Real Analysis MAA 6616
Lecture 21
Functions of Bounded Variation



Letf : [a, b) C R — R be a function. For a partition P = {xo, - - - , x,} of the interval [a, b]
(ie.xp =a < x; <x <--- < x, =b) we associate the variation of f with respect to the
n

partition P: S(f, P) = > |f(x)) — f(xj—1)|.
j=1

The total variation of f on [a, b] (or simply the variation) is

V(f) = V(f,|a, b]) = sup{S(f,P) : P partition of [a, b]}
f is said to be of bounded variation on [a, D] if V(f, [a, b]) < co. Denote by BV|a, b] the
space of functions of bounded variations.

» If f is monotone on [a, b], then f € BV([a, b] and V(f) = |[f(b) — f(a)|.

> If f is Lipschitz on [a, b] with Lipschitz constant c, then f € BV{[a, b] and
V(f) < c¢(b — a). Indeed, for any partition P we have

S(f,P) = Zlij —f-D)] <D el —xa| = cb —a)
j=l1
> Iff € BV]a, D], thenf is bounded: Letx € [a, b], and consider the partition
P ={a, x, b}. Then
IF()| = IF(@)] < S(F, P) = If(x) = f(a)| + If () = F(X) < V()
Hence |f(x)| < V(f) + |f(a)] for all x.
> Ifc € (a, b) then V(f, [a, b]) = V(f, [a, c]) + V(f,[c, b]). It follows that for every
a <u <v<b,wehave V(f, [u, v]) = V(f, [a, v]) — V(f, [a, u])



Examples

1.

S}

The Dirichlet function Xq & BV[0, 1]: Let N € N. Consider a partition P with N points of [0, 1] such thatx; € Q
if jis odd and x; ¢ Q if j is even so that Xg (%) — Xg (xj—1)| = 1. Then S(XQ ,P) = N. Since N is arbitrary,
then V(x@) = oo.

™ T
Consider the functions f(x) = xsin — and g(x) = ¥* sin —. Thenf ¢ BV[0, 1]and g € BV[0, 1]
X X

> LetN € Nand consider the partition P of [0, 1] with N points given by xj = 1/(N — j + 1) for j even and
x = 1/(N —j+ 1+ 1/2) forjodd so that sin(7 /x;) = 0if j even and sin(7 /x;) = £1if jis odd.
N 1

Then
N
SEP) =Y ——— =

1

1 — 00 asN — oo
k+ 5

Therefore V(f, [0, 1]) = oo.
™ ™
> Note that g is differentiable with g’ (x) = 2xsin — — 7 cos — and {g’(x)| < 2 + 7. we can apply the
x x
MTV on any interval [¢, d] C [0, 1]tofind @ € (c, d) so that
|g(d) — g(c)| = |¢’ (@) (d — ¢)| < (24 m)(d — c). Hence if P = {xg, - - - ,x,} is any partition of
[0, 1], then
n n
S(eP) =3 o) — 2| < S2@+ ™) —x-1) = @+ )
j=1 =1
Hence V(g, [0, 1]) <2+ wand g € BV[0, 1].



Theorem (1)

Letf,g € BV[a, b]. Then the functions af + Bg (with o, B € R) and fg are also with bounded
variations. If there exists € > 0 such that |g| > € in [a, b], thenf /g is also of bounded
variation.

Proof.

Suppose that f and g are functions with bounded variations. Let P be a partition of [a, b]. It follows from the triangle inequality
that
S(F+ ¢, P) < S(f,P) + S(g, P) < V(f, [a, b]) + V(s [a, b])
Therefore V(f 4+ ¢g) < V(f) + V(g) andsof + g € BV[a, b] If & € R, then S(af, P) = |e|S(f, P) < |a|V(f) and
so af is with bounded variation.
Since f, g € BV[a, b], then there existA > 0 and B > 0 such that |[f| < A and |g| < B. We have
[F)e(y) —fl—D)e(y—1)| = [FO)el) — fly-1)ex) + £ (xj—1)e(x) — F(xj—1)g(x—1)|
< )| &) —Fy—D)| + =) |e(x) — elxi—1)]
< Bf(x) —f(~¥j71)[’+A ls(x) = g(x/—l)f

S(fe, P) < BS(f,P) + AS(g, P) < BV(f) +A4V(g)
and consequently V(fg) < BV(f) +AV(g).

Suppose that |g| > e, then

This implies that

1 1

1) — g(x: 1
:

g(x)  glx—1)
Thus

1 1 1
S(=,P) < = S(s,P) < - V(g)
g € €

Hence 1 /g has bounded variation. O



Jordan Decomposition

Theorem (2)

A function f is of bounded variation on [a, b) if and only if f can be written as the difference of
two increasing functions on [a, b]:
f €BVia, b] <= f=g—h where g,h: [a, )] — R increasing

Proof.

"==>"Letf € BV[a, b]. Define the function & on [a, b] by h(x) = V(f, [a, x]). The function & is increasing. Let
g = f + h. We remains to verify that g is increasing. Leta < x| < xp < b. Then
F) = f(2) S ) —f)| SV s 2)) = VI (e, 2]) = V(I e, x]) = b)) = h(x)-
It follows that g(x1) = f(x1) + h(x1) < g(x2) = f(x2) + h(x2).
"«="1Ifg,h: [a, ] —> Rareincreasing, then g, 1 € BV([a, b] and their difference f = g — h s also in
BV([a, b]. O

Corollary (1)
Iff € BV]a, b], then f is differentiable a.e. on [a, b] and f’ € L(a, D)

Proof.

Letf € BV|a, b], then there exist increasing functions g, h on [a, b] such thatf = g — h (Jordan Decomposition Theorem).
The increasing functions g and # are differentiable a.e. in [a, b] and g, e L(a, b) (see Lecture 20). Therefore f is
differentiable a.e. and f’ = ¢’ — h' € L(a, b) O



Rectifiable Curves

Letf: [a, b] — R" be a vector valued function f(z) = (fi(¢),-- - ,fu()). As t runs through
the interval [a, b] £(¢) describes a curve I" in R”, the graph of f. The curve I is given
parametrically by f.

The length of I" can be thought of as the supremum of the lengths of the inscribed polygonal
curves. Let P = {19, - - - , 1, } be a partition of [a, b] let Q; = f(#;). The polygonal curve
connecting Qg to Oy, Q1 to Oy, - - -, Q@ —1 to Qp is an approximation of T".

n
The length of the polygonal curve is Z dis(Qj—1Qj). Define the length L(T") of I as the
j=1
supremum over the lengths all such polygonal curves:
L(T") = sup{S(f, P) : P partition of [a, b]}

S(£,P) = Zl\ft/—f 71II—Z Z(ka, —filx-1)?
Jj=1 Lk=1

The curve T is said to be rectlhdble if L(T') < oo.

where
1/2



Theorem (3)

f=(fi,-- ,fu) : [a, b] — R" and T the graph of f. Then T is rectifiable if and only
fj € BV[a, bl forj=1,--- ,n. Moreover

n
max(V(fi), -+, V() < L) < D> V()
J=1
Proof.
Observe thatif ¢y, - - - , ¢, € R, then we have the following inequalities
n 5 1/2 n
max(lerl, - lal) < (32¢] < Dl
J=1 Jj=1
LetP = {fg, - -+ , 1, } be a partition of [a, b]. It follows from the above observation that

n
max S(fj, P) < S(f,P) < S(f;, P) -
25, 5057) € 56) < 3256,
By passing to the suprema, we get

n

max V() < L) < > V().

1<j<n =



