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Functions of Bounded Variation



Let f : [a, b] ⊂ R −→ R be a function. For a partition P = {x0, · · · , xn} of the interval [a, b]
(i.e. x0 = a < x1 < x2 < · · · < xn = b) we associate the variation of f with respect to the

partition P: S(f ,P) =
n∑

j=1

∣∣f (xj)− f (xj−1)
∣∣.

The total variation of f on [a, b] (or simply the variation) is
V(f ) = V(f , [a, b]) = sup{S(f ,P) : P partition of [a, b]}

f is said to be of bounded variation on [a, b] if V(f , [a, b]) <∞. Denote by BV[a, b] the
space of functions of bounded variations.

I If f is monotone on [a, b], then f ∈ BV[a, b] and V(f ) = |f (b)− f (a)|.
I If f is Lipschitz on [a, b] with Lipschitz constant c, then f ∈ BV[a, b] and

V(f ) ≤ c(b− a). Indeed, for any partition P we have

S(f ,P) =
n∑

j=1

∣∣f (xj)− f (xj−1)
∣∣ ≤ n∑

j=1

c
∣∣xj − xj−1

∣∣ = c(b− a)

I If f ∈ BV[a, b], then f is bounded: Let x ∈ [a, b], and consider the partition
P = {a, x, b}. Then

|f (x)| − |f (a)| ≤ S(f ,P) = |f (x)− f (a)|+ |f (b)− f (x)| ≤ V(f )
Hence |f (x)| ≤ V(f ) + |f (a)| for all x.

I If c ∈ (a, b) then V(f , [a, b]) = V(f , [a, c]) + V(f , [c, b]). It follows that for every
a ≤ u < v ≤ b, we have V(f , [u, v]) = V(f , [a, v])− V(f , [a, u])



Examples
1. The Dirichlet function χQ /∈ BV[0, 1]: Let N ∈ N. Consider a partition P with N points of [0, 1] such that xj ∈ Q

if j is odd and xj /∈ Q if j is even so that
∣∣∣χQ (xj)− χQ (xj−1)

∣∣∣ = 1. Then S(χQ , P) = N. Since N is arbitrary,

then V(χQ ) =∞.

2. Consider the functions f (x) = x sin
π

x
and g(x) = x2 sin

π

x
. Then f /∈ BV[0, 1] and g ∈ BV[0, 1]

I Let N ∈ N and consider the partition P of [0, 1] with N points given by xj = 1/(N − j + 1) for j even and
xj = 1/(N − j + 1 + 1/2) for j odd so that sin(π/xj) = 0 if j even and sin(π/xj) = ±1 if j is odd.
Then

S(f , P) =
N∑

j=1

1

N + 1− j + 1
2

=

N∑
k=1

1

k + 1
2

−→ ∞ as N →∞

Therefore V(f , [0, 1]) =∞.
I Note that g is differentiable with g′(x) = 2x sin

π

x
− π cos

π

x
and
∣∣g′(x)

∣∣ ≤ 2 + π. we can apply the

MTV on any interval [c, d] ⊂ [0, 1] to find α ∈ (c, d) so that
|g(d)− g(c)| =

∣∣g′(α)(d − c)
∣∣ ≤ (2 + π)(d − c). Hence if P = {x0, · · · , xn} is any partition of

[0, 1], then

S(g, P) =
n∑

j=1

∣∣g(xj)− g(xj−1)
∣∣ ≤ n∑

j=1

(2 + π)(xj − xj−1) = (2 + π)

Hence V(g, [0, 1]) ≤ 2 + π and g ∈ BV[0, 1].



Theorem (1)
Let f , g ∈ BV[a, b]. Then the functions αf + βg (with α, β ∈ R) and fg are also with bounded
variations. If there exists ε > 0 such that |g| > ε in [a, b], then f/g is also of bounded
variation.

Proof.
Suppose that f and g are functions with bounded variations. Let P be a partition of [a, b]. It follows from the triangle inequality
that

S(f + g, P) ≤ S(f , P) + S(g, P) ≤ V(f , [a, b]) + V(g, [a, b])
Therefore V(f + g) ≤ V(f ) + V(g) and so f + g ∈ BV[a, b] If α ∈ R, then S(αf , P) = |α|S(f , P) ≤ |α|V(f ) and
so αf is with bounded variation.
Since f , g ∈ BV[a, b], then there exist A > 0 and B > 0 such that |f | ≤ A and |g| ≤ B. We have∣∣f (xj)g(xj)− f (xj−1)g(xj−1)

∣∣ =
∣∣f (xj)g(xj)− f (xj−1)g(xj) + f (xj−1)g(xj)− f (xj−1)g(xj−1)

∣∣
≤
∣∣g(xj)

∣∣ ∣∣f (xj)− f (xj−1)
∣∣ +

∣∣f (xj−1)
∣∣ ∣∣g(xj)− g(xj−1)

∣∣
≤ B

∣∣f (xj)− f (xj−1)
∣∣ + A

∣∣g(xj)− g(xj−1)
∣∣

This implies that
S(fg, P) ≤ B S(f , P) + A S(g, P) ≤ B V(f ) + A V(g)

and consequently V(fg) ≤ B V(f ) + A V(g).

Suppose that |g| > ε, then∣∣∣∣∣ 1

g(xj)
−

1

g(xj−1)

∣∣∣∣∣ =

∣∣g(xj−1)− g(xj)
∣∣∣∣g(xj)g(xj−1)
∣∣ ≤ 1

ε2

∣∣g(xj)g(xj−1)
∣∣ .

Thus

S(
1

g
, P) ≤

1

ε2
S(g, P) ≤

1

ε2
V(g)

Hence 1/g has bounded variation.



Jordan Decomposition

Theorem (2)
A function f is of bounded variation on [a, b] if and only if f can be written as the difference of
two increasing functions on [a, b]:

f ∈ BV[a, b] ⇐⇒ f = g− h where g, h : [a, b] −→ R increasing

Proof.
"=⇒" Let f ∈ BV[a, b]. Define the function h on [a, b] by h(x) = V(f , [a, x]). The function h is increasing. Let
g = f + h. We remains to verify that g is increasing. Let a ≤ x1 < x2 ≤ b. Then

f (x1)− f (x2) ≤ |f (x1)− f (x2)| ≤ V(f , [x1, x2]) = V(f , [a, x2])− V(f , [a, x1]) = h(x2)− h(x1).
It follows that g(x1) = f (x1) + h(x1) ≤ g(x2) = f (x2) + h(x2).

"⇐=" If g, h : [a, b] −→ R are increasing, then g, h ∈ BV[a, b] and their difference f = g− h is also in

BV[a, b].

Corollary (1)
If f ∈ BV[a, b], then f is differentiable a.e. on [a, b] and f ′ ∈ L(a, b)

Proof.
Let f ∈ BV[a, b], then there exist increasing functions g, h on [a, b] such that f = g− h (Jordan Decomposition Theorem).

The increasing functions g and h are differentiable a.e. in [a, b] and g′, h′ ∈ L(a, b) (see Lecture 20). Therefore f is

differentiable a.e. and f ′ = g′ − h′ ∈ L(a, b)



Rectifiable Curves

Let f : [a, b] −→ Rn be a vector valued function f(t) = (f1(t), · · · , fn(t)). As t runs through
the interval [a, b] f(t) describes a curve Γ in Rn, the graph of f. The curve Γ is given
parametrically by f.
The length of Γ can be thought of as the supremum of the lengths of the inscribed polygonal
curves. Let P = {t0, · · · , tn} be a partition of [a, b] let Qj = f(tj). The polygonal curve
connecting Q0 to Q1, Q1 to Q2, · · · , Qn−1 to Qn is an approximation of Γ.

The length of the polygonal curve is
n∑

j=1

dis(Qj−1Qj). Define the length L(Γ) of Γ as the

supremum over the lengths all such polygonal curves:
L(Γ) = sup{S(f,P) : P partition of [a, b]}

where

S(f,P) =
n∑

j=1

‖f(tj)− f(tj−1)‖ =
n∑

j=1

[
n∑

k=1

(fk(xj)− fk(xj−1)2

]1/2

The curve Γ is said to be rectifiable if L(Γ) <∞.



Theorem (3)
f = (f1, · · · , fn) : [a, b] −→ Rn and Γ the graph of f. Then Γ is rectifiable if and only
fj ∈ BV[a, b] for j = 1, · · · , n. Moreover

max(V(f1), · · · ,V(fn)) ≤ L(Γ) ≤
n∑

j=1

V(fj)

Proof.
Observe that if c1, · · · , cn ∈ R, then we have the following inequalities

max(|c1|, · · · , |cn|) ≤

 n∑
j=1

c2
j

1/2

≤
n∑

j=1

|cj|

Let P = {t0, · · · , tn} be a partition of [a, b]. It follows from the above observation that

max
1≤j≤n

S(fj, P) ≤ S(f, P) ≤
n∑

j=1

S(fj, P) .

By passing to the suprema, we get

max
1≤j≤n

V(fj) ≤ L(Γ) ≤
n∑

j=1

V(fj) .


