Real Analysis MAA 6616
Lecture 20
Differentiability of Monotone Functions



We start with the following observation. Suppose that a function g : R — R is differentiable.
If on an interval I = (m, n) we have g’ (x) > c, then g(n) — g(m) = /n g’ (x)dx > c(m — n).
This can be written as "

1) < = (3ln) — gm)
The first result is a sort of generalization of this version of the Mean Value Theorem to

increasing function. First we need to defined upper and lower derivatives.

Letf : EC R — R. For a point x in the interior of E, the upper derivative DT £(x) of f at x
and the lower derivative D™ f(x) of f at x are defined by:

{ fu+»ﬂm]

DTf(x) = lim | sup
h=0 To<|t|<h t
and
D™ f(x) = lim { inf M}
=0 |o<|tj<h t

Note that for an interior point Dif(x) always exist in R and DT f(x) > D~f(x). The function
is differentiable D (x) = D~ f(x) and are finite. In this case the common value is the
derivative f’(x).
Lemma (1)
Let f be an increasing function on an interval [a, D). Then for every v > 0, we have
1
“({re(a b): DTf(x) > 7}) < ;(f(b) —f(a))

and

“({xe€(a, b): DTf(x) = ~}) =



Proof.

Fory > 0,letE = {x € (a, b) : DFf(x) > ~}. Let B be any real number such that 0 < B < ~ and consider the

family of intervals C = {[r, s] C (a, b) : f(s) — f(r) > B(s — r)}. Then C is a cover of E~ in the sense of Vitali.

Indeed, for x € E~ and foer € > 0, it follows from DHf(x) > , that there exists # € R with 0 < |¢] < e such that

fax4+10 —f®
1

Covering Lemma) the existence a finite number of disjoint intervals {[rg, si] }f(V:] C C such that:

N
m* <E'v\ Ul Sk]) <e
=1

> ~. Therefore, [x, x + 1] € Cift > Oand [x + ¢, x] € Cift < 0. We have then (from the Vitali

Since

1

Ey C U[fk» sl U (b'y\ Ul Sk)
we have = =
m" Z(Yk —n) Fe< - Z(f("k) —f) + e < E(f(b) —f(@) + e
The last mequdllly follows frém [ increasing. Since € > ‘(() and /3 are arbitrary (0 < 3 < ), then
T (Ey) < ;(f(b) — /().
For the second part of the lemma note that for any n € N, we have {x € (a, b): DTF(x) = oo} C E,. Thus
w (fre @ D@ = so}) < ) < IO

This completes the proof.



Lebesgue’s Theorem

Theorem (1)

Letf : (a, b) C R — R be a monotone function. Then f is differentiable almost everywhere
in (a, b).

Proof.

Without loss of generality, we can assume that f is increasing. First consider (a, b) bounded. Let E be the set of points where f
is not differentiable: E = {x € (a, b) : D+f(x) > D™ f(x)}.
For each pair of rational numbers o, 3 with o > 3, let
Eqp={x€(a,0): DTf(x) > a> B >D f(x)}.

ThenEq g C EandE= | J Eq g

a,BEQ
Now we prove that m™ (anﬁ) = 0. For this, let € > 0. There exists an open set U such that E, g C U C (a, b) and
m(U) < m* (EOI,B) + €. Let Cg be the collection of all closed intervals [u, v] C U such thatf(v) — f(u) < B(v — u).
Note that C g is a cover in the Vitali sense for the set E, g. Indeed if x € E,, g, then D™ f(x) < S and it follows from the
definition of the lower derivative that for every 1 > 0 |f(x 4 ) — f(x)| < B|t| for some # with 0 < || < h. Hence
[x, x+1 € Cgifr > 0and [x +1, x] € Cgifr <O0.
It follows from the Vitali Covering Lemma that there exists a finite collection of disjoint intervals [y = [uy, vg],

k=1,---,N,contained in Cg such that m™ (EQYB\IN) < €, where IV = I U -« - U Iy. Inequality
m(U) < m* (Eq,g) + €together with Y C Uand Iy € Cg fork = 1,--- , N imply that
N N
N -
DU =) < B Dok —w) | = Bm(Iy) < Bm(U) < Bim™ (Eq,p) + Be
k=1 k=1

Lemma 1 can be applied to the function f on each interval J; to the set E, | g M I and we get

1
m* (Eq, 3 NIx) < —[f(v) — f(w)]. It follows that O
«@



Proof.

CONTINUED:

m* (Eq p) < m" (Ea_ﬂ nlN) + m* (Ea’ﬁ\IN) < XN:m* (Ea,p N L) +m" (EQYB\IN)
k=1

IN

(Bm™ (Ea,g) + Be) + ¢

1
e

1 N
= ST —fw)] + € <
g k=1 -
«
—m" (Ea,p) +
From this inequality we deduce that for any given rational numbers o« > /3 and for any € > 0, we have

1
m* (anﬂ) < ata

measure 0 (since E is the (countable) union of the sets Eq,B)-
If the interval I = (a, b) is unbounded, letn € Nand J, = (a, b) N (—n, n). ThenI = U2 J,. Let E, the set of points

in 1, where f is not differentiable. Then E N J,, has measure 0 (previous case), therefore m(E) = 0. O

Lemma (2)

Let E C R. Then E has measure 0 if and only if there exists a countable family of open intervals
(oo}

{I;}; such that Z £(I;) < oo and every x € E is contained in infinitely many intervals I;.

IN

€

€. This means m(Eaﬁ) = 0. Consequently, the set of points E where f is not differentiable has

=1

Proof.

"<="Let e > 0, there exists N € N such that EJ»O:N+1 £(I;) < e.Letdy = min{£(l;) : j=1,---,N}. Forevery
x € E, there exists I(x) € {[;}; with £(I(x)) < Sy. Therefore E C U;):ON.H ljandsom™ (E) < ZJ-C’:ON+1 (1) < e
Hence m(E) = 0. "==>-"If m(E) = 0, then forany n € N, there exists an open set U, D E suchthatm(U,) < 27". There

oo

exists a countable collection of disjoint open intervals {Ij" }/-:] such that U, = Ujf’:cl Ij’ﬁ The countable collection of open

oo oo oo
intervals {1;’ }j,nen is such that every x € E is contained in infinitely many Ij’-’ ’s and Z Z Z(l/") < Z 27" =1 O

n=1j=1 n=1



Riesz-Nagy Theorem

Theorem (2)

Let E C (a, b) be a set with measure 0. Then there exists an increasing function
f:(a, b) — Rsuch that f'(x) does not exist for all x € E.

Proof.

Since m(E) = 0, then we can find a countable collection of open intervals I, = (uy, vg), k € N, such that
ST2 L(Ix) < oo andevery x € E is contained in infinitely many intervals ..
Definef : (a, b) —> Rby

oo
FO) =300 N (=00, ) -
k=1
The function f is well defined since Y22 | £(I;) < oo and it is increasing. If x; < xo, then
L(Iy N (—o0, x1)) < L(Ix N (—o0, x)) andsof(x)) < f(x2).

Note that £(I;) — 0ask — oo. Letx € E. So x s in infinitely many I;’s. Then for any given A > 0 and for any given
N € N, there exists f with 0 < ¢ < h such that [x, x + ] is contained in at least N intervals /. It follows that

oo oo oo
FGHD =) = 3 €N (—o0, x4+0) = S €N (=00, 1)) = S LN (x x4+ 1) > Mt
k=1 k=1 k=1
This implies DT £(x) > N. Since N € N is arbitrary, then D+f(x) = oo andf is not differentiable at x € E. O

Theorem (3)

Let f : [a, b] —> R be an increasing function. The derivative f’ is nonnegative, measurable,
and is in L((a, b)). Furthermore

b
/ £ @)dx < £(b) — f(a)



Proof.

We know from Theorem 1 that f/ (x) exist for a.e. x € (a, b). Thatf’ (x) is nonnegative follows from the increase of f which

fa+0 -1

implies that the difference quotient ————————— is nonnegative for all r 7 0.

Extend the function f to the interval (a, b + 1) by defining it on [b, b + 1) as the constant f (b). Consider the sequence of

functions f;, on [a, b] given by

x4+ by —f(x 1
w = IO (s b )

Thenf, — f’ pointwise a.e. in [a, b]. Since f, is nonnegative and measurable, then f” is measurable. By Fatou’s Lemma

we have " b b
[ 7 ax = / Jim_fu()ds < i [ £, (o
‘We have - o N 41
b L b
/ fa(x)dx = n/ fx + — n/ f(x)dx = n/ ln f(x)dx — n/ f(x)dx
b+7 L +a
= n/, f(x)dx — n/ " f(x)dx
]b+% aa+%
< "/b f(b)dx — n/ fla)dx = f(b) — f(a)
Therefore ¢

b, b
[ @as < mint [ (oax < 50) — rta).

Remark (1)
b
The inequality / ' (¥)dx < f(b) — f(a) could be a strict inequality even when f is

a
continuous. This is the case of the Cantor-Lebesgue function ¢:

1
/O ¢/ (x)dx = 0 and G(1) — $(0) = 1



