Real Analysis MAA 6616
Lecture 17
Repeated Integration: Fubini’s Theorem



Product Measure
It follows from the definition of the measure that if / and J are boxes in Euclidean spaces, then
I x Jisabox and v(I x J) = v(I) x v(J). This property extend to products of measurable sets.
We will show that the Lebesgue measure of a product of two sets E X F is the product of the
measures of E and F.

Proposition (1)
LetZ C R" and F C R* be measurable sets withm(Z) = 0. Then Z x F C R'*S is measurable
and m(Z x F) = 0.

Proof.

First consider the case m(F) < oo. Letp, g € N. Then there exist open sets U, C R’, Vyg C R such that Z C Up,
F C Vgm(Up) < (1/p),andm(Vy) < m(F) + (1/q).

oo o
There exist countable collections of nonoverlapping boxes {/; , }; and {J; 4}; such that U, = U Iipand Vy = U Jiq-
i=1 j=1

oo oo
‘We have then U, X V, = U U I; p X Jj . Therefore
i=1j=1
oo

oo oo oo 1 1
m(Up X Vg) = D> " m(lip) - mUjg) = D mip) - > mjg) =m(Up) - m(Vy) < 5 (m(F) + ;>
i=1j=1 i=1 j=1
Since Z X F C Up X V4 and p, g are arbitrary, it follows that m(Z x F) = 0.
If m(F) = oo. Forn € N,let F, = F N B, (0), where By, (0) is the ball with center 0 and radius n in R*. We have
oo
ZXF= U Z X Fy. Since m(F,,) < oo, then (previous case) m(Z X F,) = 0 for all n, therefore m(Z x F) = 0. [

n=1

Remark (1)

The measurability of a product A X B of two sets does not imply the measurability of each set. For example. Let A = Z be set

of measure 0 and B be any bounded nonmeasurable set. Then A X B is measurable with measure 0.



Proposition (2)
Let E C R" and F C R® be measurable sets. Then E x F is a measurable set in R™+S and

m(E x F) = m(E)m(F) if m(E) # 0 and m(F) # 0. If one of the sets has measure 0, then
m(E x F) = 0.

Proof.

Since the case m(E) = 0 or m(F) = 0 is dealt with in Proposition 1, we assume that none of the sets has measure 0.
There exist G5 sets G' and G* suchthat E C G', F C G? and m(G'\E) = 0, m(G*\F) = 0. Since the G set G x G*
contains E X F, then E X F would be measurable if m ((G1 X G*)\(E x F)) =0.
We have G' X G*\E x F = (G'\E) x G*> U G' x (G?\F). Since G' \E and G*\ F have measure 0, then
(G'\E) x G* and G' x (G*\F) have measure 0 and so does (G' x G?)\(E X F). Hence E X F is measurable and
m(E x F) = m(G' x G?).
oo oo
We can write G| = ﬂ Up and G = m Vg4 with Uy, V,; open in R" andR®, respectively. For each p and ¢, there exist
p=1 g=1
oo oo
countable collections of non overlapping boxes {Ii,p}i and {J,-,q }j such that U, = U Iipand Vy = U Jj,q- As in the
i=1 j=1

)
proof of Proposition 1, we have m(U, X Vy4) = m(U,)m(Vy). It follows that G' x G* = m U, X Vg4 has measure
pq=1
1 2\ . T _ 1 2
m(G" x G°) _Phnolo m(Up) qli)rgo m(Vy) = m(G )m(G”) = m(E) x m(F).



Let S C R be a measurable set. We denote by L(S) the vector space of R-valued functions that
are Lebesgue integrable on S:
£(s) = {f:S L R: /[f|dx<oo}
N

Let E C R" and F C R’ be measurable sets. The points in R” will be denoted by
x = (x1,---,x) and the points in R* will be denoted by y = (y1,--- ,ys). Let
f : E X F — R be a measurable function. The integral of f over E X F will be denoted by

/ f(x,y)dxdy. For a given x € E, we denote by /f(x7 y)dy the integral of f(x,-) : F — R
EXF F
and for a given y € F, we denote by /f(x, y)dx the integral of f(-,y) : E — R.

E

To the function f : E x F — R, we can associate the following three integrals: The double
integral

/ f(x,y)dxdy,
EXF

and the iterated integrals

/E{/bf(x,y)dy] dx and /&{/;;f(x’y)dx] dy.

Fubini Theorem gives sufficient conditions for the three integrals to be equal.

Remark (2)

If a function f (x, y) is measurable on a set A X B, then this alone does not imply that f (x, -) is measurable for all x in A. For
example Let A = Z be a set with measure 0, B = N a nonmeasurable set. Then Z X N is measurable with measure 0. The

function f(x, y) = is measurable. However for x € Z, the function f(x, -) = Xy is not measurable.

XzxN



Fubini’s Theorem

Theorem (1. Fubini’s Theorem)

Let E C R and F C R® be measurable sets and letf : E x F — R. Suppose that
f € L(E XF). Then

1. Foralmost all x € E, f(x, -) is a measurable function of y € F and f(x,-) € L(F).
2. The function A : E — R defined for a.e. x € E by

() = /’f(x, Wy isin £(E).

3. Foralmostally € F, f(-,y) is a measurable function of x € E and f(-,y) € L(E).
4. The function B : F — R defined for a.e. y € F by

:/f(x,y)dx isin L(F).
E

5. Moreover, we have

g = [ fowl = [ el



Fubini’s Theorem will be proved in several steps going from simple to more general situations.

Remark (3)

> Reduction to case E = R" and F = R’. Since f € L(E x F), then we can extend the
function f by defining it to be 0 on R” x R*\E X F. To obtain a function
f € L(R" x R?) and prove the theorem for f.

» A partly open interval (or box or rectangle) in R? is I = I x - - - X I; where each I;is an
interval in R of the form [a;j, b;). The boundary of 01 of I is the set of points
x = (x1,- -+ ,xg) such that for some j, x; = a; or x; = b;.

» Forl = [a, b) and J an interval in R®, we have
A x J) = ({a} x J)U ({b} x J)U (I x 8J). Since m(8J) = 0, then
m{y € R : (x,y) € O x J)}) = 0 for all x in the interior of I.

> For any given open set U C R, there exists a countable collection of disjoint party open

(e @)
intervals {I,}, in R? such that U = U I.

n=1

Denote by Fub (R” x R*) the subset of integrable functions in £(R" x R¥) that satisfy the five
properties listed in Fubini’s Theorem. Our aim is to prove that Fub (R” x R¥) = L(R" x R*).

Lemma (1)

Fub (R” x R?*) is a vector space. That is iff,g € Fub (R” x R%) and a,b € R, then
af + bg € Fub (R” x RY).

This follows from the linearity of the integral.



Lemma (2)

Let A C R" and B C R® be measurable with finite measures, then x, ., € Fub (R” x R®).

Proof.
Letf(x,7) = X,y (%,¥) = X4 ()X (y). Hence f(x, -) = Oifx & Aandf(x, ) = x if x € A. Since x is
measurable, then f(x, -) is measurable and f(x, -) € L(R*) for every x € R". We have

Jo 1y = x, @me) € 2.
Similarly f(-,y) € L(R") forevery y € R® and /IK’ Fx,y)dx = x5 ()m(A) € L(RY).

Finally/ X4y gdxdy = m(A X B) = m(A)m(B) and
R X RS
/R’_ {/}Rl XAdey] dx = /R’_ m(B)x, dx = m(A)m(B) = /RA‘ [/]R" XAdex} dy

Lemma (3)

Let {fu }» C Fub (R" X R®) be a sequence of nonnegative functions. Suppose that f, /' f (or
o N\ f) withf € L(R" X R¥), then f € Fub (R" x R¥)

Proof.

Note that since {f,} C Fub (R” X R*) (andsof, € L(R" X R*))and sincef, A f withf € L(R" X R), then It
follows from the MCT (Monotone Convergence Theorem) that lim / Ja(x, y)dxdy = f(x, y)dxdy.
n—0oo Jpr+s Rr+s

oo
For every n € N there exists a set Z, C R” with m(Z,) = 0 such that f, (x, -) € L(R®). LetZ = U Zy. Thenm(Z) =0
n=1
andf, (x,-) A f(x, ) forallx ¢ Z. Letg,(x) = /fn (x,y)dy and g(x) = /f(x, ¥)dy . The MCT implies that
RS RS
lim g, (x) = g(x) forallx ¢ Z. Since f, € Fub (R” X R*), theng, € L(R") forx ¢ Zand g, /* g. The MCT once
oo

n

again gives Ill_l)ngo /]R' gn(x)dx = /]Rr g(x)dxforx ¢ Z. O



Proof.

(CONTINUED) This means that for x ¢ Z we have

/R o S )dsdy = lim_ /R o fox )ty = tim_ /R (s = A; el = /}R ) [/R e y)dy] dx
A similar argument gives the equality with the third integral. Therefore f € Fub (R” X R*).

Lemma (4)
Let I and J be intervals in R” and R* and let E C O(I x J). Then x, € Fub (R" x R®).

Proof.

Since m (8(1 x J)) = 0, the m(E) = 0, the function x,, € L(R" X R*) and/ Xdxdy = m(E) = 0. We have
B R XRS
m[{y €J: (x,y) € (I x J)}] = 0foralmost every x € I (see Remark 3). Therefore, X (x, -) has support with

measure O for a.e. x € I, hence g(x) = / Xg (x,y)dy = Oae. x € I. Hence
"

0= Xpdxdy = / g(x)dx = / [/ Xg (x, y)dy] dx. A similar relation holds by interchanging the roles of x and
R" xRS R R LJRS

. Thus x; € Fub (R" x R"). O

Lemma (5)
Let U C R" X R* be an open set with m(U) < co. Then x,, € Fub (R" x R®).

Proof.

There exists a countable collection {1, X J, };il of disjoint, partly open intervals in R” x R* such that U = U Ip X Jp.
=1

[=S]

n oo
Forn € NletU, = U Ip X Jp. The collection of measurable sets {U,}, is ascending, U = U Uy and Xy, AN Xy-
p=1 n=1
Since Xy, = Z;:l X1, %4, and X1, %, € Fub (R” X R®) (Lemma 2), then Xy, € Fub (R” x R*) (Lemma 1).

Consequently x;, € Fub (R" x R") (Lemma 3). [



Lemma (6)

oo

Let G CR" X R* be a Gg set: G = ﬂ Uy, where U, C R" x R* open and m(U;) < oco. Then
p=1

X € Fub (R” x R).

Proof.

o n
We can write G as G = m V,, where where V,, = m Up so that {Vu}n is a descending collection of open sets and

n=1 p=1
oo
G = ﬂ V,,. We have Xy, € Fub (R” x R®) (Lemma 5) and Xy, N\ X;- Therefore x; € Fub (R" x R*). O
n=1
Lemma (7)

Let Z C RS withm(Z) = 0. Then x, € Fub (R" x R®). Moreover
m{y eR’: (x,y) €Z})| =0ae xR andm[{x eR": (x,y) € Z}| =0ae y R’

Proof.

We can find a G5 set G such that Z C G and m(G) = m(Z) = 0. Without loss of generality, we can assume that
oo

G= ﬂ Uy with Uy open and m(U;) < oo. Hence (Lemma 6), x; € Fub (R" X R*) and
n=1

0= Xgdxdy = / {/ Xg (x,y)dy] dx. Tt follows that g(x) = / Xg (6, y)dy = 0ae.x € R". Equivalently
R" X RS RILJRS RS

m[{y € R’ : (x,y) € G}] = 0ae.x € R". Consequentlym [{y € R* : (x,y) € Z}] = 0ae.x € R’, since

Z C G. It follows at once X, (x, -) € L(R") and / Xz (x,y)dy = 0ae. x € R" and
JrSZ

0= XZ lxdy = / [/ Xz (x, y)dv] dx. A similar argument holds when the roles of x and y are interchanged. This
R7 XRS

shows that x, € Fub (R” x RY). [



Lemma (8)
Let E C R" x RS be measurable with m(E) < oco. Then x, € Fub (R" x R¥).

Proof.

There exists a G5 set G such that E C Gand m(G\E) = 0. LetZ = G\E. Wehave E = G\Zand x; = x; — X - It
follows from Lemmas 6 and 7 that x ; € Fub (R” X R*) and x, € Fub (R” X R"). Therefore x; € Fub (R" x R) by
Lemma 1. O

Proof.

Fubini’s Theorem: Letf € L(R" x R*). We can write f = f+ — f~ . Both nonnegative funclionsf+ andf ™ arein
L(R" x R*). Since Fub (R” x R*) is a vector space (Lemma 1), it is enough to provefi € Fub (R” x R*). Without loss
of generality we can assume f is nonnegative. Since f is measurable, we can find a sequence of nonnegative simple functions
{fa}n withf, € L(R" X R*) andf, 7 f.

For each n € N, we can find sets Ei, reey, Ef:(") with finite measures in R” x R* and real numbers C;lw ey, cj,i(") such that
p(n)

i = Z GX - 1t follows then from Lemmas 1 and 8 thatf, € Fub (R” x R*). Finally, since f;, * f, Lemma 3 implies
- E,
j=1 n

thatf € Fub (R” x RY). O



Expanded Version of Fubini’s Theorem

Theorem (2)

Let A C R be measurable andf : A — R be a measurable function. For x € R, let
Acx={y € R’: (x,y) € A}. Then

» Fora.e. x € R’, Ay is a measurable subset of RS and f (x, -) is a measurable function of
y € Ax.

> Iff € L(A), then for a.e. x € R, f(x,-) € L(Ax). Moreover, the function
g(x) = /‘f()c7 y)dy is in L(R") and
Ay

[rtasas = [ sea= | [ [ 16 y)dy} x



