
Real Analysis MAA 6616
Lecture 18

Tonelli’s Theorem and Applications



Fubini’s Theorem asserts that the integral of an integrable function in Rr+s is the same as the
iterated integrals and interchange of order of integration is allowed. Tonelli’s Theorem gives a
converse for nonnegative functions (a nonnegative function with finite iterated integrals is
integrable). It should be noted that this result does not generalize to functions that change sign
as illustrated by the following example.

Let I = [0, 1]× [0, 1] be the unit square in R2. Consider the sequence of squares in {Ik}k in I
given by:

I1 =

[
0,

1
2

]2

, Ik =

[
1 −

1
2k−1

, 1 −
1
2k

]2

for k = 2, 3, · · ·

So that Ik has side length
1
2k

and area
1

22k
. Divide each square Ik into four equal squares

Ik,1, Ik,2, Ik,3 and Ik,4 as in the figure bellow so that Ik,j has side length
1

2(k+1)



Define a function f : I −→ R as follows:

f = 0 on I\

 ∞⋃
k=1

4⋃
j=1

Io
k,j

 , f = 22k in Io
k,1 ∪ Io

k,3 , and f = −22k in Io
k,2 ∪ Io

k,4

where Eo denotes the interior of a set E. Hence f =
∞∑

k=1

4∑
j=1

(−1)j+12kχIo
k,j

The function f is measurable on I. For each x ∈ [0, 1], f (x, ·) ∈ L([0, 1]) and for each
y ∈ [0, 1], f (·, y) ∈ L([0, 1]). Furthermore,∫ 1

0

[∫ 1

0
f (x, y)dy

]
dx =

∫ 1

0

[∫ 1

0
f (x, y)dx

]
dy = 0.

However, f /∈ L([0, 1]× [0, 1]) since

|f | =
∞∑

k=1

4∑
j=1

22kχIk,j
and

∫
I
|f |dxdy =

∞∑
k=1

1 = ∞ .



Theorem (1. Tonelli’s Theorem)
Let E ⊂ Rr and F ⊂ Rs be measurable sets and f : E × F −→,R be a nonnegative
measurable function. Then, we have the followings:

▶ For a.e. x ∈ E, f (x, ·) is measurable in F.
▶ For a.e. y ∈ F, f (·, y) is measurable in E.

▶ The function g(x) =
∫

F
f (x, y)dy is measurable in E.

▶ The function h(y) =
∫

E
f (x, y)dx is measurable in F.

▶ We have the following equality of the integrals(in R)∫
E×F

f (x, y) dxdy =

∫
E

[∫
F
f (x, y) dy

]
dx =

∫
F

[∫
E
f (x, y) dx

]
dy .

Proof.
This theorem is a consequence of Fubini’s Theorem (FT) and the Monotone Convergence Theorem (MCT). We start by defining
an increasing sequence {fn}n of bounded, nonnegative, and integrable functions. For n ∈ N let Cn the cube in Rr+s given by
Cn = [−n, n]r+s . Define the function fn by

fn(x, y) =

{
min(f (x, y), n) if (x, y) ∈ Cn
0 if (x, y) /∈ Cn

It is verified at once that fn ↗ f on E × F. Furthermore, it follows from FT that fn(x, ·) ∈ L(Rs) for a.e. x ∈ Rr and

gn(x) =

∫
Rs

fn(x, y)dy ∈ L(Rr
). Since f (x, .) is nonnegative its integral, g(x) =

∫
F

f (x, y)dy exists(but could be ∞).



Proof.
CONTINUED.
Now fn(x, ·) ↗ f (x, ·), then the MCT Theorem implies that gn(x) ↗ g(x) =

∫
F

f (x, y)dy. for a.e. x ∈ E and g is

measurable in E. Applications of the MCT and FT give∫
E

[∫
F
f (x, y)

]
dx =

∫
E
g(x) dx = lim

n→∞

∫
E
gn(x) dx (MCT)

= lim
n→∞

∫
E

[∫
F
fn(x, y) dy

]
dx = lim

n→∞

∫
E×F

fn(x, y) dxdy (FT)

=

∫
E×F

f (x, y)dxdy (MCT)

To complete the proof, interchange the roles of x and y.

Remark (1)
Tonelli’s Theorem tells us that for nonnegative functions in E × F ⊂ Rr+s, the finiteness of any
one of the three integrals∫

E×F
f (x, y)dxdy ;

∫
E

[∫
F
f (x, y)dy

]
dx ; or

∫
F

[∫
E
f (x, y)dx

]
dy ,

implies the finiteness of the other two and the three integrals are equal.



Convolution

Let f , g ∈ L(Rn), then we define their convolution f ∗ g as the function in Rn given by

(f ∗ g)(x) =
∫
Rn

f (t)g(x − t)dt .

Provided that the integral exists. This operation of convolution is an important tool used in
Analysis. We will show that the convolution of two integrable functions exists and that the
convolution is commutative: f ∗ g = g ∗ f . Before going further, we need the following theorem.

Theorem (2)
Let L : Rn −→ Rn be a linear map. That is there exists an n × n constant matrix A such that
L(x) = Ax for all x ∈ Rn. Then L maps a measurable set onto a measurable set. Moreover, if
E ⊂ Rn is measurable, then m(L(E)) = |det(A)| m(E), where det(A) is the determinant of the
matrix A.

Lemma (1)
Let f be a measurable function in Rn, then the function F(x, t) = f (x − t) is measurable in R2n.

Proof.
First consider the function f̃ : R2n −→ R given by f̃ (x, t) = f (x). Then f̃ is measurable. Indeed for c ∈ R we have
{f̃ > c} = {x ∈ Rn : f (x) > c} × Rn is a measurable in R2n as a product of two measurable sets.

Let L : R2n −→ R2n be the nonsingular linear transformation given by L(x, t) = (x − t, x + t). Then

F(x, t) = f (x − t) = f̃ ◦ L(x, t). The conclusion follows from Theorem 2.



Theorem (3)
Let f , g ∈ L(Rn), then

1. (f ∗ g)(x) exists for a.e. x ∈ Rn and f ∗ g ∈ L(Rn);

2. f ∗ g = g ∗ f ;

3.
∫
Rn
|f ∗ g| dx ≤

(∫
Rn
|f | dx

) (∫
Rn
|g| dx

)
;

4. if f and g are nonnegative, then
∫
Rn
(f ∗ g)(x) dx =

(∫
Rn

f (x) dx
) (∫

Rn
g(x) dx

)

Proof.
We start by using Tonelli’s Theorem to |f (t)g(x − t)| in R2n to get∫

Rn×Rn
|f (t)| |g(x − t)| dxdt =

∫
Rn

[∫
Rn
|f (t)| |g(x − t)| dx

]
dt =

∫
Rn

[∫
Rn
|g(x − t)| dx

]
|f (t)| dt

=

∫
Rn

[∫
Rn
|g(y)| dy

]
|f (t)| dt =

(∫
Rn
|g(y)| dy

) (∫
Rn
|f (t)| dt

)
Now that we verified that f (t)g(x − t) ∈ L(R2n) we can apply Fubini’s Theorem to obtain that f (t)g(x − t) as a function of

t is in L(Rn) for a.e. x ∈ Rn and (f ∗ g)(x) =

∫
Rn

f (t)g(x − t) dt exist for a.e. x ∈ Rn .

A substitution in the integral defining the convolution shows that ∗ is a commutative operation.

The third claim of the theorem follows from
∣∣∣∣∫

E
Fdx

∣∣∣∣ ≤
∫

E
|F| dx and the fourth from the above calculation where no

absolute value is needed.


