Real Analysis MAA 6616
Lecture 2
Open sets; Closed sets; Borel sets

A set $U \subset \mathbb{R}$ is open if for every $x \in U$ there exists $\epsilon>0$ such that $(x-\epsilon, x+\epsilon) \subset U$. Example. For $a, b \in \mathbb{R}$ with $a<b$, the interval (a, b) is open. Indeed for $x \in(a, b)$ let $\epsilon=\min (x-a, b-x)$, then $(x-\epsilon, x+\epsilon) \subset(a, b)$.
The interval $[a, b)$ is not open since for $x=a \in[a, b)$ there is no $\epsilon>0$ such that $(a-\epsilon, a+\epsilon) \subset[a, b)$.
\mathbb{R} and \emptyset are open.

Proposition

1. The union of any collection of open sets is open.
2. The intersection of a finite collection of open sets is open.

Proof.

- Let Λ be set and for every $\lambda \in \Lambda$, let $U_{\lambda} \subset \mathbb{R}$ be open. Set $U=\bigcup_{\lambda \in \Lambda} U_{\lambda}$. We need to prove that U is open. Let $x \in U$. There exists $\lambda_{0} \in \Lambda$ such that $x \in U_{\lambda_{0}}$. Since $U_{\lambda_{0}}$ is open, then there exists $\epsilon_{0}>0$ such that $\left(x-\epsilon_{0}, x+\epsilon_{0}\right) \subset U_{\lambda_{0}}$. Then $\left(x-\epsilon_{0}, x+\epsilon_{0}\right) \subset U$
- Let U_{1}, \cdots, U_{N} be open sets in \mathbb{R} and $V=\bigcap_{j=1}^{N} U_{j}$. Let $x \in V$, then $x \in U_{j}$ for $j=1, \cdots, N$. Hence for every $j \in\{1, \cdots, N\}$ there exists $\epsilon_{j}>0$ such that $\left(x-\epsilon_{j}, x+\epsilon_{j}\right) \subset U_{j}$. Let $\epsilon_{0}=\min _{1 \leq j \leq N}\left(\epsilon_{j}\right)$.

$$
\left(x-\epsilon_{0}, x+\epsilon_{0}\right) \subset\left(x-\epsilon_{j}, x+\epsilon_{j}\right) \subset U_{j} \quad \forall j \in\{1, \cdots, N\}
$$

Therefore $\left(x-\epsilon_{0}, x+\epsilon_{0}\right) \subset V$ and V is open.

Remark

Intersection of infinitely many open sets may not be open. For example for $n \in \mathbb{N}$, consider the open interval $I_{n}=\left(-\frac{1}{n}, \frac{1}{n}\right)$. The intersection $\bigcap_{n=1}^{\infty} I_{n}=\{0\}$ is not open.

Proposition

A nonempty open set in \mathbb{R} is the disjoint union of a countable collection of open intervals. More precisely, if U is an open subset of \mathbb{R}, then there exists a countable set Λ, such that for each $\lambda \in \Lambda$ there is an open interval $I_{\lambda} \subset \mathbb{R}$ satisfying $I_{\lambda} \cap I_{\mu}=\emptyset$ if $\lambda \neq \mu$ and $U=\bigcup_{\lambda \in \Lambda} I_{\lambda}$.

Proof.

Let $U \subset \mathbb{R}$ be open. Define the relation \sim in U by: $x \sim y$ if and only if there exists an open interval $I \subset U$ such that $x, y \in I$. The relation \sim is an equivalence relation (verification left as an exercise). For each $x \in U$, let $I(x)$ the equivalence class of x. Let $a(x)=\inf (I(x))$ and $b(x)=\sup (I(x))$. (note $a(x)$ could be $-\infty$ and $b(x)$ could be $\infty)$.
We claim that $I(x)=(a(x), b(x))(I(x)$ is the largest open interval in U containing $x)$. Indeed, let $y \in(a(x), b(x))$. by definition of l.u.b and g.l.b., there exist real numbers $u, v \in I(x)$ such that $u<y<v$. By definition of \sim and of $I(x)$, there exist open intervals $I \subset U$ containing u and v and therefore containing also y. this means $y \sim x$ and $y \in I(x)$. Therefore $(a(x), b(x)) \subset I(x)$. Now if there exists $z \in I(x) \backslash(a(x), b(x))$, then either $z \leq a(x)$ or $z \geq b(x)$. But z cannot be $<a(x)$ nor $>b(x)$ since $a(x)$ and $b(x)$ are the g.I.b. and I.u.b. of $I(x)$. Also z cannot be equal to either $a(x)$ nor $b(x)$ since otherwise it would mean that $a(x) \sim x$ or $b(x) \sim x$ and leads to a contradiction. Hence $I(x)=(a(x), b(x))$.
We have then proved that $U=\bigcup_{x \in U} I(x)$ is a disjoint union of intervals (if $I(x) \neq I(y)$, then $I(x) \cap I(y)=\emptyset$ since these are equivalent classes). We need only to verify that the collection of intervals $I(x)$ is countable. In each equivalence class $I(x)$, we can select a rational number $r(\mathbb{Q}$ is dense in $\mathbb{R})$ and the collection of equivalence classes is countable.

Closed sets

Let $E \subset \mathbb{R}$. A point $x \in \mathbb{R}$ is said to be a closure point of E if for every $\epsilon>0$ $(x-\epsilon, x+\epsilon) \cap E \neq \emptyset$.
For example 0 and 1 are closure points for the interval (0, 1].
The set of all closure points of E is called the closure of E and denoted \bar{E}. Note that $E \subset \bar{E}$.
A set E is said to be closed if $E=\bar{E}$.

Proposition

1. Let $E \subset \mathbb{R}$. Then \bar{E} is closed: $\overline{\bar{E}}=\bar{E}$.
2. \bar{E} is the smallest closed set containing $E:$ If $F \subset \mathbb{R}$ is closed and $E \subset F$, then $\bar{E} \subset F$.

Proof.

1. Let $z \in \overline{\bar{E}}$. Then for any $\epsilon>0$, there exists $y \in(z-\epsilon, z+\epsilon) \cap \bar{E}$. Let $\epsilon^{\prime}=\min (z+\epsilon-y, y-z+\epsilon)$. Since $y \in \bar{E}$, then there exists $x \in E \cap\left(y-\epsilon^{\prime}, y+\epsilon^{\prime}\right)$. It follows from the choice of ϵ^{\prime} that $x \in E \cap(z-\epsilon, z+\epsilon)$. Since $\epsilon>0$ is arbitrary, then $z \in \bar{E}$. Therefore $\overline{\bar{E}} \subset \bar{E}$ and so $\bar{E}=\overline{\bar{E}}$.
2. Let $F \subset \mathbb{R}$ be a closed set such that $E \subset F$. Let $y \in \bar{E}$. If $y \in E$, then $y \in F$. If $y \in \bar{E} \backslash E$, then for $\epsilon>0$, arbitrary, there exists $x \in E \cap(y-\epsilon, y+\epsilon)$ and so $x \in F \cap(y-\epsilon, y+\epsilon)$. This means $y \in \bar{F}=F(F$ closed $)$ and $\bar{E} \subset F$.

Proposition

A set $E \subset \mathbb{R}$ is closed if and only if its complement $\mathbb{R} \backslash E$ is open
The proof is left as an exercise
It follows from the proposition that since \mathbb{R} and \emptyset are open, their complements $\mathbb{R} \backslash \mathbb{R}=\emptyset$ and $\mathbb{R} \backslash \emptyset=\mathbb{R}$ are closed.

Proposition

1. The union of a finite collection of closed sets is closed.
2. The intersection of any collection of closed sets is closed.

Proof.

1. Left as an exercise.
2. Let Λ be a set and for each $\lambda \in \Lambda$, let F_{λ} be a closed subset of \mathbb{R}. Let $F=\bigcap_{\lambda \in \Lambda} F_{\lambda}$. Since F_{λ} is closed, then $U_{\lambda}=\mathbb{R} \backslash F_{\lambda}$ is open and $U=\bigcup_{\lambda \in \Lambda} U_{\lambda}$ is open. We have

$$
F=\bigcap_{\lambda \in \Lambda} F_{\lambda}=\bigcap_{\lambda \in \Lambda}\left(\mathbb{R} \backslash U_{\lambda}\right)=\mathbb{R} \backslash\left(\bigcup_{\lambda \in \Lambda} U_{\lambda}\right)=\mathbb{R} \backslash U
$$

is closed since U is open.

Heine-Borel-Theorem

A cover of a set E is a collection of sets $\left\{E_{\lambda}\right\}_{\lambda \in \Lambda}$ such that $E \subset \bigcup_{\lambda \in \Lambda} E_{\lambda}$. A subcover is a subcollection $\left\{E_{\mu}\right\}_{\mu \in \Lambda^{\prime}}$ such that $\Lambda^{\prime} \subset \Lambda$ and $\left\{E_{\mu}\right\}_{\mu \in \Lambda^{\prime}}$ is a cover of E. If each set E_{λ} is open, then $\left\{E_{\lambda}\right\}_{\lambda \in \Lambda}$ is said to be an open cover of E. If Λ is a finite set, the cover $\left\{E_{\lambda}\right\}_{\lambda \in \Lambda}$ is said to be a finite cover of E.

Theorem

Let $F \subset \mathbb{R}$ be a closed and bounded set. Then every open cover of F has a finite subcover

Proof.

- Case: $F=[a, b]$ a closed bounded interval. Let $\mathcal{F}=\left\{U_{\lambda}\right\}_{\lambda \in \Lambda}$ be an open cover of F. Consider the set $E \subset F$ defined as the set of points $x \in[a, b]$ such that the interval $[a, x]$ can be covered by a finite number of open set in \mathcal{F}. Since \mathcal{F} is an open cover of $[a, b]$, then there exists $U \in \mathcal{F}$ containing a. Hence $E \neq \emptyset$. The set E is bounded above by b. Let $s=\sup (E) \leq b$. We claim that $s=b$. Indeed, if $s<b$, then there is an open set $V \subset \mathcal{F}$ containing s and $\epsilon>0$ such that $(s-\epsilon, s+\epsilon) \subset V$. Since $s-\epsilon$ is not an upper bound of E, then there exists $x \in E$ and $s-\epsilon<x \leq s$. Since, $x \in E$, then [a, x] can be covered by finitely many open sets $U_{1}, \cdots, U_{n} \in \mathcal{F}$. and so

$$
[a, s+\epsilon) \subset V \cup U_{1} \cup \cdots \cup U_{n} .
$$

In this case we have a point z with $s<z \leq b$ such that [a, z] is covered by a finite number of open sets in \mathcal{F} and this contradicts the definition of s. Hence $E=[a, b]=F$ and the Theorem is proved in this case.

Proof.

- General case: F closed and bounded. Let $\mathcal{F}=\left\{U_{\lambda}\right\}_{\lambda \in \Lambda}$ be an open cover of F. There exists a closed and bounded interval $[a, b]$ such that $F \subset[a, b]$. Let $V=\mathbb{R} \backslash F . V$ is open since F is closed. Consider the collection of open sets $\mathcal{F}^{*}=\mathcal{F} \cup\{V\}$. Since \mathcal{F} is a cover of F and $([a, b] \backslash F) \subset V$, then \mathcal{F}^{*} is an open cover of the interval $[a, b]$.
The previous case implies that there exist finitely many open sets
$U_{1}, \cdots, U_{n} \in \mathcal{F}$ such that $\left\{V, U_{1}, \cdots, U_{n}\right\}$ is a finite open cover of the interval $[a, b]$. Since $F \subset[a, b]$ and $V \cap F=\emptyset$, then $F \subset \bigcup_{j=1}^{n} U_{j}$ and the Theorem is proved.

The Nested Set Theorem

A countable collection of sets $\left\{E_{n}\right\}_{n=1}^{\infty}$ is said to be nested or descending if $E_{n+1} \subset E_{n}$ for every $n \in \mathbb{N}$. The collection is called ascending if $E_{n} \subset E_{n+1}$ for every $n \in \mathbb{N}$.

Theorem

Let $\left\{F_{n}\right\}_{n=1}^{\infty}$ be a countable collection of nested, closed and bounded subsets of \mathbb{R}.
Then $\bigcap_{n=1}^{\infty} F_{n} \neq \emptyset$.

Proof.

By contradiction, suppose that $\bigcap_{n=1}^{\infty} F_{n}=\emptyset$. For each $n \in \mathbb{N}$, let $U_{n}=\mathbb{R} \backslash F_{n}$, then U_{n} is open since F_{n} is closed. Furthermore, it follows from $\left\{F_{n}\right\}_{n=1}^{\infty}$ a descending family that $\left\{U_{n}\right\}_{n=1}^{\infty}$ is an ascending collection $\left(U_{n} \subset U_{n+1}\right)$. It follows from $\bigcap_{n=1}^{\infty} F_{n}=\emptyset$ that for every $x \in \mathbb{R}$, there exists $n \in \mathbb{N}$ such that $x \notin F_{n}$ and so $x \in U_{n}$. Hence $\mathbb{R}=\bigcup_{n=1}^{\infty} U_{n}$.
As a consequence, $\left\{U_{n}\right\}_{n=1}^{\infty}$ is an open cover of the closed and bounded set F_{1}. Heine-Borel Theorem implies that it has a finite subcover: There is $p \in \mathbb{N}$ such that $F_{1} \subset U_{1} \cup \cdots \cup U_{p}=U_{p}$ (because $\left\{U_{n}\right\}_{n=1}^{\infty}$ is an ascending collection). This means $F_{1} \subset \mathbb{R} \backslash F_{p}$ and therefore $F_{p} \nsubseteq F_{1}$ and this contradicts the nestedness of the collection $\left\{F_{n}\right\}_{n=1}^{\infty}$.

Given a set X, a collection \mathcal{A} of subsets of X is called a σ-algebra of X, if

1. it contains the empty set: $\emptyset \in \mathcal{A}$;
2. it is closed under complement: if $E \in \mathcal{A}$, then $X \backslash E \in \mathcal{A}$; and
3. it is closed under countable union: if $E_{n} \in \mathcal{A}$ for all $n \in \mathbb{N}$, then $\bigcup_{n=1}^{\infty} E_{n} \in \mathcal{A}$.

- $\{\emptyset, X\}$ is a σ-algebra. It is contained in any σ-algebra \mathcal{A} of X.
- The set of all subsets of $X\left(\right.$ denoted $\left.2^{X}\right)$ is a σ-algebra of X. It contains all σ-algebras of X.
- a σ-algebra \mathcal{A} of X is closed under countable intersection. If $\left\{E_{n}\right\}_{n=1}^{\infty} \subset \mathcal{A}$, then $\bigcap_{n=1}^{\infty} E_{n} \in \mathcal{A}$.Indeed, $F_{n}=X \backslash E_{n} \in \mathcal{A}$ by condition (2) and condition (3) gives

$$
\bigcup_{n=1}^{\infty} F_{n}=\bigcup_{n=1}^{\infty}\left(X \backslash E_{n}\right)=\bigcap_{n=1}^{\infty} E_{n} \in \mathcal{A}
$$

- Given a family \mathcal{F} of subsets of X. The intersection of all σ-algebras \mathcal{B} containing $\mathcal{F}(\mathcal{F} \subset \mathcal{B})$ is a σ-algebra \mathcal{A}. It is the σ-algebra generated by the family \mathcal{F}.

Let $\left\{E_{n}\right\}_{n=1}^{\infty}$ be a countable collections of sets in a set X. Define the sets

$$
\lim \sup \left\{E_{n}\right\}_{n=1}^{\infty}=\bigcap_{k=1}^{\infty}\left(\bigcup_{n=k}^{\infty} E_{n}\right) \text { and } \lim \inf \left\{E_{n}\right\}_{n=1}^{\infty}=\bigcup_{k=1}^{\infty}\left(\bigcap_{n=k}^{\infty} E_{n}\right)
$$

- $x \in \lim \sup \left\{E_{n}\right\}_{n=1}^{\infty}$ means that for every $k \in \mathbb{N}$ there exists $n \geq k$ such that $x \in E_{n}$. Thus x belongs to a infinitely many sets E_{n}.
- $x \in \liminf \left\{E_{n}\right\}_{n=1}^{\infty}$ means that there exists $k \in \mathbb{N}$ such that $x \in E_{n}$ for every $n \geq k$. Hence x belongs to every E_{n} except possibly for finitely many.
- $\liminf \left\{E_{n}\right\}_{n=1}^{\infty} \subset \limsup \left\{E_{n}\right\}_{n=1}^{\infty}$
- If \mathcal{A} is a σ-algebra of X and $\left\{E_{n}\right\}_{n=1}^{\infty} \subset \mathcal{A}$, then $\lim \sup \left\{E_{n}\right\}_{n=1}^{\infty} \in \mathcal{A}$ and $\lim \inf \left\{E_{n}\right\}_{n=1}^{\infty} \in \mathcal{A}$
The Borel σ-algebra of \mathbb{R} is the σ-algebra \mathcal{B} generated by the collection of all open subsets of \mathbb{R}.
- It follows from the definitions that every open set and every closed set in \mathbb{R} is a Borel set. In particular a finite set or a countable set in \mathbb{R} is Borel.
- A countable intersection of open sets in \mathbb{R} is a Borel set (such a set is called a G_{δ}-set); and a countable union of closed sets in \mathbb{R} is a Borel set (such a set is called an F_{σ}-set).
- If $\left\{E_{n}\right\}_{n=1}^{\infty} \subset \mathcal{B}$, then $\lim \sup \left\{E_{n}\right\}_{n=1}^{\infty} \in \mathcal{B}$ and $\lim \inf \left\{E_{n}\right\}_{n=1}^{\infty} \in \mathcal{B}$

