Real Analysis MAA 6616 Lecture 21 Functions of Bounded Variation

Let $f : [a, b] \subset \mathbb{R} \longrightarrow \mathbb{R}$ be a function. For a partition $P = \{x_0, \dots, x_n\}$ of the interval [a, b](i.e. $x_0 = a < x_1 < x_2 < \dots < x_n = b$) we associate the variation of f with respect to the partition P: $S(f, P) = \sum_{j=1}^{n} |f(x_j) - f(x_{j-1})|$.

The total variation of f on [a, b] (or simply the variation) is

 $V(f) = V(f, [a, b]) = \sup\{S(f, P) : P \text{ partition of } [a, b]\}$

f is said to be of bounded variation on [a, b] if $V(f, [a, b]) < \infty$. Denote by BV[a, b] the space of functions of bounded variations.

- ▶ If f is monotone on [a, b], then $f \in BV[a, b]$ and V(f) = |f(b) f(a)|.
- ▶ If *f* is Lipschitz on [*a*, *b*] with Lipschitz constant *c*, then $f \in BV[a, b]$ and $V(f) \le c(b-a)$. Indeed, for any partition *P* we have

$$S(f, P) = \sum_{j=1}^{n} |f(x_j) - f(x_{j-1})| \le \sum_{j=1}^{n} c |x_j - x_{j-1}| = c(b-a)$$

- ▶ If $f \in BV[a, b]$, then f is bounded: Let $x \in [a, b]$, and consider the partition $P = \{a, x, b\}$. Then $|f(x)| - |f(a)| \le S(f, P) = |f(x) - f(a)| + |f(b) - f(x)| \le V(f)$ Hence $|f(x)| \le V(f) + |f(a)|$ for all x.
- ▶ If $c \in (a, b)$ then V(f, [a, b]) = V(f, [a, c]) + V(f, [c, b]). It follows that for every $a \le u < v \le b$, we have V(f, [u, v]) = V(f, [a, v]) V(f, [a, u])

Examples

- 1. The Dirichlet function $\chi_{\mathbb{Q}} \notin BV[0, 1]$: Let $N \in \mathbb{N}$. Consider a partition P with N points of [0, 1] such that $x_j \in \mathbb{Q}$ if j is odd and $x_j \notin \mathbb{Q}$ if j is even so that $|\chi_{\mathbb{Q}}(x_j) - \chi_{\mathbb{Q}}(x_{j-1})| = 1$. Then $S(\chi_{\mathbb{Q}}, P) = N$. Since N is arbitrary, then $V(\chi_{\mathbb{Q}}) = \infty$.
- 2. Consider the functions $f(x) = x \sin \frac{\pi}{x}$ and $g(x) = x^2 \sin \frac{\pi}{x}$. Then $f \notin BV[0, 1]$ and $g \in BV[0, 1]$

Let $N \in \mathbb{N}$ and consider the partition P of [0, 1] with N points given by $x_j = 1/(N - j + 1)$ for j even and $x_j = 1/(N - j + 1 + 1/2)$ for j odd so that $\sin(\pi/x_j) = 0$ if j even and $\sin(\pi/x_j) = \pm 1$ if j is odd. Then

$$S(f, P) = \sum_{j=1}^{N} \frac{1}{N+1-j+\frac{1}{2}} = \sum_{k=1}^{N} \frac{1}{k+\frac{1}{2}} \longrightarrow \infty \text{ as } N \to \infty$$

Therefore $V(f, [0, 1]) = \infty$.

Note that g is differentiable with $g'(x) = 2x \sin \frac{\pi}{x} - \pi \cos \frac{\pi}{x}$ and $|g'(x)| \le 2 + \pi$. we can apply the MTV on any interval $[c, d] \subset [0, 1]$ to find $\alpha \in (c, d)$ so that $|g(d) - g(c)| = |g'(\alpha)(d-c)| \le (2 + \pi)(d-c)$. Hence if $P = \{x_0, \dots, x_n\}$ is any partition of [0, 1], then

$$S(g, P) = \sum_{j=1}^{n} |g(x_j) - g(x_{j-1})| \le \sum_{j=1}^{n} (2+\pi)(x_j - x_{j-1}) = (2+\pi)$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ◆○◆

Hence $V(g, [0, 1]) \le 2 + \pi$ and $g \in BV[0, 1]$.

Theorem (1)

Let $f, g \in BV[a, b]$. Then the functions $\alpha f + \beta g$ (with $\alpha, \beta \in \mathbb{R}$) and fg are also with bounded variations. If there exists $\epsilon > 0$ such that $|g| > \epsilon$ in [a, b], then f/g is also of bounded variation.

Proof.

Suppose that f and g are functions with bounded variations. Let P be a partition of [a, b]. It follows from the triangle inequality that

 $S(f + g, P) \le S(f, P) + S(g, P) \le V(f, [a, b]) + V(g, [a, b])$

Therefore $V(f + g) \leq V(f) + V(g)$ and so $f + g \in BV[a, b]$ If $\alpha \in \mathbb{R}$, then $S(\alpha f, P) = |\alpha|S(f, P) \leq |\alpha|V(f)$ and so αf is with bounded variation.

Since $f, g \in BV[a, b]$, then there exist A > 0 and B > 0 such that $|f| \le A$ and $|g| \le B$. We have

$$\begin{array}{ll} f(x_j)g(x_j) - f(x_{j-1})g(x_{j-1}) \middle| &= \left| f(x_j)g(x_j) - f(x_{j-1})g(x_j) + f(x_{j-1})g(x_j) - f(x_{j-1})g(x_{j-1}) \right| \\ &\leq \left| g(x_j) \right| \left| f(x_j) - f(x_{j-1}) \right| + \left| f(x_{j-1}) \right| \left| g(x_j) - g(x_{j-1}) \right| \\ &\leq B \left| f(x_j) - f(x_{j-1}) \right| + A \left| g(x_j) - g(x_{j-1}) \right| \end{array}$$

This implies that

 $S(fg, P) \le B S(f, P) + A S(g, P) \le B V(f) + A V(g)$ and consequently $V(fg) \le B V(f) + A V(g)$.

Suppose that $|g| > \epsilon$, then

$$\left|\frac{1}{g(x_j)} - \frac{1}{g(x_{j-1})}\right| = \frac{|g(x_{j-1}) - g(x_j)|}{|g(x_j)g(x_{j-1})|} \le \frac{1}{\epsilon^2} |g(x_j)g(x_{j-1})|.$$

Thus

$$S(\frac{1}{g}, P) \leq \frac{1}{\epsilon^2} S(g, P) \leq \frac{1}{\epsilon^2} V(g)$$

Hence 1/g has bounded variation.

Theorem (2)

A function f is of bounded variation on [a, b] if and only if f can be written as the difference of two increasing functions on [a, b]:

$$f \in BV[a, b] \iff f = g - h$$
 where $g, h : [a, b] \longrightarrow \mathbb{R}$ increasing

Proof.

" \Longrightarrow " Let $f \in BV[a, b]$. Define the function h on [a, b] by h(x) = V(f, [a, x]). The function h is increasing. Let g = f + h. We remains to verify that g is increasing. Let $a \le x_1 < x_2 \le b$. Then $f(x_1) - f(x_2) \le f(x_1) - f(x_2) | \le V(f, [x_1, x_2]) = V(f, [a, x_2]) - V(f, [a, x_1]) = h(x_2) - h(x_1)$. It follows that $g(x_1) = f(x_1) + h(x_1) \le g(x_2) = f(x_2) + h(x_2)$. " \Leftarrow " If $g, h : [a, b] \longrightarrow \mathbb{R}$ are increasing, then $g, h \in BV[a, b]$ and their difference f = g - h is also in BV[a, b].

Corollary (1)

If $f \in BV[a, b]$, then f is differentiable a.e. on [a, b] and $f' \in \mathcal{L}(a, b)$

Proof.

Let $f \in BV[a, b]$, then there exist increasing functions g, h on [a, b] such that f = g - h (Jordan Decomposition Theorem). The increasing functions g and h are differentiable a.e. in [a, b] and $g', h' \in \mathcal{L}(a, b)$ (see Lecture 20). Therefore f is differentiable a.e. and $f' = g' - h' \in \mathcal{L}(a, b)$

Rectifiable Curves

Let $\mathbf{f} : [a, b] \longrightarrow \mathbb{R}^n$ be a vector valued function $\mathbf{f}(t) = (f_1(t), \cdots, f_n(t))$. As t runs through the interval $[a, b] \mathbf{f}(t)$ describes a curve Γ in \mathbb{R}^n , the graph of \mathbf{f} . The curve Γ is given parametrically by \mathbf{f} .

The length of Γ can be thought of as the supremum of the lengths of the inscribed polygonal curves. Let $P = \{t_0, \dots, t_n\}$ be a partition of [a, b] let $Q_j = \mathbf{f}(t_j)$. The polygonal curve connecting Q_0 to Q_1, Q_1 to Q_2, \dots, Q_{n-1} to Q_n is an approximation of Γ .

The length of the polygonal curve is $\sum_{j=1}^{n} \operatorname{dis}(Q_{j-1}Q_j)$. Define the length $L(\Gamma)$ of Γ as the

supremum over the lengths all such polygonal curves:

 $L(\Gamma) = \sup\{S(\mathbf{f}, P) : P \text{ partition of } [a, b]\}$

where

$$S(\mathbf{f}, P) = \sum_{j=1}^{n} \|\mathbf{f}(t_j) - \mathbf{f}(t_{j-1})\| = \sum_{j=1}^{n} \left[\sum_{k=1}^{n} (f_k(x_j) - f_k(x_{j-1})^2\right]^{1/2}$$

The curve Γ is said to be rectifiable if $L(\Gamma) < \infty$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Theorem (3) $\mathbf{f} = (f_1, \dots, f_n) : [a, b] \longrightarrow \mathbb{R}^n$ and Γ the graph of \mathbf{f} . Then Γ is rectifiable if and only $f_j \in BV[a, b]$ for $j = 1, \dots, n$. Moreover $\max(V(f_1), \dots, V(f_n)) \le L(\Gamma) \le \sum_{i=1}^n V(f_i)$

Proof.

Observe that if $c_1, \cdots, c_n \in \mathbb{R}$, then we have the following inequalities

$$\max(|c_1|, \cdots, |c_n|) \leq \left(\sum_{j=1}^n c_j^2\right)^{1/2} \leq \sum_{j=1}^n |c_j|$$

Let $P = \{t_0, \dots, t_n\}$ be a partition of [a, b]. It follows from the above observation that

$$\max_{1\leq j\leq n} S(f_j, P) \leq S(\mathbf{f}, P) \leq \sum_{j=1}^n S(f_j, P) \, .$$

By passing to the suprema, we get

$$\max_{1 \leq j \leq n} V(f_j) \leq L(\Gamma) \leq \sum_{j=1}^n V(f_j) .$$

▲□▶▲□▶▲□▶▲□▶ □ のQで