Real Analysis MAA 6616
Lecture 22
Absolutely Continuous Functions



A function f : [a, b] — R is absolutely continuous on [a, b] if for any € > O there exists
0 > 0 such that for any countable (finite or infinite) collection of non overlapping intervals
{I; = [aj, bj]};jin [a, b] we have

Dobi—a) <6 = Y If(by) —fla@)| <e.
j j

Denote by AC|a, b] the space of absolutely continuous functions on [a, b]. Note that if
f € ACla, b], then f is (uniformly) continuous on [a, b]. However the converse is not true.

Lemma (1)

The Cantor-Lebesgue function ¢ : [0, 1] — [0, 1] is continuous increasing but it is not
absolutely continuous.

Proof.

Recall that the Cantor function ¢ is constant on each (removed) middle third interval in the construction of the Cantor set and
that ¢ is increasing and ¢(0) = 0, ¢(1) = L.

At the first step in the construction of the Cantor set. We have the two remaining intervals [a;, b;] = [0, 1/3] and

lay, by] = [2/3, 1] so that

2 2
2
Do) =< and 36(b) — (@) =1
j=1 : j=1
At the second step C; is the union of the 2% intervals of length 372 lay, by] =10, 1/9], [az, by] = [2/9, 3/9].
laz, b3] = [6/9, 7/9],and [a4, bs] = [8/9, 9/9]. Hence
2 22
2\ 2
St —a) = (5) w3 6) -~ () =1
j=1 - j=1

In general at the n-th step we get C, as the disjoint union of 2" intervals [aj7 bj] each with length 37" so that

on N on
> —a) = (§> and > p(by) — ¢(g) =1
j=1 Jj=1

It follows that for e = 1/2, the condition for absolute continuity does not hold since we have a collection of finitely many

intervals with total measure (2/3)" which can be made as small as we which while total variation of ¢ is 1. O



Denote by Lip[a, b] the space of Lipschitz function on [a, b]. Thatis f € Lip[a, b] if and only
if there exists ¢ > 0 such that |[f(x) — f(y)| < ¢|x — y| forall x,y € [a, b].

Theorem (1)
A Lipschitz function on [a, b) is absolutely continuous on [a, b]: Lip[a, b] C AC[a, b]

Proof.
If [aj, bj] C [a, b], then ‘_/(bj) —_f(aj)‘ <c ‘b, — aj|. Hence
Do) = flap] < e 301k — gl
Therefore for € > 0, we can take § = € /c for f to satisfy the definition of absolute continuity. O

There exist absolutely continuous functions that are not Lipschitz continuous as illustrated

below.

The Function f(x) = /s is in AC[0, 1] but not in Lip[0, 1]. First we verify \/x ¢ Lip[0, 1]. If it were Lipschitz, then there
would be ¢ > 0 such that for every 0 < x < y < 1, we would have /¥y — v/x < ¢(y — x). In particular for x = 0 we
would have \/y < cyforally € (0, 1). This means 1 < ¢/y forall y > 0 which is absurd.

However f € Lip[a, 1], with Lipschitz constant ¢ = 3 if @ > 0. Indeed for« < x < y < 1, we have

@
X

< —X).
Vo Vim SRS A i

€
Now we prove that /x € AC[0, 1]. Givene > 0,let§ = 5 Let {Iy = [ug, vi]}x be a countable collection of non
overlapping intervals in [0, 1] such that 3=, £(I;) < &. Consider the point xy = é /4, there exists at most one interval Iy
that contains xo in its interior. In which we split /) into two intervals [M/"O , Xo] and [xq, V/‘O]' Let Cy be the collection of
intervals I contained in [0, xo] and C, be the collection of intervals /; contained in [xo, 1]. Using the fact that 1/ is an

€
increasing function, we have Z (Vv — Vur) < VX = > Using the fact that \/x € Lip[xp, 1] with Lipschitz
k, ILeC,

€
constant c = 1/2,/xXy = 1/e, we have E (V% — V) < - g £(Iy) < —. This shows that
I € 2
I €Cy K €6y
VE € AC[0, 1]



Theorem (2)

An absolutely continuous function on |a, b] is of bounded variation on [a, b]:
AC[a, b] C BV(a, b). Moreover, an absolutely continuous function can be written as the
difference of two increasing absolutely continuous functions

Proof.

Letf € AC[a, b], we need to show f € BV([a, b]. Lete = 1 and § > 0 be a corresponding positive number so that f
b—a
satisfies the absolute continuity property for the pair (e, §). Let N € N be such that N >

andfori =0, ,Nlet

xi=a+ ib;“ sOP = {x,-}?/:() be a partition of [a, b] by equally spaces points and x; ;.1 — x; < J. Now let Q be any

partition of [a, b] and foreveryi =1,--- ,N,let Q; = (Q N [xi—1, x]) U {x;—1,x; } so that Q; is a partition of the
interval [x;_, x;]. Sincex; — x;_| < 6, then V(f[x,v_] 5] Qi) < 1 (absolute continuity of f restricted to [x; 1, x;]).

Hence,

N N
V(L0 <D VUi 5] Q) S D L=N.
i=1 i=1

Therefore V(f, [a, b]) < Nandf € BV[a, b].

Now we prove that f can be written as the difference of two absolutely continuous and increasing functions. As was done earlier

(Lecture 21), since f € BV[a, b] we can write f as the difference of two increasing functions. Namely, f = g — h, where
h(x) = V(f, [a, x]) and g(x) = f(x) + V(f, [a, x]). To complete the proof, we need to verify that & is absolutely
continuous. Let € > and let § > 0 so that f satisfies the absolute continuity property for the pair € /2, §. Let
{Ix = [ux, vk]}}—, be acollection of disjoint subintervals of [a, b] such that 3=, £(Ix) < &.Fork € {1,--- ,n},let Py
n
€
be a partition of the interval /. Then Z V(f’k ,Pp) < 3 By taking the supremum over each partition Py, of I, we get

k=1
n

Z V(fy,) < €/2. Since V(fy, ) = h(v) — h(uy), we have proved
k=1

Z(vk —uy) <6 = Z(h(vk) — h(u)) < e.
k=1 k=1
Thatis h € AC[a, b]. O



Letf € L(a, b). Extend f to the interval [a, b + 1] by defining it as f(x) = f(b) for any
x € (b, b+ 1]. Forany 0 < h < 1 define the divided difference function Dyf and the average
function Av,f on [a, b] by
fx+h) —f(x
D) =D =100

d
Note that if [¢, d] C [a, b], then/ Dyf (x)dx = Avpf(d) — Avif(c).

x+-h
and Avyf(x) = %/ i f(s)ds.

Recall that a collection C of measu?able functions on a set E is said to be uniformly integrable
over E if for every e > 0, there exists § > 0 such that for every f € C we have / [f] dx < € for
allA C E withm(A) < 4. !
Theorem (3)

Let f be a continuous function on a closed and bounded interval [a, b]. Then f is absolutely
continuous on |a, b if and only if the family of divided difference functions {Dyf }o<p<1 is
uniformly integrable over [a, b].
Proof.
"<="Suppose that {Dpf} << is uniformly integrable over [a, b]. Let € > 0 and a corresponding § > 0 such that for
every h € (0, 1] we have/ |Dypf| dx < € whenever A C [a, b] has measure m(A) < 6.

A
Now let {I; = (ug, vi)}j— be a collection of disjoint intervals in [a, b] such that 3=, £(I) < 8. Let E = Uy Ir. We

.

have m(E) < &.Forany h € (0, 1] and any indexk = 1, - - - , n we have Av,f(vi) — Avpf(uy) = / k Dy f (x)dx

Uk
Therefore for every h € (0, 1] we

n n
- I 0) = Aol < 3° [ D@l = [ Ioreolar < e
k=1 k=1"% JE

Since f is continuous, then Avy,f(x) — f(x) ash — 0, then it follows from the passage to the limit in the above inequality

that [f(vk) — f(ugx)| < eandf € ACla, b).
k=1



Proof.

CONTINUED:

"==" Suppose f € ACla, b]. Then we can express f asf = g — hwith g, 1 € AC|a, b] and increasing. We can therefore
assume that f is increasing. This implies that the divided difference functions Dj,f are nonnegative. Observe that if

[e, B] C [a, b+ 1] then, using change of variables, we have

/aﬁ Dpf (x)dx = % |:‘/Oj:::hf(x)ds - ./aﬁf(x)dx:| = % ./()h m(t)dt

wherem(1) = f(B +1) — f(a +1).
Now we prove that {Djf} << is uniformly integrable over [a, b]. Lete > Oandlet § > 0 such that f satisfies the

absolute continuity property for the pair ¢/, § with ¢/ < e. Thusif {I; = (uy, v¢) }Z=1 is a collection of disjoint intervals in
[a, b] suchthat 3", £(Iy) < &, then 3", (f(vy) —f(ux)) < €. Note thatforany 0 < t < I, wehave Y, £(1+ ;) < 6,
and 3", (F(vk + 1) — f(ux + 1)) < €. Let U = Uy I. Then m(U) < & and it follows from the above observations that

1 h ,
/U D ()ds = /0 3200k +0 o+ )i < <

Let E C [a, b] be such that m(E) < & /2. There exists a G set G such that E C G and m(G) = m(E). The set G can be
written as G = (), U, where { Uy }, is nested collection of open set. Then there exists p € N such that E C Uy, and
m(Up) < 26/3. Now U, = Uy Vi, where Vi, is a disjoint union of a finite collection of open intervals and

Vip € Vig1,p- Since m(Vi ) < m(Up) < 26 /3, then it follows from the above estimate that/ Dpf(x)dx < €’ for

Vi.p
all k. Hence

/ Dif (¥)dx = | lim / Dpf(x)dx < €.
Up TV
Finally

/Eth(x)dx < /Up Duf ()i = tim /kap Duf(¥)dx < ¢ < e.



Fundamental Theorem of Calculus

Theorem (4)
Letf € ACla, b]. Thenf is differentiable a.e. on |a, b], ' € L(a, b), and

b
/ F(0)dx = £(b) — ().
Proof.

Since f € ACla, b], then it follows from
b N 1 b+h a—+h
[ o = as ) = as@) = 5 [ o= [ s
by letting h — O that ¢

tim 1 [/ " (x4 1) ~ 1| =) = @)

h—0 h
The function f can be written as f = ¢ — hwith g, h € AC[a, b] increasing. Then f is differentiable a.c. andf’ € L(a, b)

(Corollary 1 in Lecture 21). Therefore Dy /nf — f’ pointwise a.e. in la, b]. We know from Theorem 3 that the collection
{D, /nf}n is uniformly integrable. Consequently the Vitali Convergence Theorem (Lecture 16) implies

b b b
1®) = 1@ = i [0y ra= [7 im D= [ W

Let g € L(a, b), the function f : [a, ] — R defined by
X
7@ =2+ [ star,
a
A € R constant, is called an indefinite integral of g over [a, b].

Theorem (5)
We have the following: f € ACla, b if and only if f is an indefinite integral (of ).



Proof.

"="Letf € ACla, b], then differentiable a.c. and f’ € L(a, b). Foranyx € [a, b] we have f € AC|a, x] and
X
Theorem 4 gives f(x) = f(a) + / £’ (t)dr. Therefore f is an indefinite integral of £/
a

x
"<=" Suppose that f is an indefinite integral of g € L(a, b): f(x) = f(a) + / g(t)dr.
a

Let e > 0. It follows from |g| € L(a, b) that there exists § > 0 such that/ |gldx < e whenever E C [a, b] satisfies
E

m(E) < & (Proposition 1, Lecture 17). Let {I = (ug, vx)};—; be a collection of disjoint open intervals in [a, b] such that
ST €Iy) < 6. Let E = |y I Then

. AP . o
kizlwk)ff(uk)\ —g‘/uk g(o)dr sk:z]/uk \g(r)\dr—/5|g<r)|dr<e

Therefore f € AC[aT b). O
Corollary (1)
Letf : [a, b] — R be a monotone function. Thenf € AC|a, b] if and only if
b
[ 7 eax=ro) - rla)

Proof.

"==>"This is a consequence of Theorem 5.

"<=" Suppose that f is monotone (increasing). We know from Lebesgue’s Theorem that f is differentiable a.e. moreover

/df' (x)dx < f(d) — f(c) foralla < ¢ < d < b. Suppose further that /bf’(x)dx = f(b) — f(a). Letx € [a, b].

0= ["rwa-66) — @) = [ ['r 0@ - g = @] + [ [*1 0 - g 5] <o

X
This means f(x) = f(a) + / _f/(1)d1 (f an indefinite integral) and consequently f € AC[a, b] by Theorem 5. O
a



Lemma (2)
y
Letf € L(a, D). Thenf = 0 a.e. on [a, b] ifandonlyif/ f()dr =0 foralla<x<y<hb.

Proof.
y
"<«—" Suppose thatf € L(a, b) and / f()dr =0 foralla < x <y < b.IfU C [a, b]isopen, then U = (J; Ik,
x
where {I; = (u;, vi)} is a countable collection of disjoint intervals in [a, b], then it follows from the additive property of
the integral that / f(x)dx = 0. Now if G C [a, b]isaGg set, then we can write G = (1), Uy, for some collection {Uy, },
U
of nested open sets in [a, b]. Then / fdx = lim / fdx = 0. Next, if E C [a, b] is an arbitrary measurable set, then
G n—oo Jy,
there exists a G5 set G such that E C G and m(G\E) = 0. Hence
[rwas= [ seac= [ seoa=o.
E G G\E
Letft = max(f,0) and f~ = max(—f, 0) be the positive and negative parts of f. Both are nonnegative integrable
functions and f = fJr —f . Let
—1 — —\—1
EX = ()7 ®) = {xefa b f(x) 20} and B = (/)7 (R) = {x € [a, ] : f(x) <O}
b
Then / fi (x)dx = £ /i f(x)dx = 0. We know that if a nonnegative function has a vanishing integral, then the
a E

function is 0 a.e. Thusfi = 0 a.e. and consequently f = f+ —f~ =O0ae.onla, b]. O

Theorem (6)
Letf € L(a, b). Then dix [/ f(t)dt] = f(x) for almost all x € [a, b].



Proof.
x
Define the function F on [a, b] by F(x) = / fdt. Then as an indefinite integral F € ACla, b], F is differentiable and
a

F' € £(la, b]) (Theorem 5). Now we need to verify that F/ — f = O a.e. on [a, b]. For this it is enough to verify that if
2
a<x <x<b, then/ (F' — f)dt = 0 (Lemma 2):

/(F — f)di —/ Fldr — /fdr—F(xz)—F()l)—/ fdt
—/ fdt — /fdt /jdt—O

A function s € BV[a, b] is said to be singular if s = 0 a.e. on [a, b]. The Cantor-Lebesgue
function ¢ is an example of a nonconstant singular function. It follows from Theorem 4 that if
an absolutely continuous is singular, then it is constant. The following theorem (Lebesgue)
gives a decomposition of a function with bounded variation as the sum of an absolutely
continuous function and a singular function.

Theorem (7)

Letf € BV|a, b]. Then f can be written as f = g + h, with g € AC[a, b] and h a singular
function.

Proof.

x
Since f € BV[a, b], thenf is differentiable a.e. and f’ € L(a, b). Letg = / f'drandh = g — f. Then g € ACla, b),
a

O

h € BV[a, blandg’ = f" and ' =0 O



