Real Analysis MAA 6616
 Lecture 21
 Functions of Bounded Variation

Let $f:[a, b] \subset \mathbb{R} \longrightarrow \mathbb{R}$ be a function. For a partition $P=\left\{x_{0}, \cdots, x_{n}\right\}$ of the interval $[a, b]$ (i.e. $x_{0}=a<x_{1}<x_{2}<\cdots<x_{n}=b$) we associate the variation of f with respect to the partition $P: S(f, P)=\sum_{j=1}^{n}\left|f\left(x_{j}\right)-f\left(x_{j-1}\right)\right|$.
The total variation of f on $[a, b]$ (or simply the variation) is

$$
V(f)=V(f,[a, b])=\sup \{S(f, P): P \text { partition of }[a, b]\}
$$

f is said to be of bounded variation on $[a, b]$ if $V(f,[a, b])<\infty$. Denote by $\mathrm{BV}[a, b]$ the space of functions of bounded variations.

- If f is monotone on $[a, b]$, then $f \in \operatorname{BV}[a, b]$ and $V(f)=|f(b)-f(a)|$.
- If f is Lipschitz on $[a, b]$ with Lipschitz constant c, then $f \in \mathrm{BV}[a, b]$ and $V(f) \leq c(b-a)$. Indeed, for any partition P we have

$$
S(f, P)=\sum_{j=1}^{n}\left|f\left(x_{j}\right)-f\left(x_{j-1}\right)\right| \leq \sum_{j=1}^{n} c\left|x_{j}-x_{j-1}\right|=c(b-a)
$$

- If $f \in \mathrm{BV}[a, b]$, then f is bounded: Let $x \in[a, b]$, and consider the partition $P=\{a, x, b\}$. Then

$$
|f(x)|-|f(a)| \leq S(f, P)=|f(x)-f(a)|+|f(b)-f(x)| \leq V(f)
$$

Hence $|f(x)| \leq V(f)+|f(a)|$ for all x.

- If $c \in(a, b)$ then $V(f,[a, b])=V(f,[a, c])+V(f,[c, b])$. It follows that for every $a \leq u<v \leq b$, we have $V(f,[u, v])=V(f,[a, v])-V(f,[a, u])$

Examples

1. The Dirichlet function $\chi_{\mathbb{Q}} \notin \mathrm{BV}[0,1]$: Let $N \in \mathbb{N}$. Consider a partition P with N points of $[0,1]$ such that $x_{j} \in \mathbb{Q}$ if j is odd and $x_{j} \notin \mathbb{Q}$ if j is even so that $\left|\chi_{\mathbb{Q}}\left(x_{j}\right)-\chi_{\mathbb{Q}}\left(x_{j-1}\right)\right|=1$. Then $S\left(\chi_{\mathbb{Q}}, P\right)=N$. Since N is arbitrary, then $V\left(\chi_{\mathbb{Q}}\right)=\infty$.
2. Consider the functions $f(x)=x \sin \frac{\pi}{x}$ and $g(x)=x^{2} \sin \frac{\pi}{x}$. Then $f \notin \mathrm{BV}[0,1]$ and $g \in \mathrm{BV}[0,1]$

- Let $N \in \mathbb{N}$ and consider the partition P of $[0,1]$ with N points given by $x_{j}=1 /(N-j+1)$ for j even and $x_{j}=1 /(N-j+1+1 / 2)$ for j odd so that $\sin \left(\pi / x_{j}\right)=0$ if j even and $\sin \left(\pi / x_{j}\right)= \pm 1$ if j is odd. Then

$$
S(f, P)=\sum_{j=1}^{N} \frac{1}{N+1-j+\frac{1}{2}}=\sum_{k=1}^{N} \frac{1}{k+\frac{1}{2}} \longrightarrow \infty \text { as } N \rightarrow \infty
$$

Therefore $V(f,[0,1])=\infty$.
Note that g is differentiable with $g^{\prime}(x)=2 x \sin \frac{\pi}{x}-\pi \cos \frac{\pi}{x}$ and $\left|g^{\prime}(x)\right| \leq 2+\pi$. we can apply the MTV on any interval $[c, d] \subset[0,1]$ to find $\alpha \in(c, d)$ so that $|g(d)-g(c)|=\left|g^{\prime}(\alpha)(d-c)\right| \leq(2+\pi)(d-c)$. Hence if $P=\left\{x_{0}, \cdots, x_{n}\right\}$ is any partition of [0,1], then

$$
S(g, P)=\sum_{j=1}^{n}\left|g\left(x_{j}\right)-g\left(x_{j-1}\right)\right| \leq \sum_{j=1}^{n}(2+\pi)\left(x_{j}-x_{j-1}\right)=(2+\pi)
$$

Hence $V(g,[0,1]) \leq 2+\pi$ and $g \in \mathrm{BV}[0,1]$.

Theorem (1)

Let $f, g \in \mathrm{BV}[a, b]$. Then the functions $\alpha f+\beta g$ (with $\alpha, \beta \in \mathbb{R}$) and fg are also with bounded variations. If there exists $\epsilon>0$ such that $|g|>\epsilon$ in $[a, b]$, then f / g is also of bounded variation.

Proof.

Suppose that f and g are functions with bounded variations. Let P be a partition of $[a, b]$. It follows from the triangle inequality that

$$
S(f+g, P) \leq S(f, P)+S(g, P) \leq V(f,[a, b])+V(g,[a, b])
$$

Therefore $V(f+g) \leq V(f)+V(g)$ and so $f+g \in \mathrm{BV}[a, b]$ If $\alpha \in \mathbb{R}$, then $S(\alpha f, P)=|\alpha| S(f, P) \leq|\alpha| V(f)$ and so αf is with bounded variation.
Since $f, g \in \operatorname{BV}[a, b]$, then there exist $A>0$ and $B>0$ such that $|f| \leq A$ and $|g| \leq B$. We have

$$
\begin{aligned}
\left|f\left(x_{j}\right) g\left(x_{j}\right)-f\left(x_{j-1}\right) g\left(x_{j-1}\right)\right| & =\left|f\left(x_{j}\right) g\left(x_{j}\right)-f\left(x_{j-1}\right) g\left(x_{j}\right)+f\left(x_{j-1}\right) g\left(x_{j}\right)-f\left(x_{j-1}\right) g\left(x_{j-1}\right)\right| \\
& \leq\left|g\left(x_{j}\right)\right|\left|f\left(x_{j}\right)-f\left(x_{j-1}\right)\right|+\left|f\left(x_{j-1}\right)\right|\left|g\left(x_{j}\right)-g\left(x_{j-1}\right)\right| \\
& \leq B\left|f\left(x_{j}\right)-f\left(x_{j-1}\right)\right|+A\left|g\left(x_{j}\right)-g\left(x_{j-1}\right)\right|
\end{aligned}
$$

This implies that

$$
S(f g, P) \leq B S(f, P)+A S(g, P) \leq B V(f)+A V(g)
$$

and consequently $V(f g) \leq B V(f)+A V(g)$.
Suppose that $|g|>\epsilon$, then

$$
\left|\frac{1}{g\left(x_{j}\right)}-\frac{1}{g\left(x_{j-1}\right)}\right|=\frac{\left|g\left(x_{j-1}\right)-g\left(x_{j}\right)\right|}{\left|g\left(x_{j}\right) g\left(x_{j-1}\right)\right|} \leq \frac{1}{\epsilon^{2}}\left|g\left(x_{j}\right) g\left(x_{j-1}\right)\right| .
$$

Thus

$$
S\left(\frac{1}{g}, P\right) \leq \frac{1}{\epsilon^{2}} S(g, P) \leq \frac{1}{\epsilon^{2}} V(g)
$$

Hence $1 / g$ has bounded variation.

Jordan Decomposition

Theorem (2)

A function f is of bounded variation on $[a, b]$ if and only iff can be written as the difference of two increasing functions on $[a, b]$:
$f \in \mathrm{BV}[a, b] \Longleftrightarrow f=g-h$ where $g, h:[a, b] \longrightarrow \mathbb{R}$ increasing

Proof.

$" \Longrightarrow "$ Let $f \in \mathrm{BV}[a, b]$. Define the function h on $[a, b]$ by $h(x)=V(f,[a, x])$. The function h is increasing. Let $g=f+h$. We remains to verify that g is increasing. Let $a \leq x_{1}<x_{2} \leq b$. Then $f\left(x_{1}\right)-f\left(x_{2}\right) \leq\left|f\left(x_{1}\right)-f\left(x_{2}\right)\right| \leq V\left(f,\left[x_{1}, x_{2}\right]\right)=V\left(f,\left[a, x_{2}\right]\right)-V\left(f,\left[a, x_{1}\right]\right)=h\left(x_{2}\right)-h\left(x_{1}\right)$.
It follows that $g\left(x_{1}\right)=f\left(x_{1}\right)+h\left(x_{1}\right) \leq g\left(x_{2}\right)=f\left(x_{2}\right)+h\left(x_{2}\right)$.
$" \Longleftarrow "$ If $g, h:[a, b] \longrightarrow \mathbb{R}$ are increasing, then $g, h \in \mathrm{BV}[a, b]$ and their difference $f=g-h$ is also in $\mathrm{BV}[a, b]$.

Corollary (1)

If $f \in \mathrm{BV}[a, b]$, then f is differentiable a.e. on $[a, b]$ and $f^{\prime} \in \mathcal{L}(a, b)$

Proof.

Let $f \in \mathrm{BV}[a, b]$, then there exist increasing functions g, h on $[a, b]$ such that $f=g-h$ (Jordan Decomposition Theorem). The increasing functions g and h are differentiable a.e. in $[a, b]$ and $g^{\prime}, h^{\prime} \in \mathcal{L}(a, b)$ (see Lecture 20). Therefore f is differentiable a.e. and $f^{\prime}=g^{\prime}-h^{\prime} \in \mathcal{L}(a, b)$

Rectifiable Curves

Let $\mathbf{f}:[a, b] \longrightarrow \mathbb{R}^{n}$ be a vector valued function $\mathbf{f}(t)=\left(f_{1}(t), \cdots, f_{n}(t)\right)$. As t runs through the interval $[a, b] \mathbf{f}(t)$ describes a curve Γ in \mathbb{R}^{n}, the graph of \mathbf{f}. The curve Γ is given parametrically by \mathbf{f}.
The length of Γ can be thought of as the supremum of the lengths of the inscribed polygonal curves. Let $P=\left\{t_{0}, \cdots, t_{n}\right\}$ be a partition of $[a, b]$ let $Q_{j}=\mathbf{f}\left(t_{j}\right)$. The polygonal curve connecting Q_{0} to Q_{1}, Q_{1} to Q_{2}, \cdots, Q_{n-1} to Q_{n} is an approximation of Γ.

The length of the polygonal curve is $\sum_{j=1}^{n} \operatorname{dis}\left(Q_{j-1} Q_{j}\right)$. Define the length $L(\Gamma)$ of Γ as the supremum over the lengths all such polygonal curves:

$$
L(\Gamma)=\sup \{S(\mathbf{f}, P): P \text { partition of }[a, b]\}
$$

where

$$
S(\mathbf{f}, P)=\sum_{j=1}^{n}\left\|\mathbf{f}\left(t_{j}\right)-\mathbf{f}\left(t_{j-1}\right)\right\|=\sum_{j=1}^{n}\left[\sum_{k=1}^{n}\left(f_{k}\left(x_{j}\right)-f_{k}\left(x_{j-1}\right)^{2}\right]^{1 / 2}\right.
$$

The curve Γ is said to be rectifiable if $L(\Gamma)<\infty$.

Theorem (3)

$\mathbf{f}=\left(f_{1}, \cdots, f_{n}\right):[a, b] \longrightarrow \mathbb{R}^{n}$ and Γ the graph of \mathbf{f}. Then Γ is rectifiable if and only $f_{j} \in \mathrm{BV}[a, b]$ for $j=1, \cdots, n$. Moreover

$$
\max \left(V\left(f_{1}\right), \cdots, V\left(f_{n}\right)\right) \leq L(\Gamma) \leq \sum_{j=1}^{n} V\left(f_{j}\right)
$$

Proof.

Observe that if $c_{1}, \cdots, c_{n} \in \mathbb{R}$, then we have the following inequalities

$$
\max \left(\left|c_{1}\right|, \cdots,\left|c_{n}\right|\right) \leq\left(\sum_{j=1}^{n} c_{j}^{2}\right)^{1 / 2} \leq \sum_{j=1}^{n}\left|c_{j}\right|
$$

Let $P=\left\{t_{0}, \cdots, t_{n}\right\}$ be a partition of $[a, b]$. It follows from the above observation that

$$
\max _{1 \leq j \leq n} S\left(f_{j}, P\right) \leq S(\mathbf{f}, P) \leq \sum_{j=1}^{n} S\left(f_{j}, P\right)
$$

By passing to the suprema, we get

$$
\max _{1 \leq j \leq n} V\left(f_{j}\right) \leq L(\Gamma) \leq \sum_{j=1}^{n} V\left(f_{j}\right)
$$

