \overline{\mathbb{R}}$.
To the function $f: E \times F \longrightarrow \overline{\mathbb{R}}$, we can associate the following three integrals: The double integral

$$
\int_{E \times F} f(x, y) d x d y
$$

and the iterated integrals

$$
\int_{E}\left[\int_{F} f(x, y) d y\right] d x \text { and } \int_{F}\left[\int_{E} f(x, y) d x\right] d y
$$

Fubini Theorem gives sufficient conditions for the three integrals to be equal.

Remark (2)

If a function $f(x, y)$ is measurable on a set $A \times B$, then this alone does not imply that $f(x, \cdot)$ is measurable for all x in A. For example Let $A=Z$ be a set with measure $0, B=N$ a nonmeasurable set. Then $Z \times N$ is measurable with measure 0 . The function $f(x, y)=\chi_{Z \times N}$ is measurable. However for $x \in Z$, the function $f(x, \cdot)=\chi_{N}$ is not measurable.

Theorem (1. Fubini's Theorem)

Let $E \subset \mathbb{R}^{r}$ and $F \subset \mathbb{R}^{s}$ be measurable sets and let $f: E \times F \longrightarrow \overline{\mathbb{R}}$. Suppose that $f \in \mathcal{L}(E \times F)$. Then

1. For almost all $x \in E, f(x, \cdot)$ is a measurable function of $y \in F$ and $f(x, \cdot) \in \mathcal{L}(F)$.
2. The function $A: E \longrightarrow \mathbb{R}$ defined for a.e. $x \in E$ by

$$
A(x)=\int_{F} f(x, y) d y \text { is in } \mathcal{L}(E)
$$

3. For almost all $y \in F, f(\cdot, y)$ is a measurable function of $x \in E$ and $f(\cdot, y) \in \mathcal{L}(E)$.
4. The function $B: F \longrightarrow \mathbb{R}$ defined for a.e. $y \in F$ by

$$
B(y)=\int_{E} f(x, y) d x \quad \text { is in } \mathcal{L}(F)
$$

5. Moreover, we have

$$
\int_{E \times F} f(x, y) d x d y=\int_{E}\left[\int_{F} f(x, y) d y\right] d x=\int_{F}\left[\int_{E} f(x, y) d x\right] d y .
$$

Fubini's Theorem will be proved in several steps going from simple to more general situations.

Remark (3)

- Reduction to case $E=\mathbb{R}^{r}$ and $F=\mathbb{R}^{s}$. Since $f \in \mathcal{L}(E \times F)$, then we can extend the function f by defining it to be 0 on $\mathbb{R}^{r} \times \mathbb{R}^{s} \backslash E \times F$. To obtain a function $\tilde{f} \in \mathcal{L}\left(\mathbb{R}^{r} \times \mathbb{R}^{s}\right)$ and prove the theorem for f.
- A partly open interval (or box or rectangle) in \mathbb{R}^{d} is $I=I_{1} \times \cdots \times I_{d}$ where each I_{j} is an interval in \mathbb{R} of the form $\left[a_{j}, b_{j}\right)$. The boundary of ∂I of I is the set of points $x=\left(x_{1}, \cdots, x_{d}\right)$ such that for some $j, x_{j}=a_{j}$ or $x_{j}=b_{j}$.
- For $I=[a, b)$ and J an interval in \mathbb{R}^{s}, we have $\partial(I \times J)=(\{a\} \times J) \cup(\{b\} \times J) \cup(I \times \partial J)$. Since $m(\partial J)=0$, then $m\left(\left\{y \in \mathbb{R}^{s}:(x, y) \in \partial(I \times J)\right\}\right)=0$ for all x in the interior of I.
- For any given open set $U \subset \mathbb{R}^{d}$, there exists a countable collection of disjoint party open intervals $\left\{I_{n}\right\}_{n}$ in \mathbb{R}^{d} such that $U=\bigcup_{n=1}^{\infty} I_{n}$.

Denote by Fub $\left(\mathbb{R}^{r} \times \mathbb{R}^{s}\right)$ the subset of integrable functions in $\mathcal{L}\left(\mathbb{R}^{r} \times \mathbb{R}^{s}\right)$ that satisfy the five properties listed in Fubini's Theorem. Our aim is to prove that $\operatorname{Fub}\left(\mathbb{R}^{r} \times \mathbb{R}^{s}\right)=\mathcal{L}\left(\mathbb{R}^{r} \times \mathbb{R}^{s}\right)$.

Lemma (1)

Fub $\left(\mathbb{R}^{r} \times \mathbb{R}^{s}\right)$ is a vector space. That is iff, $g \in \operatorname{Fub}\left(\mathbb{R}^{r} \times \mathbb{R}^{s}\right)$ and $a, b \in \mathbb{R}$, then $a f+b g \in \operatorname{Fub}\left(\mathbb{R}^{r} \times \mathbb{R}^{s}\right)$.
This follows from the linearity of the integral.

Lemma (2)

Let $A \subset \mathbb{R}^{r}$ and $B \subset \mathbb{R}^{s}$ be measurable with finite measures, then $\chi_{A \times B} \in \operatorname{Fub}\left(\mathbb{R}^{r} \times \mathbb{R}^{s}\right)$.

Proof.

Let $f(x, y)=\chi_{A \times B}(x, y)=\chi_{A}(x) \chi_{B}(y)$. Hence $f(x, \cdot)=0$ if $x \notin A$ and $f(x, \cdot)=\chi_{B}$ if $x \in A$. Since χ_{B} is measurable, then $f(x, \cdot)$ is measurable and $f(x, \cdot) \in \mathcal{L}\left(\mathbb{R}^{s}\right)$ for every $x \in \mathbb{R}^{r}$. We have
$\int_{\mathbb{R}^{s}} f(x, y) d y=\chi_{A}(x) m(B) \in \mathcal{L}\left(\mathbb{R}^{r}\right)$.
Similarly $f(\cdot, y) \in \mathcal{L}\left(\mathbb{R}^{r}\right)$ for every $y \in \mathbb{R}^{s}$ and $\int_{\mathbb{R}^{r}} f(x, y) d x=\chi_{B}(y) m(A) \in \mathcal{L}\left(\mathbb{R}^{s}\right)$.
Finally $\int_{\mathbb{R}^{r} \times \mathbb{R}^{s}} \chi_{A \times B} d x d y=m(A \times B)=m(A) m(B)$ and

$$
\int_{\mathbb{R}^{r}}\left[\int_{\mathbb{R}^{s}} \chi_{A \times B} d y\right] d x=\int_{\mathbb{R}^{r}} m(B) \chi_{A} d x=m(A) m(B)=\int_{\mathbb{R}^{s}}\left[\int_{\mathbb{R}^{r}} \chi_{A \times B} d x\right] d y
$$

Lemma (3)

Let $\left\{f_{n}\right\}_{n} \subset \operatorname{Fub}\left(\mathbb{R}^{r} \times \mathbb{R}^{s}\right)$ be a sequence of nonnegative functions. Suppose that $f_{n} \nearrow f$ (or $\left.f_{n} \searrow f\right)$ with $f \in \mathcal{L}\left(\mathbb{R}^{r} \times \mathbb{R}^{s}\right)$, then $f \in \operatorname{Fub}\left(\mathbb{R}^{r} \times \mathbb{R}^{s}\right)$

Proof.

Note that since $\left\{f_{n}\right\} \subset \operatorname{Fub}\left(\mathbb{R}^{r} \times \mathbb{R}^{s}\right)$ (and so $f_{n} \in \mathcal{L}\left(\mathbb{R}^{r} \times \mathbb{R}^{s}\right)$) and since $f_{n} \nearrow f$ with $f \in \mathcal{L}\left(\mathbb{R}^{r} \times \mathbb{R}^{s}\right)$, then It follows from the MCT (Monotone Convergence Theorem) that $\lim _{n \rightarrow \infty} \int_{\mathbb{R}^{r+s}} f_{n}(x, y) d x d y=\int_{\mathbb{R}^{r+s}} f(x, y) d x d y$.
For every $n \in \mathbb{N}$ there exists a set $Z_{n} \subset \mathbb{R}^{r}$ with $m\left(Z_{n}\right)=0$ such that $f_{n}(x, \cdot) \in \mathcal{L}\left(\mathbb{R}^{s}\right)$. Let $Z=\bigcup_{n=1}^{\infty} Z_{n}$. Then $m(Z)=0$ and $f_{n}(x, \cdot) \nearrow f(x, \cdot)$ for all $x \notin Z$. Let $g_{n}(x)=\int_{R^{s}} f_{n}(x, y) d y$ and $g(x)=\int_{R^{s}} f(x, y) d y$. The MCT implies that $\lim _{n \rightarrow \infty} g_{n}(x)=g(x)$ for all $x \notin Z$. Since $f_{n} \in \operatorname{Fub}\left(\mathbb{R}^{r} \times \mathbb{R}^{s}\right)$, then $g_{n} \in \mathcal{L}\left(\mathbb{R}^{r}\right)$ for $x \notin Z$ and $g_{n} \nearrow g$. The MCT once again gives $\lim _{n \rightarrow \infty} \int_{\mathbb{R}^{r}} g_{n}(x) d x=\int_{\mathbb{R}^{r}} g(x) d x$ for $x \notin Z$.

Proof.

(CONTINUED) This means that for $x \notin Z$ we have

$$
\int_{\mathbb{R}^{r}+s} f(x, y) d x d y=\lim _{n \rightarrow \infty} \int_{\mathbb{R}^{r}+s} f_{n}(x, y) d x d y=\lim _{n \rightarrow \infty} \int_{\mathbb{R}^{r}} g_{n}(x) d x=\int_{\mathbb{R}^{r}} g(x) d x=\int_{\mathbb{R}^{r}}\left[\int_{\mathbb{R}^{s}} f(x, y) d y\right] d x
$$

A similar argument gives the equality with the third integral. Therefore $f \in \operatorname{Fub}\left(\mathbb{R}^{r} \times \mathbb{R}^{s}\right)$.

Lemma (4)

Let I and J be intervals in \mathbb{R}^{r} and R^{s} and let $E \subset \partial(I \times J)$. Then $\chi_{E} \in \operatorname{Fub}\left(\mathbb{R}^{r} \times \mathbb{R}^{s}\right)$.

Proof.

Since $m(\partial(I \times J))=0$, the $m(E)=0$, the function $\chi_{E} \in \mathcal{L}\left(\mathbb{R}^{r} \times \mathbb{R}^{s}\right)$ and $\int_{\mathbb{R}^{r} \times \mathbb{R}^{s}} \chi_{E} d x d y=m(E)=0$. We have $m[\{y \in J:(x, y) \in \partial(I \times J)\}]=0$ for almost every $x \in I$ (see Remark 3). Therefore, $\chi_{E}(x, \cdot)$ has support with measure 0 for a.e. $x \in I$, hence $g(x)=\int_{\mathbb{R}^{s}} \chi_{E}(x, y) d y=0$ a.e. $x \in I$. Hence
$0=\int_{\mathbb{R}^{r} \times \mathbb{R}^{s}} \chi_{E} d x d y=\int_{\mathbb{R}^{r}} g(x) d x=\int_{\mathbb{R}^{r}}\left[\int_{\mathbb{R}^{s}} \chi_{E}(x, y) d y\right] d x$. A similar relation holds by interchanging the roles of x and y. Thus $\chi_{E} \in \operatorname{Fub}\left(\mathbb{R}^{r} \times \mathbb{R}^{s}\right)$.

Lemma (5)

Let $U \subset \mathbb{R}^{r} \times \mathbb{R}^{s}$ be an open set with $m(U)<\infty$. Then $\chi_{U} \in \operatorname{Fub}\left(\mathbb{R}^{r} \times \mathbb{R}^{s}\right)$.

Proof.

There exists a countable collection $\left\{I_{p} \times J_{p}\right\}_{p=1}^{\infty}$ of disjoint, partly open intervals in $\mathbb{R}^{r} \times \mathbb{R}^{s}$ such that $U=\bigcup_{p=1}^{\infty} I_{p} \times J_{p}$.
For $n \in \mathbb{N}$ let $U_{n}=\bigcup_{p=1}^{n} I_{p} \times J_{p}$. The collection of measurable sets $\left\{U_{n}\right\}_{n}$ is ascending, $U=\bigcup_{n=1}^{\infty} U_{n}$ and $\chi_{U_{n}} \nearrow \chi_{U}$.
Since $\chi_{U_{n}}=\sum_{p=1}^{n} \chi_{I_{p} \times J_{p}}$ and $\chi_{I_{p} \times J_{p}} \in \operatorname{Fub}\left(\mathbb{R}^{r} \times \mathbb{R}^{s}\right)\left(\right.$ Lemma 2), then $\chi_{U_{n}} \in \operatorname{Fub}\left(\mathbb{R}^{r} \times \mathbb{R}^{s}\right)($ Lemma 1).
Consequently $\chi_{U} \in \operatorname{Fub}\left(\mathbb{R}^{r} \times \mathbb{R}^{s}\right)$ (Lemma 3).

Lemma (6)

Let $G \subset \mathbb{R}^{r} \times \mathbb{R}^{s}$ be a G_{δ} set $: G=\bigcap_{p=1}^{\infty} U_{p}$, where $U_{p} \subset \mathbb{R}^{r} \times \mathbb{R}^{s}$ open and $m\left(U_{1}\right)<\infty$. Then $\chi_{G} \in \operatorname{Fub}\left(\mathbb{R}^{r} \times \mathbb{R}^{s}\right)$.

Proof.

We can write G as $G=\bigcap_{n=1}^{\infty} V_{n}$ where where $V_{n}=\bigcap_{p=1}^{n} U_{p}$ so that $\left\{V_{n}\right\}_{n}$ is a descending collection of open sets and $G=\bigcap_{n=1}^{\infty} V_{n}$. We have $\chi_{V_{n}} \in \operatorname{Fub}\left(\mathbb{R}^{r} \times \mathbb{R}^{s}\right)\left(\right.$ Lemma 5) and $\chi_{V_{n}} \searrow \chi_{G}$. Therefore $\chi_{G} \in \operatorname{Fub}\left(\mathbb{R}^{r} \times \mathbb{R}^{s}\right)$.

Lemma (7)

Let $Z \subset \mathbb{R}^{r+s}$ with $m(Z)=0$. Then $\chi_{Z} \in \operatorname{Fub}\left(\mathbb{R}^{r} \times \mathbb{R}^{s}\right)$. Moreover $m\left[\left\{y \in \mathbb{R}^{s}:(x, y) \in Z\right\}\right]=0$ a.e. $x \in \mathbb{R}^{r}$ and $m\left[\left\{x \in \mathbb{R}^{r}:(x, y) \in Z\right\}\right]=0$ a.e. $y \in \mathbb{R}^{s}$

Proof.

We can find a G_{δ} set G such that $Z \subset G$ and $m(G)=m(Z)=0$. Without loss of generality, we can assume that $G=\bigcap_{n=1}^{\infty} U_{n}$ with U_{n} open and $m\left(U_{1}\right)<\infty$. Hence (Lemma 6), $\chi_{G} \in \operatorname{Fub}\left(\mathbb{R}^{r} \times \mathbb{R}^{s}\right)$ and $0=\int_{\mathbb{R}^{r} \times \mathbb{R}^{s}} \chi_{G} d x d y=\int_{\mathbb{R}^{r}}\left[\int_{\mathbb{R}^{s}} \chi_{G}(x, y) d y\right] d x$. It follows that $g(x)=\int_{\mathbb{R}^{s}} \chi_{G}(x, y) d y=0$ a.e. $x \in \mathbb{R}^{r}$. Equivalently $m\left[\left\{y \in \mathbb{R}^{s}:(x, y) \in G\right\}\right]=0$ a.e. $x \in \mathbb{R}^{r}$. Consequently $m\left[\left\{y \in \mathbb{R}^{s}:(x, y) \in Z\right\}\right]=0$ a.e. $x \in \mathbb{R}^{r}$, since $Z \subset G$. It follows at once $\chi_{Z}(x, \cdot) \in \mathcal{L}\left(\mathbb{R}^{s}\right)$ and $\int_{\mathbb{R}^{s}} \chi_{Z}(x, y) d y=0$ a.e. $x \in \mathbb{R}^{r}$ and $0=\int_{\mathbb{R}^{r} \times \mathbb{R}^{s}} \chi_{Z} d x d y=\int_{\mathbb{R}^{r}}\left[\int_{\mathbb{R}^{s}} \chi_{Z}(x, y) d y\right] d x$. A similar argument holds when the roles of x and y are interchanged. This shows that $\chi_{Z} \in \operatorname{Fub}\left(\mathbb{R}^{r} \times \mathbb{R}^{s}\right)$.

Lemma (8)

Let $E \subset \mathbb{R}^{r} \times \mathbb{R}^{s}$ be measurable with $m(E)<\infty$. Then $\chi_{E} \in \operatorname{Fub}\left(\mathbb{R}^{r} \times \mathbb{R}^{s}\right)$.

Proof.

There exists a G_{δ} set G such that $E \subset G$ and $m(G \backslash E)=0$. Let $Z=G \backslash E$. We have $E=G \backslash Z$ and $\chi_{E}=\chi_{G}-\chi_{Z}$. It follows from Lemmas 6 and 7 that $\chi_{G} \in \operatorname{Fub}\left(\mathbb{R}^{r} \times \mathbb{R}^{s}\right)$ and $\chi_{Z} \in \operatorname{Fub}\left(\mathbb{R}^{r} \times \mathbb{R}^{s}\right)$. Therefore $\chi_{E} \in \operatorname{Fub}\left(\mathbb{R}^{r} \times \mathbb{R}^{s}\right)$ by Lemma 1.

Proof.

Fubini's Theorem: Let $f \in \mathcal{L}\left(\mathbb{R}^{r} \times \mathbb{R}^{s}\right)$. We can write $f=f^{+}-f^{-}$. Both nonnegative functions f^{+}and f^{-}are in $\mathcal{L}\left(\mathbb{R}^{r} \times \mathbb{R}^{s}\right)$. Since Fub $\left(\mathbb{R}^{r} \times \mathbb{R}^{s}\right)$ is a vector space (Lemma 1), it is enough to prove $f^{ \pm} \in \operatorname{Fub}\left(\mathbb{R}^{r} \times \mathbb{R}^{s}\right)$. Without loss of generality we can assume f is nonnegative. Since f is measurable, we can find a sequence of nonnegative simple functions $\left\{f_{n}\right\}_{n}$ with $f_{n} \in \mathcal{L}\left(\mathbb{R}^{r} \times \mathbb{R}^{s}\right)$ and $f_{n} \nearrow f$.
For each $n \in \mathbb{N}$, we can find sets $E_{n}^{1}, \cdots, E_{n}^{p(n)}$ with finite measures in $\mathbb{R}^{r} \times \mathbb{R}^{s}$ and real numbers $c_{n}^{1}, \cdots, c_{n}^{p(n)}$ such that $f_{n}=\sum_{j=1}^{p(n)} c_{j} \chi_{E_{n}^{j}}$. It follows then from Lemmas 1 and 8 that $f_{n} \in \operatorname{Fub}\left(\mathbb{R}^{r} \times \mathbb{R}^{s}\right)$. Finally, since $f_{n} \nearrow f$, Lemma 3 implies that $f \in \operatorname{Fub}\left(\mathbb{R}^{r} \times \mathbb{R}^{s}\right)$.

Theorem (2)

Let $A \subset \mathbb{R}^{r+s}$ be measurable and $f: A \longrightarrow \overline{\mathbb{R}}$ be a measurable function. For $x \in \mathbb{R}^{r}$, let $A_{x}=\left\{y \in \mathbb{R}^{s}:(x, y) \in A\right\}$. Then

- For a.e. $x \in \mathbb{R}^{r}, A_{x}$ is a measurable subset of \mathbb{R}^{s} and $f(x, \cdot)$ is a measurable function of $y \in A_{x}$.
- Iff $\in \mathcal{L}(A)$, then for a.e. $x \in \mathbb{R}^{r}, f(x, \cdot) \in \mathcal{L}\left(A_{x}\right)$. Moreover, the function $g(x)=\int_{A_{x}} f(x, y) d y$ is in $\mathcal{L}\left(\mathbb{R}^{r}\right)$ and

$$
\int_{A} f(x, y) d x d y=\int_{\mathbb{R}^{r}} g(x) d x=\int_{\mathbb{R}^{r}}\left[\int_{A_{x}} f(x, y) d y\right] d x
$$

