
Real Analysis MAA 6616
Lecture 19

Continuity of Monotone Functions and
Vitali Covering Lemma



We examine the relationship between integration and differentiation. The Fundamental
Theorem of Calculus (FTC) states that if f : [a, b] −→ R is differentiable and if its derivative

f ′ is continuous on [a, b], then
∫ b

a
f ′(x)dx = f (b)− f (a).

A natural question is to understand if this result can be extended if we replace the
differentiability of f on [a, b] by differentiability of f a.e. on [a, b] and continuity of f ′ by
Lebesgue integrability of f ′. In this general setting, the answer is NO and an example is given
by the Cantor-Lebesgue function φ on [0, 1]. This function is increasing, φ′ exists and is 0 a.e.
on [0, 1] so that (∫ 1

0
φ′(x)dx = 0

)
6= (φ(1)− φ(0) = 1)

We will prove that FTC holds for a large class of functions. First we need to understand the
differentiability of monotone functions on an interval.



Continuity of Monotone Functions

Theorem (1)
Let f : (a, b) −→ R be a monotone function. Then f is continuous on (a, b) except possibly
at a countable set of points.

Proof.
Without loss of generality, we can assume that f ↗.
Case : (a, b) bounded and f : [a, b] −→ R. For x0 ∈ (a, b) define

f (x−0 ) = lim
x→x−0

f (x) = sup{f (x) : a < x < x0} and f (x+0 ) = lim
x→x+0

f (x) = inf{f (x) : x0 < x < b} .

Note that f (x±0 ) are finite and f (a) ≤ f (x−0 ) ≤ f (x0) ≤ f (x+0 ) ≤ f (b). Hence f is discontinuous at x0 if and only if

f (x+0 )− f (x−0 ) > 0. In the case f is discontinuous at x0 , define the jump interval as J(x0) =
(

f (x−0 ), f (x+0 )
)

. Since

f ↗, then J(x0) ⊂ [f (a), f (b)] and moreover if x1 < x2 are discontinuities of f , then J(x1) ∩ J(x2) = ∅. For n ∈ N, let
En be the set of discontinuities x of f with `(J(x)) > 1/n. Then En ⊂ [a, b] is covered by a collection of disjoint intervals
each of which has length> 1/n. Therefore En must be a finite set. Let D be the set of all discontinuities of f . Then
D =

⋃∞
n=1 En is countable (countable union of finite sets).

In the case (a, b) unbounded or f (a+), or f (b−) not finite, we can write (a, b) =
∞⋃

m=1

[
a +

1

m
, b−

1

m

]
. If Dm is the

set of discontinuities in
[

a +
1

m
, b−

1

m

]
, then Dm is countable and the set D of discontinuities in (a, b) is D =

⋃
m Dm

also a countable set.

Proposition (1)
Let C ⊂ (a, b) be a countable set. Then there exist an increasing function f : (a, b) −→ R
such that C is the set of discontinuities of f .

The proof is left as an exercise



Simple Vitali Lemma

Lemma (1)
Let E ⊂ Rn with m∗ (E) <∞. Then for any constant 0 < α < 5−n and for any collection of
cubes C in Rn covering E, there exists a finite number of disjoint cubes C1, · · · ,CN ∈ C such
that

N∑
j=1

vol(Cj) ≥ αm∗ (E)

Proof.
A cube Q ∈ C with side length s will be referenced as Q(s) and we will use the notation 5 ∗ Q to denote the cube with same
center as Q and with side length 5s so that vol(5 ∗ Q) = 5nvol(Q).
Set C1 = C and let s∗1 = sup{s : Q(s) ∈ C1}. If s∗1 =∞, then there exists a sequence sj ∈ {s : Q(s) ∈ C1} such that
limj→∞ sj =∞. Since m∗ (E) <∞, then for every given α > 0, we can find a cube Q(sj) ∈ C1 such that
vol(Q(sj)) = sn

j > αm∗ (E).
If s∗1 <∞, then we can find Q(s1) ∈ C1 with s1 > s∗1 /2. Let

C2 = {Q(s) ∈ C1 : Q(s) ∩ Q(s1) = ∅} and C′2 = {Q(s) ∈ C1 : Q(s) ∩ Q(s1) 6= ∅} = C1\C2.

Note that since 2s1 > s∗1 , then every cube Q ∈ C′2 is contained in 5 ∗ Q(s1) (verification left as an exercise).



Proof.
CONTINUED: Let s∗2 = sup{s : Q(s) ∈ C2} and let Q(s2) ∈ C2 with s2 > s∗2 /2. Let

C3 = {Q(s) ∈ C2 : Q(s) ∩ Q(s2) = ∅} and C′3 = {Q(s) ∈ C2 : Q(s) ∩ Q(s2) 6= ∅} = C2\C3.

Again, if Q ∈ C′3 , then Q ⊂ 5 ∗ Q(s2).
By induction, we construct families of cubes Cj and C′j and a sequences of cubes Q(sj) such that:

I Q(sj) ∈ Cj with sj > s∗j /2 with s∗j = sup{s : Q(s) ∈ Cj};

I Cj+1 = {Q(s) ∈ Cj : Q(s) ∩ Q(sj) = ∅} and C′j+1 = Cj\Cj+1

Note that the family of cubes {Q(sj)}j is disjoint and every cube in C′j+1 is contained in 5 ∗ Q(sj).
We have a decreasing sequence {s∗j }j . If there exists N such that CN+1 = ∅ (which means s∗N+1 = 0), the process ends and
we have disjoint cubes Q(s1), · · · ,Q(sN). Moreover, by construction we have

C = C1 = C2 ∪ C
′
2 = C3 ∪ C

′
3 ∪ C

′
2 = · · · = CN+1 ∪ C

′
N+1 ∪ · · · ∪ C

′
2 = C′N+1 ∪ · · · ∪ C

′
2

Since E ⊂
⋃

Q∈C1

Q, then E is contained in the union of all the cubes in C′N+1 ∪ · · · ∪ C
′
2 . Since each cube in C′j+1 is

contained in 5 ∗ Q(sj), then E ⊂
N⋃

j=1

(5 ∗ Q(sj)). Therefore

m∗ (E) ≤
N∑

j=1

vol(5 ∗ Q(sj)) = 5n
N∑

j=1

vol(Q(sj))

and the lemma is proved in this case.

If s∗j > 0 for all j, then we consider two situations: s∗j ↘ δ with δ > 0 and s∗j ↘ 0. In the first situation, we have

sj > δ/2 for all j ∈ N. We have vol(Q(sj)) > (δ/2)n and for any given α > 0 we can find N such that then∑N
j=1 vol(Q(sj)) > αm∗ (E). Finally, if s∗j ↘ 0, then every Q ∈ C = C1 would be contained in

∞⋃
j=1

(5 ∗ Q(sj)).

Otherwise there would be Q(s) ∈ C (s > 0) such that Q(s) ∩ Q(sj) = ∅ for all j, and this would mean s ≤ s∗j for all j and

so s = 0. Hence, E ⊂
∞⋃
j=1

(5 ∗ Q(sj)) and so m∗ (E) ≤ 5n
∞∑
j=1

vol(Q(sj)). Consequently, if a < 5−n , then we can find N

such that
N∑

j=1

vol(Q(sj)) > αm∗ (E)



Vitali Covering Lemma
A collection of cubes C is said to cover a set E in the sense of Vitali if for for every δ > 0 and
for every x ∈ E there exist a cube Q ∈ C with side length < δ such that x ∈ Q.

Theorem (2)
Suppose that a family of cubes C covers a set E in the Vitali sense. Suppose that
0 < m∗ (E) <∞. Then for every ε > 0, there exists a countable collection of disjoint cubes
{Qj}j∈N ⊂ C such that

m

E\
∞⋃
j=1

Qj

 = 0 and m

∞⋃
j=1

Qj

 ≤ (1 + ε)m∗ (E)

Proof.
Let α > 0 such that α < 5−n and let ε < α. Set γ = 1 + ε− α so that 0 < γ < 1. Let V be an open set such that
E ⊂ V and m(V) < (1 + ε)m∗ (E). Consider the family CV ⊂ C that consists of all cubes in C that are contained in V:
CV = {Q ∈ C : Q ⊂ V}. Then CV is again a cover of E in the sense of Vitali.

It follows from the Simple Vitali Lemma that there exists N1 disjoint cubes Q1, · · · ,QN1 in CV such that
N1∑

j=1

vol(Qj) > αm∗ (E). Let Q
N1
1 = Q1 ∪ · · · ∪ QN1 . We have then

m∗
(

E\Q
N1
1

)
≤ m

(
V\Q

N1
1

)
= m(V)− m(Q

N1
1 ) ≤ (1 + ε)m∗ (E)− αm∗ (E) = γm∗ (E) .

Let E1 = E\Q
N1
1 and C1,V = CV\{Q1, · · · ,QN1}. We have m∗ (E1) ≤ γm∗ (E) and C1,V covers E1 in the Vitali

sense. We repeat this construction when E is replaced by E1 and CV replaced by C1,V to produce disjoint cubes

QN1+1, · · · ,QN2 in C1,V such that
N2∑

j=N1

vol(Qj) > αm∗ (E1). Let Q
N2
1 = Q1 ∪ · · · ∪ QN2 . We have then

m∗
(

E\Q
N2
1

)
= m∗

E1\
N2⋃

j=N1+1

Qj

 ≤ γm∗ (E1) ≤ γ
2m∗ (E) .



Proof.
CONTINUED: By repeating this process m times, we obtain disjoint cubes Q1, · · · ,QNm such that

m∗

E\
Nm⋃
j=1

Qj

 ≤ γmm∗ (E) .

Since 0 < γ < 1, then lim
m→∞

γ
m

= 0, then the countable collection of disjoint cubes {Qj}j satisfies

m∗

E\
∞⋃
j=1

Qj

 = 0. Furthermore, since
∞⋃
j=1

Qj ⊂ V , then m

∞⋃
j=1

Qj

 ≤ m(V) ≤ (1 + ε)m∗ (E).

The following corollary is a consequence of the proof of the Vitali Covering Lemma.

Corollary (1)
Suppose that a family of cubes C covers a set E in the Vitali sense. Suppose that
0 < m∗ (E) <∞. Then for every ε > 0, there exists a finite collection of disjoint cubes
Q1, · · · ,QN ∈ C such that

m∗

E\
N⋃

j=1

Qj

 < ε and m

 N⋃
j=1

Qj

 ≤ (1 + ε)m∗ (E)


