## Real Analysis MAA 6616 Lecture 20 <br> Differentiability of Monotone Functions

We start with the following observation. Suppose that a function $g: \mathbb{R} \longrightarrow \mathbb{R}$ is differentiable. If on an interval $I=(m, n)$ we have $g^{\prime}(x)>c$, then $g(n)-g(m)=\int_{m}^{n} g^{\prime}(x) d x \geq c(m-n)$.
This can be written as

$$
\ell(I) \leq \frac{1}{c}(g(n)-g(m))
$$

The first result is a sort of generalization of this version of the Mean Value Theorem to increasing function. First we need to defined upper and lower derivatives.

Let $f: E \subset \mathbb{R} \longrightarrow \overline{\mathbb{R}}$. For a point $x$ in the interior of $E$, the upper derivative $D^{+} f(x)$ of $f$ at $x$ and the lower derivative $D^{-} f(x)$ of $f$ at $x$ are defined by:

$$
D^{+} f(x)=\lim _{h \rightarrow 0}\left[\sup _{0<|t|<h} \frac{f(x+t)-f(x)}{t}\right]
$$

and

$$
D^{-} f(x)=\lim _{h \rightarrow 0}\left[\inf _{0<|t|<h} \frac{f(x+t)-f(x)}{t}\right]
$$

Note that for an interior point $D^{ \pm} f(x)$ always exist in $\overline{\mathbb{R}}$ and $D^{+} f(x) \geq D^{-} f(x)$. The function is differentiable $D^{+} f(x)=D^{-} f(x)$ and are finite. In this case the common value is the derivative $f^{\prime}(x)$.

## Lemma (1)

Letf be an increasing function on an interval $[a, b]$. Then for every $\gamma>0$, we have

$$
m^{*}\left(\left\{x \in(a, b): D^{+} f(x) \geq \gamma\right\}\right) \leq \frac{1}{\gamma}(f(b)-f(a))
$$

and

$$
m^{*}\left(\left\{x \in(a, b): D^{+} f(x)=\infty\right\}\right)=0
$$

## Proof.

For $\gamma>0$, let $E_{\gamma}=\left\{x \in(a, b): D^{+} f(x) \geq \gamma\right\}$. Let $\beta$ be any real number such that $0<\beta<\gamma$ and consider the family of intervals $\mathcal{C}=\{[r, s] \subset(a, b): f(s)-f(r) \geq \beta(s-r)\}$. Then $\mathcal{C}$ is a cover of $E_{\gamma}$ in the sense of Vitali. Indeed, for $x \in E_{\gamma}$ and foer $\epsilon>0$, it follows from $D^{+} f(x) \geq \gamma$, that there exists $t \in \mathbb{R}$ with $0<|t|<\epsilon$ such that $\frac{f(x+t)-f(x)}{t} \geq \gamma$. Therefore, $[x, x+t] \in \mathcal{C}$ if $t>0$ and $[x+t, x] \in \mathcal{C}$ if $t<0$. We have then (from the Vitali Covering Lemma) the existence a finite number of disjoint intervals $\left\{\left[r_{k}, s_{k}\right]\right\}_{k=1}^{N} \subset \mathcal{C}$ such that:

$$
m^{*}\left(E_{\gamma} \backslash \bigcup_{k=1}^{N}\left[r_{k}, s_{k}\right]\right)<\epsilon
$$

Since

$$
E_{\gamma} \subset \bigcup_{k=1}^{N}\left[r_{k}, s_{k}\right] \cup\left(E_{\gamma} \backslash \bigcup_{k=1}^{N}\left[r_{k}, s_{k}\right]\right)
$$

we have

$$
m^{*}\left(E_{\gamma}\right) \leq \sum_{k=1}^{N}\left(s_{k}-r_{k}\right)+\epsilon \leq \frac{1}{\beta} \sum_{k=1}^{N}\left(f\left(s_{k}\right)-f\left(r_{k}\right)\right)+\epsilon \leq \frac{1}{\beta}(f(b)-f(a))+\epsilon
$$

The last inequality follows from $f$ increasing. Since $\epsilon>0$ and $\beta$ are arbitrary $(0<\beta<\gamma)$, then $m^{*}\left(E_{\gamma}\right) \leq \frac{1}{\gamma}(f(b)-f(a))$.
For the second part of the lemma note that for any $n \in \mathbb{N}$, we have $\left\{x \in(a, b): D^{+} f(x)=\infty\right\} \subset E_{n}$. Thus

$$
m^{*}\left(\left\{x \in(a, b): D^{+} f(x)=\infty\right\}\right) \leq m^{*}\left(E_{n}\right) \leq \frac{f(b)-f(a)}{n}
$$

This completes the proof.

## Theorem (1)

Let $f:(a, b) \subset \mathbb{R} \longrightarrow \mathbb{R}$ be a monotone function. Then $f$ is differentiable almost everywhere in $(a, b)$.

## Proof.

Without loss of generality, we can assume that $f$ is increasing. First consider $(a, b)$ bounded. Let $E$ be the set of points where $f$ is not differentiable: $E=\left\{x \in(a, b): D^{+} f(x)>D^{-} f(x)\right\}$.
For each pair of rational numbers $\alpha, \beta$ with $\alpha>\beta$, let

$$
E_{\alpha, \beta}=\left\{x \in(a, b): D^{+} f(x)>\alpha>\beta>D^{-} f(x)\right\}
$$

Then $E_{\alpha, \beta} \subset E$ and $E=\bigcup_{\alpha, \beta \in \mathbb{Q}}^{E_{\alpha, \beta}} E_{\alpha, \beta}$.
Now we prove that $m^{*}\left(E_{\alpha, \beta}\right)=0$. For this, let $\epsilon>0$. There exists an open set $U$ such that $E_{\alpha, \beta} \subset U \subset(a, b)$ and $m(U) \leq m^{*}\left(E_{\alpha, \beta}\right)+\epsilon$. Let $\mathcal{C}_{\beta}$ be the collection of all closed intervals $[u, v] \subset U$ such that $f(v)-f(u)<\beta(v-u)$. Note that $\mathcal{C}_{\beta}$ is a cover in the Vitali sense for the set $E_{\alpha, \beta}$. Indeed if $x \in E_{\alpha, \beta}$, then $D^{-} f(x)<\beta$ and it follows from the definition of the lower derivative that for every $h>0|f(x+t)-f(x)|<\beta|t|$ for some $t$ with $0<|t|<h$. Hence $[x, x+t] \in \mathcal{C}_{\beta}$ if $t>0$ and $[x+t, x] \in \mathcal{C}_{\beta}$ if $t<0$.
It follows from the Vitali Covering Lemma that there exists a finite collection of disjoint intervals $I_{k}=\left[u_{k}, v_{k}\right]$,
$k=1, \cdots, N$, contained in $\mathcal{C}_{\beta}$ such that $m^{*}\left(E_{\alpha, \beta} \backslash I^{N}\right)<\epsilon$, where $I^{N}=I_{1} \cup \cdots \cup I_{N}$. Inequality $m(U) \leq m^{*}\left(E_{\alpha, \beta}\right)+\epsilon$ together with $I_{1}^{N} \subset U$ and $I_{k} \in \mathcal{C}_{\beta}$ for $k=1, \cdots, N$ imply that

$$
\sum_{k=1}^{N}\left(f\left(v_{k}\right)-f\left(u_{k}\right)\right) \leq \beta\left(\sum_{k=1}^{N}\left(v_{k}-u_{k}\right)\right)=\beta m\left(I_{1}^{N}\right) \leq \beta m(U) \leq \beta m^{*}\left(E_{\alpha, \beta}\right)+\beta \epsilon
$$

Lemma 1 can be applied to the function $f$ on each interval $I_{k}$ to the set $E_{\alpha, \beta} \cap I_{k}$ and we get
$m^{*}\left(E_{\alpha, \beta} \cap I_{k}\right) \leq \frac{1}{\alpha}\left[f\left(v_{k}\right)-f\left(u_{k}\right)\right]$. It follows that

## Proof.

CONTINUED:

$$
\begin{aligned}
m^{*}\left(E_{\alpha, \beta}\right) & \leq m^{*}\left(E_{\alpha, \beta} \cap I^{N}\right)+m^{*}\left(E_{\alpha, \beta} \backslash I^{N}\right) \leq \sum_{k=1}^{N} m^{*}\left(E_{\alpha, \beta} \cap I_{k}\right)+m^{*}\left(E_{\alpha, \beta} \backslash I^{N}\right) \\
& \leq \frac{1}{\alpha} \sum_{k=1}^{N}\left[f\left(v_{k}\right)-f\left(u_{k}\right)\right]+\epsilon \leq \frac{1}{\alpha}\left(\beta m^{*}\left(E_{\alpha, \beta}\right)+\beta \epsilon\right)+\epsilon \\
& \leq \frac{\beta}{\alpha} m^{*}\left(E_{\alpha, \beta}\right)+\frac{1+\alpha}{\alpha} \epsilon
\end{aligned}
$$

From this inequality we deduce that for any given rational numbers $\alpha>\beta$ and for any $\epsilon>0$, we have
$m^{*}\left(E_{\alpha, \beta}\right) \leq \frac{1+\alpha}{\alpha-\beta} \epsilon$. This means $m\left(E_{\alpha, \beta}\right)=0$. Consequently, the set of points $E$ where $f$ is not differentiable has measure 0 (since $E$ is the (countable) union of the sets $E_{\alpha, \beta}$ ).
If the interval $I=(a, b)$ is unbounded, let $n \in \mathbb{N}$ and $J_{n}=(a, b) \cap(-n, n)$. Then $I=\bigcup_{n=1}^{\infty} J_{n}$. Let $E$, the set of points in $I$, where $f$ is not differentiable. Then $E \cap J_{n}$ has measure 0 (previous case), therefore $m(E)=0$.

## Lemma (2)

Let $E \subset \mathbb{R}$. Then $E$ has measure 0 if and only if there exists a countable family of open intervals $\left\{I_{j}\right\}_{j}$ such that $\sum_{j=1}^{\infty} \ell\left(I_{j}\right)<\infty$ and every $x \in E$ is contained in infinitely many intervals $I_{j}$.

## Proof.

$" \Longleftarrow "$ Let $\epsilon>0$, there exists $N \in \mathbb{N}$ such that $\sum_{j=N+1}^{\infty} \ell\left(I_{j}\right)<\epsilon$. Let $\delta_{N}=\min \left\{\ell\left(I_{j}\right): j=1, \cdots, N\right\}$. For every $x \in E$, there exists $I(x) \in\left\{I_{j}\right\}_{j}$ with $\ell(I(x))<\delta_{N}$. Therefore $E \subset \bigcup_{j=N+1}^{\infty} I_{j}$ and so $m^{*}(E) \leq \sum_{j=N+1}^{\infty} \ell\left(I_{j}\right)<\epsilon$. Hence $m(E)=0$. " " If $m(E)=0$, then for any $n \in \mathbb{N}$, there exists an open set $U_{n} \supset E$ such that $m\left(U_{n}\right)<2^{-n}$. There exists a countable collection of disjoint open intervals $\left\{I_{j}^{n}\right\}_{j=1}^{\infty}$ such that $U_{n}=\bigcup_{j=1}^{\infty} I_{j}^{n}$. The countable collection of open intervals $\left\{I_{j}^{n}\right\}_{j, n \in \mathbb{N}}$ is such that every $x \in E$ is contained in infinitely many $I_{j}^{n}$,s and $\sum_{n=1}^{\infty} \sum_{j=1}^{\infty} \ell\left(I_{j}^{n}\right) \leq \sum_{n=1}^{\infty} 2^{-n}=1$

## Riesz-Nagy Theorem

## Theorem (2)

Let $E \subset(a, b)$ be a set with measure 0 . Then there exists an increasing function
$f:(a, b) \longrightarrow \mathbb{R}$ such that $f^{\prime}(x)$ does not exist for all $x \in E$.

## Proof.

Since $m(E)=0$, then we can find a countable collection of open intervals $I_{k}=\left(u_{k}, v_{k}\right), k \in \mathbb{N}$, such that $\sum_{k=1}^{\infty} \ell\left(I_{k}\right)<\infty$ and every $x \in E$ is contained in infinitely many intervals $I_{k}$.
Define $f:(a, b) \longrightarrow \mathbb{R}$ by

$$
f(x)=\sum_{k=1}^{\infty} \ell\left(I_{k} \cap(-\infty, x)\right) .
$$

The function $f$ is well defined since $\sum_{k=1}^{\infty} \ell\left(I_{k}\right)<\infty$ and it is increasing. If $x_{1}<x_{2}$, then $\ell\left(I_{k} \cap\left(-\infty, x_{1}\right)\right) \leq \ell\left(I_{k} \cap(-\infty, x)\right)$ and so $f\left(x_{1}\right) \leq f\left(x_{2}\right)$.
Note that $\ell\left(I_{k}\right) \longrightarrow 0$ as $k \longrightarrow \infty$. Let $x \in E$. So $x$ is in infinitely many $I_{k}$ 's. Then for any given $h>0$ and for any given $N \in \mathbb{N}$, there exists $t$ with $0<t<h$ such that $[x, x+t]$ is contained in at least $N$ intervals $I_{k}$. It follows that

$$
f(x+t)-f(x)=\sum_{k=1}^{\infty} \ell\left(I_{k} \cap(-\infty, x+t)\right)-\sum_{k=1}^{\infty} \ell\left(I_{k} \cap(-\infty, x)\right)=\sum_{k=1}^{\infty} \ell\left(I_{k} \cap(x, x+t)\right) \geq N t
$$

This implies $D^{+} f(x) \geq N$. Since $N \in \mathbb{N}$ is arbitrary, then $D^{+} f(x)=\infty$ and $f$ is not differentiable at $x \in E$.

## Theorem (3)

Let $f:[a, b] \longrightarrow \mathbb{R}$ be an increasing function. The derivative $f^{\prime}$ is nonnegative, measurable, and is in $\mathcal{L}((a, b))$. Furthermore

$$
\int_{a}^{b} f^{\prime}(x) d x \leq f(b)-f(a)
$$

## Proof.

We know from Theorem 1 that $f^{\prime}(x)$ exist for a.e. $x \in(a, b)$. That $f^{\prime}(x)$ is nonnegative follows from the increase of $f$ which implies that the difference quotient $\frac{f(x+t)-f(x)}{t}$ is nonnegative for all $t \neq 0$.
Extend the function $f$ to the interval $(a, b+1)$ by defining it on $[b, b+1)$ as the constant $f(b)$. Consider the sequence of functions $f_{n}$ on $[a, b]$ given by

$$
f_{n}(x)=\frac{f\left(x+\frac{1}{n}\right)-f(x)}{\frac{1}{n}}=n\left(f\left(x+\frac{1}{n}\right)-f(x)\right)
$$

Then $f_{n} \longrightarrow f^{\prime}$ pointwise a.e. in $[a, b]$. Since $f_{n}$ is nonnegative and measurable, then $f^{\prime}$ is measurable. By Fatou's Lemma we have

$$
\int_{a}^{b} f^{\prime}(x) d x=\int_{a}^{b} \lim _{n \rightarrow \infty} f_{n}(x) d x \leq \liminf _{n \rightarrow \infty} \int_{a}^{b} f_{n}(x) d x
$$

We have

$$
\begin{aligned}
\int_{a}^{b} f_{n}(x) d x & =n \int_{a}^{b} f\left(x+\frac{1}{n}\right) d x-n \int_{a}^{b} f(x) d x=n \int_{a+\frac{1}{n}}^{b+\frac{1}{n}} f(x) d x-n \int_{a}^{b} f(x) d x \\
& =n \int_{b}^{b+\frac{1}{n}} f(x) d x-n \int_{a}^{a+\frac{1}{n}} f(x) d x \\
& \leq n \int_{b}^{b+\frac{1}{n}} f(b) d x-n \int_{a}^{a+\frac{1}{n}} f(a) d x=f(b)-f(a)
\end{aligned}
$$

Therefore

$$
\int_{a}^{b} f^{\prime}(x) d x \leq \liminf _{n \rightarrow \infty} \int_{a}^{b} f_{n}(x) d x \leq f(b)-f(a)
$$

## Remark (1)

The inequality $\int_{a}^{b} f^{\prime}(x) d x \leq f(b)-f(a)$ could be a strict inequality even when $f$ is continuous. This is the case of the Cantor-Lebesgue function $\phi$ :

$$
\int_{0}^{1} \phi^{\prime}(x) d x=0 \text { and } \phi(1)-\phi(0)=1
$$

