
Real Analysis MAA 6616
Lecture 2

Open sets; Closed sets; Borel sets



Open Sets

A set U ⊂ R is open if for every x ∈ U there exists ϵ > 0 such that (x − ϵ, x + ϵ) ⊂ U.
Example. For a, b ∈ R with a < b, the interval (a, b) is open. Indeed for x ∈ (a, b) let
ϵ = min(x − a, b − x), then (x − ϵ, x + ϵ) ⊂ (a, b).
The interval [a, b) is not open since for x = a ∈ [a, b) there is no ϵ > 0 such that
(a − ϵ, a + ϵ) ⊂ [a, b).
R and ∅ are open.

Proposition
1. The union of any collection of open sets is open.

2. The intersection of a finite collection of open sets is open.

Proof.
▶ Let Λ be set and for every λ ∈ Λ, let Uλ ⊂ R be open. Set U =

⋃
λ∈Λ

Uλ. We

need to prove that U is open. Let x ∈ U. There exists λ0 ∈ Λ such that x ∈ Uλ0 .
Since Uλ0 is open, then there exists ϵ0 > 0 such that (x − ϵ0, x + ϵ0) ⊂ Uλ0 .
Then (x − ϵ0, x + ϵ0) ⊂ U



▶ Let U1, · · · ,UN be open sets in R and V =
N⋂

j=1

Uj . Let x ∈ V , then x ∈ Uj for

j = 1, · · · ,N. Hence for every j ∈ {1, · · · ,N} there exists ϵj > 0 such that
(x − ϵj , x + ϵj ) ⊂ Uj . Let ϵ0 = min

1≤j≤N
(ϵj ).

(x − ϵ0, x + ϵ0) ⊂ (x − ϵj , x + ϵj ) ⊂ Uj ∀j ∈ {1, · · · ,N}

Therefore (x − ϵ0, x + ϵ0) ⊂ V and V is open.

Remark
Intersection of infinitely many open sets may not be open. For example for n ∈ N,

consider the open interval In = (−
1
n
,

1
n
). The intersection

∞⋂
n=1

In = {0} is not open.

Proposition
A nonempty open set in R is the disjoint union of a countable collection of open
intervals. More precisely, if U is an open subset of R, then there exists a countable set
Λ, such that for each λ ∈ Λ there is an open interval Iλ ⊂ R satisfying Iλ ∩ Iµ = ∅ if
λ ̸= µ and U =

⋃
λ∈Λ

Iλ.



Proof.
Let U ⊂ R be open. Define the relation ∼ in U by: x ∼ y if and only if there exists an
open interval I ⊂ U such that x , y ∈ I. The relation ∼ is an equivalence relation
(verification left as an exercise). For each x ∈ U, let I(x) the equivalence class of x . Let
a(x) = inf(I(x)) and b(x) = sup(I(x)). (note a(x) could be −∞ and b(x) could be
∞).
We claim that I(x) = (a(x), b(x)) (I(x) is the largest open interval in U containing x).
Indeed, let y ∈ (a(x), b(x)). by definition of l.u.b and g.l.b., there exist real numbers
u, v ∈ I(x) such that u < y < v . By definition of ∼ and of I(x), there exist open
intervals I ⊂ U containing u and v and therefore containing also y . this means y ∼ x
and y ∈ I(x). Therefore (a(x), b(x)) ⊂ I(x). Now if there exists
z ∈ I(x)\(a(x), b(x)), then either z ≤ a(x) or z ≥ b(x). But z cannot be < a(x) nor
> b(x) since a(x) and b(x) are the g.l.b. and l.u.b. of I(x). Also z cannot be equal to
either a(x) nor b(x) since otherwise it would mean that a(x) ∼ x or b(x) ∼ x and
leads to a contradiction. Hence I(x) = (a(x), b(x)).
We have then proved that U =

⋃
x∈U

I(x) is a disjoint union of intervals (if I(x) ̸= I(y),

then I(x) ∩ I(y) = ∅ since these are equivalent classes). We need only to verify that
the collection of intervals I(x) is countable. In each equivalence class I(x), we can
select a rational number r (Q is dense in R) and the collection of equivalence classes is
countable.



Closed sets

Let E ⊂ R. A point x ∈ R is said to be a closure point of E if for every ϵ > 0
(x − ϵ, x + ϵ) ∩ E ̸= ∅.
For example 0 and 1 are closure points for the interval (0, 1].
The set of all closure points of E is called the closure of E and denoted E . Note that
E ⊂ E .
A set E is said to be closed if E = E .

Proposition
1. Let E ⊂ R. Then E is closed: E = E.

2. E is the smallest closed set containing E: If F ⊂ R is closed and E ⊂ F, then
E ⊂ F.

Proof.
1. Let z ∈ E . Then for any ϵ > 0, there exists y ∈ (z − ϵ, z + ϵ) ∩ E . Let

ϵ′ = min(z + ϵ− y , y − z + ϵ). Since y ∈ E , then there exists
x ∈ E ∩ (y − ϵ′, y + ϵ′). It follows from the choice of ϵ′ that
x ∈ E ∩ (z − ϵ, z + ϵ). Since ϵ > 0 is arbitrary, then z ∈ E . Therefore E ⊂ E
and so E = E .

2. Let F ⊂ R be a closed set such that E ⊂ F . Let y ∈ E . If y ∈ E , then y ∈ F . If
y ∈ E\E , then for ϵ > 0, arbitrary, there exists x ∈ E ∩ (y − ϵ, y + ϵ) and so
x ∈ F ∩ (y − ϵ, y + ϵ). This means y ∈ F = F (F closed) and E ⊂ F .



Proposition
A set E ⊂ R is closed if and only if its complement R\E is open

The proof is left as an exercise
It follows from the proposition that since R and ∅ are open, their complements R\R = ∅
and R\∅ = R are closed.

Proposition
1. The union of a finite collection of closed sets is closed.

2. The intersection of any collection of closed sets is closed.

Proof.
1. Left as an exercise.

2. Let Λ be a set and for each λ ∈ Λ, let Fλ be a closed subset of R. Let
F =

⋂
λ∈Λ

Fλ. Since Fλ is closed, then Uλ = R\Fλ is open and U =
⋃
λ∈Λ

Uλ is

open. We have

F =
⋂
λ∈Λ

Fλ =
⋂
λ∈Λ

(R\Uλ) = R\

⋃
λ∈Λ

Uλ

 = R\U

is closed since U is open.



Heine-Borel-Theorem
A cover of a set E is a collection of sets {Eλ}λ∈Λ such that E ⊂

⋃
λ∈Λ

Eλ. A subcover is

a subcollection {Eµ}µ∈Λ′ such that Λ′ ⊂ Λ and {Eµ}µ∈Λ′ is a cover of E . If each set
Eλ is open, then {Eλ}λ∈Λ is said to be an open cover of E . If Λ is a finite set, the cover
{Eλ}λ∈Λ is said to be a finite cover of E .

Theorem
Let F ⊂ R be a closed and bounded set. Then every open cover of F has a finite
subcover

Proof.
▶ Case: F = [a, b] a closed bounded interval. Let F = {Uλ}λ∈Λ be an open

cover of F . Consider the set E ⊂ F defined as the set of points x ∈ [a, b] such
that the interval [a, x ] can be covered by a finite number of open set in F . Since
F is an open cover of [a, b], then there exists U ∈ F containing a. Hence
E ̸= ∅. The set E is bounded above by b. Let s = sup(E) ≤ b. We claim that
s = b. Indeed, if s < b, then there is an open set V ⊂ F containing s and ϵ > 0
such that (s − ϵ, s + ϵ) ⊂ V . Since s − ϵ is not an upper bound of E , then there
exists x ∈ E and s − ϵ < x ≤ s. Since, x ∈ E , then [a, x ] can be covered by
finitely many open sets U1, · · · ,Un ∈ F . and so

[a, s + ϵ) ⊂ V ∪ U1 ∪ · · · ∪ Un .

In this case we have a point z with s < z ≤ b such that [a, z] is covered by a
finite number of open sets in F and this contradicts the definition of s. Hence
E = [a, b] = F and the Theorem is proved in this case.



Proof.
▶ General case: F closed and bounded. Let F = {Uλ}λ∈Λ be an open cover of

F . There exists a closed and bounded interval [a, b] such that F ⊂ [a, b]. Let
V = R\F . V is open since F is closed. Consider the collection of open sets
F∗ = F ∪ {V}. Since F is a cover of F and ([a, b]\F ) ⊂ V , then F∗ is an open
cover of the interval [a, b].
The previous case implies that there exist finitely many open sets
U1, · · · ,Un ∈ F such that {V ,U1, · · · ,Un} is a finite open cover of the interval
[a, b]. Since F ⊂ [a, b] and V ∩ F = ∅, then F ⊂

⋃n
j=1 Uj and the Theorem is

proved.



The Nested Set Theorem

A countable collection of sets {En}∞n=1 is said to be nested or descending if En+1 ⊂ En
for every n ∈ N. The collection is called ascending if En ⊂ En+1 for every n ∈ N.

Theorem
Let {Fn}∞n=1 be a countable collection of nested, closed and bounded subsets of R.

Then
∞⋂

n=1

Fn ̸= ∅.

Proof.
By contradiction, suppose that

∞⋂
n=1

Fn = ∅. For each n ∈ N, let Un = R\Fn, then Un is

open since Fn is closed. Furthermore, it follows from {Fn}∞n=1 a descending family that

{Un}∞n=1 is an ascending collection (Un ⊂ Un+1). It follows from
∞⋂

n=1

Fn = ∅ that for

every x ∈ R, there exists n ∈ N such that x /∈ Fn and so x ∈ Un. Hence R =
∞⋃

n=1

Un.

As a consequence, {Un}∞n=1 is an open cover of the closed and bounded set F1.
Heine-Borel Theorem implies that it has a finite subcover: There is p ∈ N such that
F1 ⊂ U1 ∪ · · · ∪ Up = Up (because {Un}∞n=1 is an ascending collection). This means
F1 ⊂ R\Fp and therefore Fp ⊈ F1 and this contradicts the nestedness of the collection
{Fn}∞n=1.



σ-algebra

Given a set X , a collection A of subsets of X is called a σ-algebra of X , if

1. it contains the empty set: ∅ ∈ A;

2. it is closed under complement: if E ∈ A, then X\E ∈ A; and

3. it is closed under countable union: if En ∈ A for all n ∈ N, then
∞⋃

n=1

En ∈ A.

▶ {∅,X} is a σ-algebra. It is contained in any σ-algebra A of X .
▶ The set of all subsets of X (denoted 2X ) is a σ-algebra of X . It contains all

σ-algebras of X .
▶ a σ-algebra A of X is closed under countable intersection. If {En}∞n=1 ⊂ A, then

∞⋂
n=1

En ∈ A.Indeed, Fn = X\En ∈ A by condition (2) and condition (3) gives

∞⋃
n=1

Fn =
∞⋃

n=1

(X\En) =
∞⋂

n=1

En ∈ A

▶ Given a family F of subsets of X . The intersection of all σ-algebras B containing
F (F ⊂ B) is a σ-algebra A. It is the σ-algebra generated by the family F .



Let {En}∞n=1 be a countable collections of sets in a set X . Define the sets

lim sup{En}∞n=1 =
∞⋂

k=1

( ∞⋃
n=k

En

)
and lim inf{En}∞n=1 =

∞⋃
k=1

( ∞⋂
n=k

En

)

▶ x ∈ lim sup{En}∞n=1 means that for every k ∈ N there exists n ≥ k such that
x ∈ En. Thus x belongs to a infinitely many sets En.

▶ x ∈ lim inf{En}∞n=1 means that there exists k ∈ N such that x ∈ En for every
n ≥ k . Hence x belongs to every En except possibly for finitely many.

▶ lim inf{En}∞n=1 ⊂ lim sup{En}∞n=1
▶ If A is a σ-algebra of X and {En}∞n=1 ⊂ A, then lim sup{En}∞n=1 ∈ A and

lim inf{En}∞n=1 ∈ A
The Borel σ-algebra of R is the σ-algebra B generated by the collection of all open
subsets of R.

▶ It follows from the definitions that every open set and every closed set in R is a
Borel set. In particular a finite set or a countable set in R is Borel.

▶ A countable intersection of open sets in R is a Borel set (such a set is called a
Gδ-set); and a countable union of closed sets inR is a Borel set (such a set is
called an Fσ-set).

▶ If {En}∞n=1 ⊂ B, then lim sup{En}∞n=1 ∈ B and lim inf{En}∞n=1 ∈ B


