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Lecture 20

Differentiability of Monotone Functions



We start with the following observation. Suppose that a function g : R −→ R is differentiable.

If on an interval I = (m, n) we have g′(x) > c, then g(n)− g(m) =

∫ n

m
g′(x)dx ≥ c(m− n).

This can be written as

`(I) ≤
1
c
(g(n)− g(m))

The first result is a sort of generalization of this version of the Mean Value Theorem to
increasing function. First we need to defined upper and lower derivatives.

Let f : E ⊂ R −→ R. For a point x in the interior of E, the upper derivative D+f (x) of f at x
and the lower derivative D−f (x) of f at x are defined by:

D+f (x) = lim
h→0

[
sup

0<|t|<h

f (x + t)− f (x)
t

]
and

D−f (x) = lim
h→0

[
inf

0<|t|<h

f (x + t)− f (x)
t

]
Note that for an interior point D±f (x) always exist in R and D+f (x) ≥ D−f (x). The function
is differentiable D+f (x) = D−f (x) and are finite. In this case the common value is the
derivative f ′(x).

Lemma (1)
Let f be an increasing function on an interval [a, b]. Then for every γ > 0, we have

m∗
({

x ∈ (a, b) : D+f (x) ≥ γ
})
≤

1
γ
(f (b)− f (a))

and
m∗
({

x ∈ (a, b) : D+f (x) =∞
})

= 0



Proof.
For γ > 0, let Eγ = {x ∈ (a, b) : D+f (x) ≥ γ}. Let β be any real number such that 0 < β < γ and consider the
family of intervals C = {[r, s] ⊂ (a, b) : f (s)− f (r) ≥ β(s− r)}. Then C is a cover of Eγ in the sense of Vitali.
Indeed, for x ∈ Eγ and foer ε > 0, it follows from D+f (x) ≥ γ, that there exists t ∈ R with 0 < |t| < ε such that
f (x + t)− f (x)

t
≥ γ. Therefore, [x, x + t] ∈ C if t > 0 and [x + t, x] ∈ C if t < 0. We have then (from the Vitali

Covering Lemma) the existence a finite number of disjoint intervals {[rk, sk]}N
k=1 ⊂ C such that:

m∗

Eγ\
N⋃

k=1

[rk, sk]

 < ε .

Since

Eγ ⊂
N⋃

k=1

[rk, sk] ∪

Eγ\
N⋃

k=1

[rk, sk]


we have

m∗
(

Eγ
)
≤

N∑
k=1

(sk − rk) + ε ≤
1

β

N∑
k=1

(f (sk)− f (rk)) + ε ≤
1

β
(f (b)− f (a)) + ε.

The last inequality follows from f increasing. Since ε > 0 and β are arbitrary (0 < β < γ), then

m∗
(

Eγ
)
≤

1

γ
(f (b)− f (a)).

For the second part of the lemma note that for any n ∈ N, we have
{

x ∈ (a, b) : D+f (x) =∞
}
⊂ En . Thus

m∗
({

x ∈ (a, b) : D+f (x) =∞
})
≤ m∗ (En) ≤

f (b)− f (a)

n
.

This completes the proof.



Lebesgue’s Theorem

Theorem (1)
Let f : (a, b) ⊂ R −→ R be a monotone function. Then f is differentiable almost everywhere
in (a, b).

Proof.
Without loss of generality, we can assume that f is increasing. First consider (a, b) bounded. Let E be the set of points where f
is not differentiable: E = {x ∈ (a, b) : D+f (x) > D−f (x)}.
For each pair of rational numbers α, β with α > β, let

Eα,β = {x ∈ (a, b) : D+f (x) > α > β > D−f (x)} .
Then Eα,β ⊂ E and E =

⋃
α,β∈Q

Eα,β .

Now we prove that m∗
(

Eα,β
)
= 0. For this, let ε > 0. There exists an open set U such that Eα,β ⊂ U ⊂ (a, b) and

m(U) ≤ m∗
(

Eα,β
)
+ ε. Let Cβ be the collection of all closed intervals [u, v] ⊂ U such that f (v)− f (u) < β(v− u).

Note that Cβ is a cover in the Vitali sense for the set Eα,β . Indeed if x ∈ Eα,β , then D− f (x) < β and it follows from the
definition of the lower derivative that for every h > 0 |f (x + t)− f (x)| < β|t| for some t with 0 < |t| < h. Hence
[x, x + t] ∈ Cβ if t > 0 and [x + t, x] ∈ Cβ if t < 0.
It follows from the Vitali Covering Lemma that there exists a finite collection of disjoint intervals Ik = [uk, vk],

k = 1, · · · , N, contained in Cβ such that m∗
(

Eα,β\IN
)
< ε, where IN = I1 ∪ · · · ∪ IN . Inequality

m(U) ≤ m∗
(

Eα,β
)
+ ε together with IN

1 ⊂ U and Ik ∈ Cβ for k = 1, · · · , N imply that
N∑

k=1

(f (vk)− f (uk)) ≤ β

 N∑
k=1

(vk − uk)

 = βm(IN
1 ) ≤ βm(U) ≤ βm∗

(
Eα,β

)
+ βε

Lemma 1 can be applied to the function f on each interval Ik to the set Eα,β ∩ Ik and we get

m∗
(

Eα,β ∩ Ik
)
≤

1

α
[f (vk)− f (uk)]. It follows that



Proof.
CONTINUED:

m∗
(

Eα,β
)
≤ m∗

(
Eα,β ∩ IN

)
+ m∗

(
Eα,β\IN

)
≤

N∑
k=1

m∗
(

Eα,β ∩ Ik
)
+ m∗

(
Eα,β\IN

)
≤

1

α

N∑
k=1

[f (vk)− f (uk)] + ε ≤
1

α

(
βm∗

(
Eα,β

)
+ βε

)
+ ε

≤
β

α
m∗
(

Eα,β
)
+

1 + α

α
ε

From this inequality we deduce that for any given rational numbers α > β and for any ε > 0, we have

m∗
(

Eα,β
)
≤

1 + α

α− β
ε. This means m(Eα,β) = 0. Consequently, the set of points E where f is not differentiable has

measure 0 (since E is the (countable) union of the sets Eα,β ).

If the interval I = (a, b) is unbounded, let n ∈ N and Jn = (a, b) ∩ (−n, n). Then I =
⋃∞

n=1 Jn . Let E, the set of points

in I, where f is not differentiable. Then E ∩ Jn has measure 0 (previous case), therefore m(E) = 0.

Lemma (2)
Let E ⊂ R. Then E has measure 0 if and only if there exists a countable family of open intervals

{Ij}j such that
∞∑
j=1

`(Ij) <∞ and every x ∈ E is contained in infinitely many intervals Ij.

Proof.
"⇐=" Let ε > 0, there exists N ∈ N such that

∑∞
j=N+1 `(Ij) < ε. Let δN = min{`(Ij) : j = 1, · · · , N}. For every

x ∈ E, there exists I(x) ∈ {Ij}j with `(I(x)) < δN . Therefore E ⊂
⋃∞

j=N+1 Ij and so m∗ (E) ≤
∑∞

j=N+1 `(Ij) < ε.

Hence m(E) = 0. "=⇒" If m(E) = 0, then for any n ∈ N, there exists an open set Un ⊃ E such that m(Un) < 2−n . There

exists a countable collection of disjoint open intervals {In
j }
∞
j=1 such that Un =

⋃∞
j=1 In

j . The countable collection of open

intervals {In
j }j,n∈N is such that every x ∈ E is contained in infinitely many In

j ’s and
∞∑

n=1

∞∑
j=1

`(In
j ) ≤

∞∑
n=1

2−n
= 1



Riesz-Nagy Theorem

Theorem (2)
Let E ⊂ (a, b) be a set with measure 0. Then there exists an increasing function
f : (a, b) −→ R such that f ′(x) does not exist for all x ∈ E.

Proof.
Since m(E) = 0, then we can find a countable collection of open intervals Ik = (uk, vk), k ∈ N, such that∑∞

k=1 `(Ik) <∞ and every x ∈ E is contained in infinitely many intervals Ik .
Define f : (a, b) −→ R by

f (x) =
∞∑

k=1

` (Ik ∩ (−∞, x)) .

The function f is well defined since
∑∞

k=1 `(Ik) <∞ and it is increasing. If x1 < x2 , then
` (Ik ∩ (−∞, x1)) ≤ ` (Ik ∩ (−∞, x)) and so f (x1) ≤ f (x2).

Note that `(Ik) −→ 0 as k −→ ∞. Let x ∈ E. So x is in infinitely many Ik’s. Then for any given h > 0 and for any given

N ∈ N, there exists t with 0 < t < h such that [x, x + t] is contained in at least N intervals Ik . It follows that

f (x + t)− f (x) =
∞∑

k=1

` (Ik ∩ (−∞, x + t))−
∞∑

k=1

` (Ik ∩ (−∞, x)) =

∞∑
k=1

` (Ik ∩ (x, x + t)) ≥ Nt

This implies D+f (x) ≥ N. Since N ∈ N is arbitrary, then D+f (x) =∞ and f is not differentiable at x ∈ E.

Theorem (3)
Let f : [a, b] −→ R be an increasing function. The derivative f ′ is nonnegative, measurable,
and is in L((a, b)). Furthermore ∫ b

a
f ′(x)dx ≤ f (b)− f (a)



Proof.
We know from Theorem 1 that f ′(x) exist for a.e. x ∈ (a, b). That f ′(x) is nonnegative follows from the increase of f which

implies that the difference quotient
f (x + t)− f (x)

t
is nonnegative for all t 6= 0.

Extend the function f to the interval (a, b + 1) by defining it on [b, b + 1) as the constant f (b). Consider the sequence of

functions fn on [a, b] given by

fn(x) =
f (x + 1

n )− f (x)
1
n

= n
(

f (x +
1

n
)− f (x)

)
Then fn −→ f ′ pointwise a.e. in [a, b]. Since fn is nonnegative and measurable, then f ′ is measurable. By Fatou’s Lemma

we have ∫ b

a
f ′(x)dx =

∫ b

a
lim

n→∞
fn(x)dx ≤ lim inf

n→∞

∫ b

a
fn(x)dx.

We have ∫ b

a
fn(x)dx = n

∫ b

a
f (x +

1

n
)dx− n

∫ b

a
f (x)dx = n

∫ b+ 1
n

a+ 1
n

f (x)dx− n
∫ b

a
f (x)dx

= n
∫ b+ 1

n

b
f (x)dx− n

∫ a+ 1
n

a
f (x)dx

≤ n
∫ b+ 1

n

b
f (b)dx− n

∫ a+ 1
n

a
f (a)dx = f (b)− f (a)

Therefore ∫ b

a
f ′(x)dx ≤ lim inf

n→∞

∫ b

a
fn(x)dx ≤ f (b)− f (a).

Remark (1)
The inequality

∫ b

a
f ′(x)dx ≤ f (b)− f (a) could be a strict inequality even when f is

continuous. This is the case of the Cantor-Lebesgue function φ:∫ 1

0
φ′(x)dx = 0 and φ(1)− φ(0) = 1


