Real Analysis MAA 6616 Lecture 20 Differentiability of Monotone Functions

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

We start with the following observation. Suppose that a function $g : \mathbb{R} \longrightarrow \mathbb{R}$ is differentiable. If on an interval I = (m, n) we have g'(x) > c, then $g(n) - g(m) = \int_m^n g'(x) dx \ge c(m - n)$. This can be written as

$$\ell(I) \le \frac{1}{c} \left(g(n) - g(m) \right)$$

The first result is a sort of generalization of this version of the Mean Value Theorem to increasing function. First we need to defined upper and lower derivatives.

Let $f : E \subset \mathbb{R} \longrightarrow \overline{\mathbb{R}}$. For a point *x* in the interior of *E*, the upper derivative $D^+f(x)$ of *f* at *x* and the lower derivative $D^-f(x)$ of *f* at *x* are defined by:

$$D^{+}f(x) = \lim_{h \to 0} \left[\sup_{0 < |t| < h} \frac{f(x+t) - f(x)}{t} \right]$$

and

$$D^{-}f(x) = \lim_{h \to 0} \left[\inf_{0 < |t| < h} \frac{f(x+t) - f(x)}{t} \right]$$

Note that for an interior point $D^{\pm}f(x)$ always exist in \mathbb{R} and $D^{+}f(x) \ge D^{-}f(x)$. The function is differentiable $D^{+}f(x) = D^{-}f(x)$ and are finite. In this case the common value is the derivative f'(x).

Lemma (1)

Let f be an increasing function on an interval [a, b]. Then for every $\gamma > 0$, we have

$$m^* \left(\left\{ x \in (a, b) : D^+ f(x) \ge \gamma \right\} \right) \le \frac{1}{\gamma} (f(b) - f(a))$$

and

$$m^* \left(\left\{ x \in (a, b) : D^+ f(x) = \infty \right\} \right) = 0$$

Proof.

From $\gamma > 0$, let $E_{\gamma} = \{x \in (a, b) : D^+f(x) \ge \gamma\}$. Let β be any real number such that $0 < \beta < \gamma$ and consider the family of intervals $C = \{[r, s] \subset (a, b) : f(s) - f(r) \ge \beta(s - r)\}$. Then C is a cover of E_{γ} in the sense of Vitali. Indeed, for $x \in E_{\gamma}$ and foer $\epsilon > 0$, it follows from $D^+f(x) \ge \gamma$, that there exists $t \in \mathbb{R}$ with $0 < |t| < \epsilon$ such that $\frac{f(x + t) - f(x)}{t} \ge \gamma$. Therefore, $[x, x + t] \in C$ if t > 0 and $[x + t, x] \in C$ if t < 0. We have then (from the Vitali

Covering Lemma) the existence a finite number of disjoint intervals $\{[r_k, s_k]\}_{k=1}^N \subset C$ such that:

$$m^*\left(E_{\gamma}\setminus\bigcup_{k=1}^N[r_k,\ s_k]\right)<\epsilon$$
.

Since

$$E_{\gamma} \subset \bigcup_{k=1}^{N} [r_k, s_k] \cup \left(E_{\gamma} \setminus \bigcup_{k=1}^{N} [r_k, s_k] \right)$$

we have

$$m^*(E_{\gamma}) \le \sum_{k=1}^{N} (s_k - r_k) + \epsilon \le \frac{1}{\beta} \sum_{k=1}^{N} (f(s_k) - f(r_k)) + \epsilon \le \frac{1}{\beta} (f(b) - f(a)) + \epsilon.$$

The last inequality follows from f increasing. Since $\epsilon > 0$ and β are arbitrary $(0 < \beta < \gamma)$, then $m^*(E_{\gamma}) \leq \frac{1}{\gamma}(f(b) - f(a)).$

For the second part of the lemma note that for any $n \in \mathbb{N}$, we have $\left\{x \in (a, b) : D^+ f(x) = \infty\right\} \subset E_n$. Thus

$$m^*\left(\left\{x \in (a, b) : D^+f(x) = \infty\right\}\right) \le m^*(E_n) \le \frac{f(b) - f(a)}{n}.$$

This completes the proof.

Lebesgue's Theorem

Theorem (1)

Let $f : (a, b) \subset \mathbb{R} \longrightarrow \mathbb{R}$ be a monotone function. Then f is differentiable almost everywhere in (a, b).

Proof.

Without loss of generality, we can assume that f is increasing. First consider (a, b) bounded. Let E be the set of points where f is not differentiable: $E = \{x \in (a, b) : D^+f(x) > D^-f(x)\}$. For each pair of rational numbers α, β with $\alpha > \beta$, let

$$E_{\alpha,\beta} = \{ x \in (a, b) : D^+ f(x) > \alpha > \beta > D^- f(x) \}.$$

Then $E_{\alpha,\beta} \subset E$ and $E = \bigcup_{\alpha,\beta \in \mathbb{Q}} E_{\alpha,\beta}$.

Now we prove that $m^*(E_{\alpha,\beta}) = 0$. For this, let $\epsilon > 0$. There exists an open set U such that $E_{\alpha,\beta} \subset U \subset (a, b)$ and $m(U) \leq m^*(E_{\alpha,\beta}) + \epsilon$. Let \mathcal{C}_{β} be the collection of all closed intervals $[u, v] \subset U$ such that $f(v) - f(u) < \beta(v - u)$. Note that \mathcal{C}_{β} is a cover in the Vitali sense for the set $E_{\alpha,\beta}$. Indeed if $x \in E_{\alpha,\beta}$, then $D^-f(x) < \beta$ and it follows from the definition of the lower derivative that for every h > 0 $|f(x + t) - f(x)| < \beta|t|$ for some t with 0 < |t| < h. Hence $[x, x + t] \in \mathcal{C}_{\beta}$ if t > 0 and $[x + t, x] \in \mathcal{C}_{\beta}$ if t < 0. It follows from the Vitali Covering Lemma that there exists a finite collection of disjoint intervals $I_k = [u_k, v_k]$. $k = 1, \dots, N$, contained in \mathcal{C}_{β} such that $m^* \left(E_{\alpha,\beta} \setminus I^N\right) < \epsilon$, where $I^N = I_1 \cup \dots \cup I_N$. Inequality $m(U) \leq m^* \left(E_{\alpha,\beta}\right) + \epsilon$ together with $I_1^N \subset U$ and $I_k \in \mathcal{C}_{\beta}$ for $k = 1, \dots, N$ imply that $\sum_{k=1}^N (f(v_k) - f(u_k)) \leq \beta \left(\sum_{k=1}^N (v_k - u_k)\right) = \beta m(I_1^N) \leq \beta m(U) \leq \beta m^* (E_{\alpha,\beta}) + \beta \epsilon$

▲□▶▲□▶▲□▶▲□▶ □ のQで

Lemma 1 can be applied to the function f on each interval I_k to the set $E_{\alpha,\beta} \cap I_k$ and we get

$$m^* (E_{\alpha,\beta} \cap I_k) \leq \frac{1}{\alpha} [f(v_k) - f(u_k)].$$
 It follows that

Proof. CONTINUED:

$$m^{*}(E_{\alpha,\beta}) \leq m^{*}(E_{\alpha,\beta} \cap I^{N}) + m^{*}(E_{\alpha,\beta} \setminus I^{N}) \leq \sum_{k=1}^{N} m^{*}(E_{\alpha,\beta} \cap I_{k}) + m^{*}(E_{\alpha,\beta} \setminus I^{N})$$
$$\leq \frac{1}{\alpha} \sum_{k=1}^{N} [f(v_{k}) - f(u_{k})] + \epsilon \leq \frac{1}{\alpha} (\beta m^{*}(E_{\alpha,\beta}) + \beta \epsilon) + \epsilon$$
$$\leq \frac{\beta}{\alpha} m^{*}(E_{\alpha,\beta}) + \frac{1+\alpha}{\alpha} \epsilon$$

From this inequality we deduce that for any given rational numbers $\alpha > \beta$ and for any $\epsilon > 0$, we have $m^*(E_{\alpha,\beta}) \le \frac{1+\alpha}{\alpha-\beta}\epsilon$. This means $m(E_{\alpha,\beta}) = 0$. Consequently, the set of points *E* where *f* is not differentiable has measure 0 (since *E* is the (countable) union of the sets $E_{\alpha,\beta}$).

If the interval I = (a, b) is unbounded, let $n \in \mathbb{N}$ and $J_n = (a, b) \cap (-n, n)$. Then $I = \bigcup_{n=1}^{\infty} J_n$. Let E, the set of points in I, where f is not differentiable. Then $E \cap J_n$ has measure 0 (previous case), therefore m(E) = 0.

Lemma (2)

Let $E \subset \mathbb{R}$. Then *E* has measure 0 if and only if there exists a countable family of open intervals $\{I_j\}_j$ such that $\sum_{j=1}^{\infty} \ell(I_j) < \infty$ and every $x \in E$ is contained in infinitely many intervals I_j .

Proof.

" \leftarrow " Let $\epsilon > 0$, there exists $N \in \mathbb{N}$ such that $\sum_{j=N+1}^{\infty} \ell(I_j) < \epsilon$. Let $\delta_N = \min\{\ell(I_j) : j = 1, \dots, N\}$. For every $x \in E$, there exists $I(x) \in \{I_j\}_j$ with $\ell(I(x)) < \delta_N$. Therefore $E \subset \bigcup_{j=N+1}^{\infty} I_j$ and so $m^* (E) \leq \sum_{j=N+1}^{\infty} \ell(I_j) < \epsilon$. Hence m(E) = 0. " \Longrightarrow " If m(E) = 0, then for any $n \in \mathbb{N}$, there exists an open set $U_n \supset E$ such that $m(U_n) < 2^{-n}$. There exists a countable collection of disjoint open intervals $\{I_j^n\}_{j=1}^{\infty}$ such that $U_n = \bigcup_{j=1}^{\infty} I_j^n$. The countable collection of open intervals $\{I_j^n\}_{j,n\in\mathbb{N}}$ is such that every $x \in E$ is contained in infinitely many I_j^n 's and $\sum_{n=1}^{\infty} \sum_{j=1}^{\infty} \ell(I_j^n) \leq \sum_{n=1}^{\infty} 2^{-n} = 1$

Riesz-Nagy Theorem

Theorem (2)

Let $E \subset (a, b)$ be a set with measure 0. Then there exists an increasing function $f:(a, b) \longrightarrow \mathbb{R}$ such that f'(x) does not exist for all $x \in E$.

Proof.

Since m(E) = 0, then we can find a countable collection of open intervals $I_k = (u_k, v_k), k \in \mathbb{N}$, such that $\sum_{k=1}^{\infty} \ell(I_k) < \infty$ and every $x \in E$ is contained in infinitely many intervals I_k . Define $f : (a, b) \longrightarrow \mathbb{R}$ by

$$f(x) = \sum_{k=1}^{\infty} \ell \left(I_k \cap (-\infty, x) \right) \ .$$

The function f is well defined since $\sum_{k=1}^{\infty} \ell(I_k) < \infty$ and it is increasing. If $x_1 < x_2$, then $\ell(I_k \cap (-\infty, x_1)) \leq \ell(I_k \cap (-\infty, x))$ and so $f(x_1) \leq f(x_2)$.

Note that $\ell(I_k) \longrightarrow 0$ as $k \longrightarrow \infty$. Let $x \in E$. So x is in infinitely many I_k 's. Then for any given h > 0 and for any given $N \in \mathbb{N}$, there exists t with 0 < t < h such that [x, x + t] is contained in at least N intervals I_k . It follows that

$$f(x+t) - f(x) = \sum_{k=1}^{\infty} \ell \left(I_k \cap (-\infty, x+t) \right) - \sum_{k=1}^{\infty} \ell \left(I_k \cap (-\infty, x) \right) = \sum_{k=1}^{\infty} \ell \left(I_k \cap (x, x+t) \right) \ge Nt$$

This implies $D^+f(x) \ge N$. Since $N \in \mathbb{N}$ is arbitrary, then $D^+f(x) = \infty$ and f is not differentiable at $x \in E$.

Theorem (3)

Let $f : [a, b] \longrightarrow \mathbb{R}$ be an increasing function. The derivative f' is nonnegative, measurable, and is in $\mathcal{L}((a, b))$. Furthermore

$$\int_{a}^{b} f'(x)dx \le f(b) - f(a)$$

Proof.

We know from Theorem 1 that f'(x) exist for a.e. $x \in (a, b)$. That f'(x) is nonnegative follows from the increase of f which implies that the difference quotient $\frac{f(x+t)-f(x)}{t}$ is nonnegative for all $t \neq 0$. Extend the function f to the interval (a, b+1) by defining it on [b, b+1) as the constant f(b). Consider the sequence of functions f_n on [a, b] given by

$$f_n(x) = \frac{f(x + \frac{1}{n}) - f(x)}{\frac{1}{n}} = n\left(f(x + \frac{1}{n}) - f(x)\right)$$

Then $f_n \longrightarrow f'$ pointwise a.e. in [a, b]. Since f_n is nonnegative and measurable, then f' is measurable. By Fatou's Lemma we have

$$\int_{a}^{b} f'(x)dx = \int_{a}^{b} \lim_{n \to \infty} f_{n}(x)dx \le \liminf_{n \to \infty} \int_{a}^{b} f_{n}(x)dx.$$

We have

$$\int_{a}^{b} f_{n}(x)dx = n \int_{a}^{b} f(x + \frac{1}{n})dx - n \int_{a}^{b} f(x)dx = n \int_{a + \frac{1}{n}}^{b + \frac{1}{n}} f(x)dx - n \int_{a}^{b} f(x)dx$$
$$= n \int_{b}^{b + \frac{1}{n}} f(x)dx - n \int_{a}^{a + \frac{1}{n}} f(x)dx$$
$$\leq n \int_{b}^{b + \frac{1}{n}} f(b)dx - n \int_{a}^{a + \frac{1}{n}} f(a)dx = f(b) - f(a)$$

Therefore

$$\int_{a}^{b} f'(x) dx \leq \liminf_{n \to \infty} \int_{a}^{b} f_{n}(x) dx \leq f(b) - f(a).$$

Remark (1)

The inequality $\int_{a}^{b} f'(x)dx \le f(b) - f(a)$ could be a strict inequality even when f is continuous. This is the case of the Cantor-Lebesgue function ϕ : $\int_{0}^{1} \phi'(x)dx = 0 \text{ and } \phi(1) - \phi(0) = 1$