
Real Analysis MAA 6616
Lecture 17

Repeated Integration: Fubini’s Theorem



Product Measure
It follows from the definition of the measure that if I and J are boxes in Euclidean spaces, then
I × J is a box and v(I × J) = v(I)× v(J). This property extend to products of measurable sets.
We will show that the Lebesgue measure of a product of two sets E × F is the product of the
measures of E and F.

Proposition (1)
Let Z ⊂ Rr and F ⊂ Rs be measurable sets with m(Z) = 0. Then Z × F ⊂ Rr+s is measurable
and m(Z × F) = 0.

Proof.
First consider the case m(F) < ∞. Let p, q ∈ N. Then there exist open sets Up ⊂ Rr , Vq ⊂ Rs such that Z ⊂ Up ,
F ⊂ Vq , m(Up) < (1/p), and m(Vq) < m(F) + (1/q).

There exist countable collections of nonoverlapping boxes {Ii,p}i and {Jj,q}j such that Up =
∞⋃
i=1

Ii,p and Vq =
∞⋃
j=1

Jj,q .

We have then Up × Vq =
∞⋃
i=1

∞⋃
j=1

Ii,p × Jj,q . Therefore

m(Up × Vq) =
∞∑
i=1

∞∑
j=1

m(Ii,p) · m(Jj,q) =

∞∑
i=1

m(Ii,p) ·
∞∑
j=1

m(Jj,q) = m(Up) · m(Vq) ≤
1

p

(
m(F) +

1

q

)
Since Z × F ⊂ Up × Vq and p, q are arbitrary, it follows that m(Z × F) = 0.

If m(F) = ∞. For n ∈ N, let Fn = F ∩ Bn(0), where Bn(0) is the ball with center 0 and radius n in Rs . We have

Z × F =

∞⋃
n=1

Z × Fn . Since m(Fn) < ∞, then (previous case) m(Z × Fn) = 0 for all n, therefore m(Z × F) = 0.

Remark (1)
The measurability of a product A × B of two sets does not imply the measurability of each set. For example. Let A = Z be set

of measure 0 and B be any bounded nonmeasurable set. Then A × B is measurable with measure 0.



Proposition (2)
Let E ⊂ Rr and F ⊂ Rs be measurable sets. Then E × F is a measurable set in Rr+s and
m(E × F) = m(E)m(F) if m(E) ̸= 0 and m(F) ̸= 0. If one of the sets has measure 0, then
m(E × F) = 0.

Proof.
Since the case m(E) = 0 or m(F) = 0 is dealt with in Proposition 1, we assume that none of the sets has measure 0.
There exist Gδ sets G1 and G2 such that E ⊂ G1 , F ⊂ G2 and m(G1\E) = 0, m(G2\F) = 0. Since the Gδ set G1 × G2

contains E × F, then E × F would be measurable if m
(
(G1 × G2)\(E × F)

)
= 0.

We have G1 × G2\E × F = (G1\E) × G2 ∪ G1 × (G2\F). Since G1\E and G2\F have measure 0, then
(G1\E) × G2 and G1 × (G2\F) have measure 0 and so does (G1 × G2)\(E × F). Hence E × F is measurable and
m(E × F) = m(G1 × G2).

We can write G1
=

∞⋂
p=1

Up and G2
=

∞⋂
q=1

Vq with Up , Vq open in Rr andRs , respectively. For each p and q, there exist

countable collections of non overlapping boxes {Ii,p}i and {Jj,q}j such that Up =

∞⋃
i=1

Ii,p and Vq =

∞⋃
j=1

Jj,q . As in the

proof of Proposition 1, we have m(Up × Vq) = m(Up)m(Vq). It follows that G1 × G2 =
∞⋂

p,q=1

Up × Vq has measure

m(G1 × G2
) = lim

p→∞
m(Up) · lim

q→∞
m(Vq) = m(G1

)m(G2
) = m(E) × m(F).



Let S ⊂ Rd be a measurable set. We denote by L(S) the vector space of R-valued functions that
are Lebesgue integrable on S:

L(S) =
{

f : S −→ R :

∫
S
|f | dx < ∞

}
Let E ⊂ Rr and F ⊂ Rs be measurable sets. The points in Rr will be denoted by
x = (x1, · · · , xr) and the points in Rs will be denoted by y = (y1, · · · , ys). Let
f : E × F −→ R be a measurable function. The integral of f over E × F will be denoted by∫

E×F
f (x, y)dxdy. For a given x ∈ E, we denote by

∫
F
f (x, y)dy the integral of f (x, ·) : F −→ R

and for a given y ∈ F, we denote by
∫

E
f (x, y)dx the integral of f (·, y) : E −→ R.

To the function f : E × F −→ R, we can associate the following three integrals: The double
integral ∫

E×F
f (x, y)dxdy ,

and the iterated integrals∫
E

[∫
F
f (x, y)dy

]
dx and

∫
F

[∫
E
f (x, y)dx

]
dy .

Fubini Theorem gives sufficient conditions for the three integrals to be equal.

Remark (2)
If a function f (x, y) is measurable on a set A × B, then this alone does not imply that f (x, ·) is measurable for all x in A. For

example Let A = Z be a set with measure 0, B = N a nonmeasurable set. Then Z × N is measurable with measure 0. The

function f (x, y) = χZ×N is measurable. However for x ∈ Z, the function f (x, ·) = χN is not measurable.



Fubini’s Theorem

Theorem (1. Fubini’s Theorem)
Let E ⊂ Rr and F ⊂ Rs be measurable sets and let f : E × F −→ R. Suppose that
f ∈ L(E × F). Then

1. For almost all x ∈ E, f (x, ·) is a measurable function of y ∈ F and f (x, ·) ∈ L(F).
2. The function A : E −→ R defined for a.e. x ∈ E by

A(x) =
∫

F
f (x, y)dy is in L(E) .

3. For almost all y ∈ F, f (·, y) is a measurable function of x ∈ E and f (·, y) ∈ L(E).
4. The function B : F −→ R defined for a.e. y ∈ F by

B(y) =
∫

E
f (x, y)dx is in L(F).

5. Moreover, we have∫
E×F

f (x, y)dxdy =

∫
E

[∫
F
f (x, y)dy

]
dx =

∫
F

[∫
E
f (x, y)dx

]
dy .



Fubini’s Theorem will be proved in several steps going from simple to more general situations.

Remark (3)
▶ Reduction to case E = Rr and F = Rs. Since f ∈ L(E × F), then we can extend the

function f by defining it to be 0 on Rr × Rs\E × F. To obtain a function
f̃ ∈ L(Rr × Rs) and prove the theorem for f̃ .

▶ A partly open interval (or box or rectangle) in Rd is I = I1 × · · · × Id where each Ij is an
interval in R of the form [aj, bj). The boundary of ∂I of I is the set of points
x = (x1, · · · , xd) such that for some j, xj = aj or xj = bj.

▶ For I = [a, b) and J an interval in Rs, we have
∂(I × J) = ({a} × J) ∪ ({b} × J) ∪ (I × ∂J). Since m(∂J) = 0, then
m ({y ∈ Rs : (x, y) ∈ ∂(I × J)}) = 0 for all x in the interior of I.

▶ For any given open set U ⊂ Rd , there exists a countable collection of disjoint party open

intervals {In}n in Rd such that U =

∞⋃
n=1

In.

Denote by Fub (Rr × Rs) the subset of integrable functions in L(Rr × Rs) that satisfy the five
properties listed in Fubini’s Theorem. Our aim is to prove that Fub (Rr × Rs) = L(Rr × Rs).

Lemma (1)
Fub (Rr × Rs) is a vector space. That is if f , g ∈ Fub (Rr × Rs) and a, b ∈ R, then
af + bg ∈ Fub (Rr × Rs).

This follows from the linearity of the integral.



Lemma (2)
Let A ⊂ Rr and B ⊂ Rs be measurable with finite measures, then χA×B ∈ Fub (Rr × Rs).

Proof.
Let f (x, y) = χA×B (x, y) = χA (x)χB (y). Hence f (x, ·) = 0 if x /∈ A and f (x, ·) = χB if x ∈ A. Since χB is

measurable, then f (x, ·) is measurable and f (x, ·) ∈ L(Rs) for every x ∈ Rr . We have∫
Rs

f (x, y)dy = χA (x)m(B) ∈ L(Rr
).

Similarly f (·, y) ∈ L(Rr) for every y ∈ Rs and
∫
Rr

f (x, y)dx = χB (y)m(A) ∈ L(Rs
).

Finally
∫
Rr×Rs

χA×B dxdy = m(A × B) = m(A)m(B) and∫
Rr

[∫
Rs

χA×B dy
]

dx =

∫
Rr

m(B)χA dx = m(A)m(B) =

∫
Rs

[∫
Rr

χA×B dx
]

dy

Lemma (3)
Let {fn}n ⊂ Fub (Rr × Rs) be a sequence of nonnegative functions. Suppose that fn ↗ f (or
fn ↘ f ) with f ∈ L(Rr × Rs), then f ∈ Fub (Rr × Rs)

Proof.
Note that since {fn} ⊂ Fub (Rr × Rs) (and so fn ∈ L(Rr × Rs)) and since fn ↗ f with f ∈ L(Rr × Rs), then It

follows from the MCT (Monotone Convergence Theorem) that lim
n→∞

∫
Rr+s

fn(x, y)dxdy =

∫
Rr+s

f (x, y)dxdy.

For every n ∈ N there exists a set Zn ⊂ Rr with m(Zn) = 0 such that fn(x, ·) ∈ L(Rs). Let Z =
∞⋃

n=1

Zn . Then m(Z) = 0

and fn(x, ·) ↗ f (x, ·) for all x /∈ Z. Let gn(x) =

∫
Rs

fn(x, y)dy and g(x) =

∫
Rs

f (x, y)dy . The MCT implies that

lim
n→∞

gn(x) = g(x) for all x /∈ Z. Since fn ∈ Fub (Rr × Rs), then gn ∈ L(Rr) for x /∈ Z and gn ↗ g. The MCT once

again gives lim
n→∞

∫
Rr

gn(x)dx =

∫
Rr

g(x)dx for x /∈ Z.



Proof.
(CONTINUED) This means that for x /∈ Z we have∫

Rr+s
f (x, y)dxdy = lim

n→∞

∫
Rr+s

fn(x, y)dxdy = lim
n→∞

∫
Rr

gn(x)dx =

∫
Rr

g(x)dx =

∫
Rr

[∫
Rs

f (x, y)dy
]

dx

A similar argument gives the equality with the third integral. Therefore f ∈ Fub (Rr × Rs).

Lemma (4)
Let I and J be intervals in Rr and Rs and let E ⊂ ∂(I × J). Then χE ∈ Fub (Rr × Rs).

Proof.
Since m (∂(I × J)) = 0, the m(E) = 0, the function χE ∈ L(Rr × Rs) and

∫
Rr×Rs

χE dxdy = m(E) = 0. We have

m [{y ∈ J : (x, y) ∈ ∂(I × J)}] = 0 for almost every x ∈ I (see Remark 3). Therefore, χE (x, ·) has support with

measure 0 for a.e. x ∈ I, hence g(x) =

∫
Rs
χE (x, y)dy = 0 a.e. x ∈ I. Hence

0 =

∫
Rr×Rs

χE dxdy =

∫
Rr

g(x)dx =

∫
Rr

[∫
Rs
χE (x, y)dy

]
dx. A similar relation holds by interchanging the roles of x and

y. Thus χE ∈ Fub (Rr × Rs).

Lemma (5)
Let U ⊂ Rr × Rs be an open set with m(U) < ∞. Then χU ∈ Fub (Rr × Rs).

Proof.
There exists a countable collection {Ip × Jp}∞p=1 of disjoint, partly open intervals in Rr × Rs such that U =

∞⋃
p=1

Ip × Jp .

For n ∈ N let Un =

n⋃
p=1

Ip × Jp . The collection of measurable sets {Un}n is ascending, U =

∞⋃
n=1

Un and χUn
↗ χU .

Since χUn
=

∑n
p=1 χIp×Jp

and χIp×Jp
∈ Fub (Rr × Rs) (Lemma 2), then χUn

∈ Fub (Rr × Rs) (Lemma 1).

Consequently χU ∈ Fub (Rr × Rs) (Lemma 3).



Lemma (6)
Let G ⊂ Rr ×Rs be a Gδ set: G =

∞⋂
p=1

Up, where Up ⊂ Rr ×Rs open and m(U1) < ∞. Then

χG ∈ Fub (Rr × Rs).

Proof.
We can write G as G =

∞⋂
n=1

Vn where where Vn =
n⋂

p=1

Up so that {Vn}n is a descending collection of open sets and

G =
∞⋂

n=1

Vn . We have χVn
∈ Fub (Rr × Rs) (Lemma 5) and χVn

↘ χG . Therefore χG ∈ Fub (Rr × Rs).

Lemma (7)
Let Z ⊂ Rr+s with m(Z) = 0. Then χZ ∈ Fub (Rr × Rs). Moreover
m [{y ∈ Rs : (x, y) ∈ Z}] = 0 a.e. x ∈ Rr and m [{x ∈ Rr : (x, y) ∈ Z}] = 0 a.e. y ∈ Rs

Proof.
We can find a Gδ set G such that Z ⊂ G and m(G) = m(Z) = 0. Without loss of generality, we can assume that

G =
∞⋂

n=1

Un with Un open and m(U1) < ∞. Hence (Lemma 6), χG ∈ Fub (Rr × Rs) and

0 =

∫
Rr×Rs

χG dxdy =

∫
Rr

[∫
Rs
χG (x, y)dy

]
dx. It follows that g(x) =

∫
Rs
χG (x, y)dy = 0 a.e. x ∈ Rr . Equivalently

m
[
{y ∈ Rs

: (x, y) ∈ G}
]
= 0 a.e. x ∈ Rr . Consequently m

[
{y ∈ Rs

: (x, y) ∈ Z}
]
= 0 a.e. x ∈ Rr , since

Z ⊂ G. It follows at once χZ (x, ·) ∈ L(Rs) and
∫
Rs
χZ (x, y)dy = 0 a.e. x ∈ Rr and

0 =

∫
Rr×Rs

χZ dxdy =

∫
Rr

[∫
Rs
χZ (x, y)dy

]
dx. A similar argument holds when the roles of x and y are interchanged. This

shows that χZ ∈ Fub (Rr × Rs).



Lemma (8)
Let E ⊂ Rr × Rs be measurable with m(E) < ∞. Then χE ∈ Fub (Rr × Rs).

Proof.
There exists a Gδ set G such that E ⊂ G and m(G\E) = 0. Let Z = G\E. We have E = G\Z and χE = χG − χZ . It

follows from Lemmas 6 and 7 that χG ∈ Fub (Rr × Rs) and χZ ∈ Fub (Rr × Rs). Therefore χE ∈ Fub (Rr × Rs) by

Lemma 1.

Proof.
Fubini’s Theorem: Let f ∈ L(Rr × Rs). We can write f = f+ − f− . Both nonnegative functions f+ and f− are in
L(Rr × Rs). Since Fub (Rr × Rs) is a vector space (Lemma 1), it is enough to prove f± ∈ Fub (Rr × Rs). Without loss
of generality we can assume f is nonnegative. Since f is measurable, we can find a sequence of nonnegative simple functions
{fn}n with fn ∈ L(Rr × Rs) and fn ↗ f .

For each n ∈ N, we can find sets E1
n, · · · , Ep(n)

n with finite measures in Rr × Rs and real numbers c1
n, · · · , cp(n)

n such that

fn =

p(n)∑
j=1

cjχ
Ej

n
. It follows then from Lemmas 1 and 8 that fn ∈ Fub (Rr × Rs). Finally, since fn ↗ f , Lemma 3 implies

that f ∈ Fub (Rr × Rs).



Expanded Version of Fubini’s Theorem

Theorem (2)
Let A ⊂ Rr+s be measurable and f : A −→ R be a measurable function. For x ∈ Rr , let
Ax = {y ∈ Rs : (x, y) ∈ A}. Then

▶ For a.e. x ∈ Rr , Ax is a measurable subset of Rs and f (x, ·) is a measurable function of
y ∈ Ax.

▶ If f ∈ L(A), then for a.e. x ∈ Rr , f (x, ·) ∈ L(Ax). Moreover, the function

g(x) =
∫

Ax

f (x, y)dy is in L(Rr) and

∫
A

f (x, y)dxdy =

∫
Rr

g(x)dx =

∫
Rr

[∫
Ax

f (x, y)dy
]

dx


