Real Analysis MAA 6616 Lecture 2 Open sets; Closed sets; Borel sets

Open Sets

A set $U \subset \mathbb{R}$ is open if for every $x \in U$ there exists $\epsilon > 0$ such that $(x - \epsilon, x + \epsilon) \subset U$. **Example.** For $a, b \in \mathbb{R}$ with a < b, the interval (a, b) is open. Indeed for $x \in (a, b)$ let $\epsilon = \min(x - a, b - x)$, then $(x - \epsilon, x + \epsilon) \subset (a, b)$. The interval [a, b) is not open since for $x = a \in [a, b)$ there is no $\epsilon > 0$ such that $(a - \epsilon, a + \epsilon) \subset [a, b)$. \mathbb{R} and \emptyset are open.

Proposition

- 1. The union of any collection of open sets is open.
- 2. The intersection of a finite collection of open sets is open.

Proof.

► Let Λ be set and for every $\lambda \in \Lambda$, let $U_{\lambda} \subset \mathbb{R}$ be open. Set $U = \bigcup U_{\lambda}$. We

need to prove that U is open. Let $x \in U$. There exists $\lambda_0 \in \Lambda$ such that $x \in U_{\lambda_0}$. Since U_{λ_0} is open, then there exists $\epsilon_0 > 0$ such that $(x - \epsilon_0, x + \epsilon_0) \subset U_{\lambda_0}$. Then $(x - \epsilon_0, x + \epsilon_0) \subset U$

▶ Let
$$U_1, \dots, U_N$$
 be open sets in \mathbb{R} and $V = \bigcap_{j=1}^N U_j$. Let $x \in V$, then $x \in U_j$ for $j = 1, \dots, N$. Hence for every $j \in \{1, \dots, N\}$ there exists $\epsilon_j > 0$ such that $(x - \epsilon_j, x + \epsilon_j) \subset U_j$. Let $\epsilon_0 = \min_{1 \le j \le N} (\epsilon_j)$.

$$(x - \epsilon_0, x + \epsilon_0) \subset (x - \epsilon_j, x + \epsilon_j) \subset U_j \quad \forall j \in \{1, \cdots, N\}$$

Therefore $(x - \epsilon_0, x + \epsilon_0) \subset V$ and V is open.

Remark

Intersection of infinitely many open sets may not be open. For example for $n \in \mathbb{N}$,

consider the open interval $I_n = (-\frac{1}{n}, \frac{1}{n})$. The intersection $\bigcap_{n=1}^{\infty} I_n = \{0\}$ is not open.

Proposition

A nonempty open set in \mathbb{R} is the disjoint union of a countable collection of open intervals. More precisely, if U is an open subset of \mathbb{R} , then there exists a countable set Λ , such that for each $\lambda \in \Lambda$ there is an open interval $I_{\lambda} \subset \mathbb{R}$ satisfying $I_{\lambda} \cap I_{\mu} = \emptyset$ if $\lambda \neq \mu$ and $U = \bigcup_{\lambda \in \Lambda} I_{\lambda}$.

Proof.

Let $U \subset \mathbb{R}$ be open. Define the relation \sim in U by: $x \sim y$ if and only if there exists an open interval $I \subset U$ such that $x, y \in I$. The relation \sim is an equivalence relation (verification left as an exercise). For each $x \in U$, let I(x) the equivalence class of x. Let $a(x) = \inf(I(x))$ and $b(x) = \sup(I(x))$. (note a(x) could be $-\infty$ and b(x) could be ∞).

We claim that I(x) = (a(x), b(x)) (I(x) is the largest open interval in U containing x). Indeed, let $y \in (a(x), b(x))$. by definition of l.u.b and g.l.b., there exist real numbers $u, v \in I(x)$ such that u < y < v. By definition of \sim and of I(x), there exist open intervals $I \subset U$ containing u and v and therefore containing also y. this means $y \sim x$ and $y \in I(x)$. Therefore $(a(x), b(x)) \subset I(x)$. Now if there exists $z \in I(x) \setminus (a(x), b(x))$, then either $z \le a(x)$ or $z \ge b(x)$. But z cannot be < a(x) nor > b(x) since a(x) and b(x) are the g.l.b. and l.u.b. of I(x). Also z cannot be equal to either a(x) nor b(x) since otherwise it would mean that $a(x) \sim x$ or $b(x) \sim x$ and leads to a contradiction. Hence I(x) = (a(x), b(x)).

We have then proved that $U = \bigcup_{x \in U} I(x)$ is a disjoint union of intervals (if $I(x) \neq I(y)$,

then $I(x) \cap I(y) = \emptyset$ since these are equivalent classes). We need only to verify that the collection of intervals I(x) is countable. In each equivalence class I(x), we can select a rational number $r(\mathbb{Q}$ is dense in \mathbb{R}) and the collection of equivalence classes is countable.

Closed sets

Let $E \subset \mathbb{R}$. A point $x \in \mathbb{R}$ is said to be a closure point of *E* if for every $\epsilon > 0$ $(x - \epsilon, x + \epsilon) \cap E \neq \emptyset$. For example 0 and 1 are closure points for the interval (0, 1]. The set of all closure points of *E* is called the closure of *E* and denoted \overline{E} . Note that $E \subset \overline{E}$. A set *E* is said to be closed if $E = \overline{E}$.

Proposition

- 1. Let $E \subset \mathbb{R}$. Then \overline{E} is closed: $\overline{\overline{E}} = \overline{E}$.
- 2. \overline{E} is the smallest closed set containing E: If $F \subset \mathbb{R}$ is closed and $E \subset F$, then $\overline{E} \subset F$.

Proof.

- 1. Let $z \in \overline{E}$. Then for any $\epsilon > 0$, there exists $y \in (z \epsilon, z + \epsilon) \cap \overline{E}$. Let $\epsilon' = \min(z + \epsilon y, y z + \epsilon)$. Since $y \in \overline{E}$, then there exists $x \in E \cap (y \epsilon', y + \epsilon')$. It follows from the choice of ϵ' that $x \in E \cap (z \epsilon, z + \epsilon)$. Since $\epsilon > 0$ is arbitrary, then $z \in \overline{E}$. Therefore $\overline{\overline{E}} \subset \overline{E}$ and so $\overline{E} = \overline{\overline{E}}$.
- 2. Let $F \subset \mathbb{R}$ be a closed set such that $E \subset F$. Let $y \in \overline{E}$. If $y \in E$, then $y \in F$. If $y \in \overline{E} \setminus E$, then for $\epsilon > 0$, arbitrary, there exists $x \in E \cap (y \epsilon, y + \epsilon)$ and so $x \in F \cap (y \epsilon, y + \epsilon)$. This means $y \in \overline{F} = F$ (*F* closed) and $\overline{E} \subset F$.

Proposition

A set $E \subset \mathbb{R}$ is closed if and only if its complement $\mathbb{R} \backslash E$ is open

The proof is left as an exercise

It follows from the proposition that since \mathbb{R} and \emptyset are open, their complements $\mathbb{R}\setminus\mathbb{R}=\emptyset$ and $\mathbb{R}\setminus\emptyset=\mathbb{R}$ are closed.

Proposition

- 1. The union of a finite collection of closed sets is closed.
- 2. The intersection of any collection of closed sets is closed.

Proof.

- 1. Left as an exercise.
- 2. Let Λ be a set and for each $\lambda \in \Lambda$, let F_{λ} be a closed subset of \mathbb{R} . Let $F = \bigcap_{\lambda \in \Lambda} F_{\lambda}$. Since F_{λ} is closed, then $U_{\lambda} = \mathbb{R} \setminus F_{\lambda}$ is open and $U = \bigcup_{\lambda \in \Lambda} U_{\lambda}$ is open. We have

$$F = \bigcap_{\lambda \in \Lambda} F_{\lambda} = \bigcap_{\lambda \in \Lambda} (\mathbb{R} \setminus U_{\lambda}) = \mathbb{R} \setminus \left(\bigcup_{\lambda \in \Lambda} U_{\lambda} \right) = \mathbb{R} \setminus U$$

is closed since U is open.

Heine-Borel-Theorem

A cover of a set *E* is a collection of sets $\{E_{\lambda}\}_{\lambda \in \Lambda}$ such that $E \subset \bigcup_{\lambda \in \Lambda} E_{\lambda}$. A subcover is

a subcollection $\{E_{\mu}\}_{\mu \in \Lambda'}$ such that $\Lambda' \subset \Lambda$ and $\{E_{\mu}\}_{\mu \in \Lambda'}$ is a cover of *E*. If each set E_{λ} is open, then $\{E_{\lambda}\}_{\lambda \in \Lambda}$ is said to be an open cover of *E*. If Λ is a finite set, the cover $\{E_{\lambda}\}_{\lambda \in \Lambda}$ is said to be a finite cover of *E*.

Theorem

Let $F \subset \mathbb{R}$ be a closed and bounded set. Then every open cover of F has a finite subcover

Proof.

▶ **Case:** F = [a, b] a closed bounded interval. Let $\mathcal{F} = \{U_{\lambda}\}_{\lambda \in \Lambda}$ be an open cover of *F*. Consider the set $E \subset F$ defined as the set of points $x \in [a, b]$ such that the interval [a, x] can be covered by a finite number of open set in \mathcal{F} . Since \mathcal{F} is an open cover of [a, b], then there exists $U \in \mathcal{F}$ containing *a*. Hence $E \neq \emptyset$. The set *E* is bounded above by *b*. Let $s = \sup(E) \leq b$. We claim that s = b. Indeed, if s < b, then there is an open set $V \subset \mathcal{F}$ containing *s* and $\epsilon > 0$ such that $(s - \epsilon, s + \epsilon) \subset V$. Since $s - \epsilon$ is not an upper bound of *E*, then there exists $x \in E$ and $s - \epsilon < x \leq s$. Since, $x \in E$, then [a, x] can be covered by finitely many open sets $U_1, \dots, U_n \in \mathcal{F}$. and so

$$[a, s + \epsilon) \subset V \cup U_1 \cup \cdots \cup U_n.$$

In this case we have a point *z* with $s < z \le b$ such that [a, z] is covered by a finite number of open sets in \mathcal{F} and this contradicts the definition of *s*. Hence E = [a, b] = F and the Theorem is proved in this case.

Proof.

▶ General case: *F* closed and bounded. Let $\mathcal{F} = \{U_{\lambda}\}_{\lambda \in \Lambda}$ be an open cover of *F*. There exists a closed and bounded interval [*a*, *b*] such that $F \subset [a, b]$. Let $V = \mathbb{R} \setminus F$. *V* is open since *F* is closed. Consider the collection of open sets $\mathcal{F}^* = \mathcal{F} \cup \{V\}$. Since \mathcal{F} is a cover of *F* and $([a, b] \setminus F) \subset V$, then \mathcal{F}^* is an open cover of the interval [*a*, *b*]. The previous case implies that there exist finitely many open sets

 $U_1, \dots, U_n \in \mathcal{F}$ such that $\{V, U_1, \dots, U_n\}$ is a finite open cover of the interval [a, b]. Since $F \subset [a, b]$ and $V \cap F = \emptyset$, then $F \subset \bigcup_{j=1}^n U_j$ and the Theorem is proved.

The Nested Set Theorem

A countable collection of sets $\{E_n\}_{n=1}^{\infty}$ is said to be nested or descending if $E_{n+1} \subset E_n$ for every $n \in \mathbb{N}$. The collection is called ascending if $E_n \subset E_{n+1}$ for every $n \in \mathbb{N}$.

Theorem

Let $\{F_n\}_{n=1}^{\infty}$ be a countable collection of nested, closed and bounded subsets of \mathbb{R} . Then $\bigcap_{n=1}^{\infty} F_n \neq \emptyset$.

Proof.

By contradiction, suppose that $\bigcap_{n=1}^{\infty} F_n = \emptyset$. For each $n \in \mathbb{N}$, let $U_n = \mathbb{R} \setminus F_n$, then U_n is open since F_n is closed. Furthermore, it follows from $\{F_n\}_{n=1}^{\infty}$ a descending family that $\{U_n\}_{n=1}^{\infty}$ is an ascending collection $(U_n \subset U_{n+1})$. It follows from $\bigcap_{n=1}^{\infty} F_n = \emptyset$ that for every $x \in \mathbb{R}$, there exists $n \in \mathbb{N}$ such that $x \notin F_n$ and so $x \in U_n$. Hence $\mathbb{R} = \bigcup_{n=1}^{\infty} U_n$. As a consequence, $\{U_n\}_{n=1}^{\infty}$ is an open cover of the closed and bounded set F_1 . Heine-Borel Theorem implies that it has a finite subcover: There is $p \in \mathbb{N}$ such that $F_1 \subset U_1 \cup \cdots \cup U_p = U_p$ (because $\{U_n\}_{n=1}^{\infty}$ is an ascending collection). This means $F_1 \subset \mathbb{R} \setminus F_p$ and therefore $F_p \nsubseteq F_1$ and this contradicts the nestedness of the collection $\{F_n\}_{n=1}^{\infty}$.

σ -algebra

Given a set X, a collection A of subsets of X is called a σ -algebra of X, if

- 1. it contains the empty set: $\emptyset \in \mathcal{A}$;
- 2. it is closed under complement: if $E \in A$, then $X \setminus E \in A$; and
- 3. it is closed under countable union: if $E_n \in A$ for all $n \in \mathbb{N}$, then $\bigcup_{n=1}^{\infty} E_n \in A$.
- $\{\emptyset, X\}$ is a σ -algebra. It is contained in any σ -algebra \mathcal{A} of X.
- The set of all subsets of X (denoted 2^X) is a σ -algebra of X. It contains all σ -algebras of X.
- a σ -algebra \mathcal{A} of X is closed under countable intersection. If $\{E_n\}_{n=1}^{\infty} \subset \mathcal{A}$, then $\bigcap_{n=1}^{\infty} E_n \in \mathcal{A}.$ Indeed, $F_n = X \setminus E_n \in \mathcal{A}$ by condition (2) and condition (3) gives

$$\bigcup_{n=1}^{\infty} F_n = \bigcup_{n=1}^{\infty} (X \setminus E_n) = \bigcap_{n=1}^{\infty} E_n \in \mathcal{A}$$

Given a family *F* of subsets of *X*. The intersection of all *σ*-algebras *B* containing *F* (*F* ⊂ *B*) is a *σ*-algebra *A*. It is the *σ*-algebra generated by the family *F*.

Let $\{E_n\}_{n=1}^{\infty}$ be a countable collections of sets in a set X. Define the sets

$$\limsup \{E_n\}_{n=1}^{\infty} = \bigcap_{k=1}^{\infty} \left(\bigcup_{n=k}^{\infty} E_n \right) \text{ and } \limsup \{E_n\}_{n=1}^{\infty} = \bigcup_{k=1}^{\infty} \left(\bigcap_{n=k}^{\infty} E_n \right)$$

- ▶ $x \in \lim \sup \{E_n\}_{n=1}^{\infty}$ means that for every $k \in \mathbb{N}$ there exists $n \ge k$ such that $x \in E_n$. Thus x belongs to a infinitely many sets E_n .
- ▶ $x \in \liminf \{E_n\}_{n=1}^{\infty}$ means that there exists $k \in \mathbb{N}$ such that $x \in E_n$ for every $n \ge k$. Hence *x* belongs to every E_n except possibly for finitely many.

•
$$\liminf \{E_n\}_{n=1}^{\infty} \subset \limsup \{E_n\}_{n=1}^{\infty}$$

▶ If A is a σ -algebra of X and $\{E_n\}_{n=1}^{\infty} \subset A$, then $\limsup\{E_n\}_{n=1}^{\infty} \in A$ and $\liminf\{E_n\}_{n=1}^{\infty} \in A$

The Borel σ -algebra of \mathbb{R} is the σ -algebra \mathcal{B} generated by the collection of all open subsets of \mathbb{R} .

- ▶ It follows from the definitions that every open set and every closed set in ℝ is a Borel set. In particular a finite set or a countable set in ℝ is Borel.
- A countable intersection of open sets in R is a Borel set (such a set is called a G_δ-set); and a countable union of closed sets inR is a Borel set (such a set is called an F_σ-set).
- ▶ If $\{E_n\}_{n=1}^{\infty} \subset \mathcal{B}$, then $\limsup \{E_n\}_{n=1}^{\infty} \in \mathcal{B}$ and $\limsup \{E_n\}_{n=1}^{\infty} \in \mathcal{B}$