Real Analysis MAA 6616 Lecture 22 Absolutely Continuous Functions

A function $f : [a, b] \longrightarrow \mathbb{R}$ is absolutely continuous on [a, b] if for any $\epsilon > 0$ there exists $\delta > 0$ such that for any countable (finite or infinite) collection of non overlapping intervals $\{I_j = [a_j, b_j]\}_j$ in [a, b] we have

$$\sum_{j} (b_j - a_j) < \delta \implies \sum_{j} |f(b_j) - f(a_j)| < \epsilon.$$

Denote by AC[*a*, *b*] the space of absolutely continuous functions on [*a*, *b*]. Note that if $f \in AC[a, b]$, then *f* is (uniformly) continuous on [*a*, *b*]. However the converse is not true.

Lemma (1)

The Cantor-Lebesgue function $\phi : [0, 1] \longrightarrow [0, 1]$ *is continuous increasing but it is not absolutely continuous.*

Proof.

Recall that the Cantor function ϕ is constant on each (removed) middle third interval in the construction of the Cantor set and that ϕ is increasing and $\phi(0) = 0$, $\phi(1) = 1$.

At the first step in the construction of the Cantor set. We have the two remaining intervals $[a_1, b_1] = [0, 1/3]$ and $[a_2, b_2] = [2/3, 1]$ so that

$$\sum_{j=1}^{2} (b_j - a_j) = \frac{2}{3} \text{ and } \sum_{j=1}^{2} \phi(b_j) - \phi(a_j) = 1$$

At the second step C_2 is the union of the 2^2 intervals of length 3^{-2} : $[a_1, b_1] = [0, 1/9], [a_2, b_2] = [2/9, 3/9], [a_3, b_3] = [6/9, 7/9], and <math>[a_4, b_4] = [8/9, 9/9]$. Hence

$$\sum_{j=1}^{2^2} (b_j - a_j) = \left(\frac{2}{3}\right)^2 \text{ and } \sum_{j=1}^{2^2} \phi(b_j) - \phi(a_j) = 1$$

In general at the *n*-th step we get C_n as the disjoint union of 2^n intervals $[a_j, b_j]$ each with length 3^{-n} so that

$$\sum_{j=1}^{2^n} (b_j - a_j) = \left(\frac{2}{3}\right)^n \text{ and } \sum_{j=1}^{2^n} \phi(b_j) - \phi(a_j) = 1$$

It follows that for $\epsilon = 1/2$, the condition for absolute continuity does not hold since we have a collection of finitely many intervals with total measure $(2/3)^n$ which can be made as small as we which while total variation of ϕ is 1.

Denote by Lip[a, b] the space of Lipschitz function on [a, b]. That is $f \in \text{Lip}[a, b]$ if and only if there exists c > 0 such that $|f(x) - f(y)| \le c |x - y|$ for all $x, y \in [a, b]$.

Theorem (1)

A Lipschitz function on [a, b] is absolutely continuous on [a, b]: Lip $[a, b] \subset AC[a, b]$

Proof.

If $[a_i, b_i] \subset [a, b]$, then $|f(b_i) - f(a_i)| \leq c |b_i - a_i|$. Hence $\sum_{i} \left| f(b_j) - f(a_j) \right| \le c \sum_{i} \left| b_j - a_j \right|$

Therefore for $\epsilon > 0$, we can take $\delta = \epsilon/c$ for f to satisfy the definition of absolute continuity.

There exist absolutely continuous functions that are not Lipschitz continuous as illustrated below.

The Function $f(x) = \sqrt{s}$ is in AC[0, 1] but not in Lip[0, 1]. First we verify $\sqrt{x} \notin \text{Lip}[0, 1]$. If it were Lipschitz, then there would be c > 0 such that for every 0 < x < y < 1, we would have $\sqrt{y} - \sqrt{x} < c(y - x)$. In particular for x = 0 we would have $\sqrt{y} \le cy$ for all $y \in (0, 1)$. This means $1 \le c\sqrt{y}$ for all y > 0 which is absurd.

However $f \in \text{Lip}[\alpha, 1]$, with Lipschitz constant $c = \frac{1}{2\sqrt{\alpha}}$ if $\alpha > 0$. Indeed for $\alpha \le x < y \le 1$, we have

$$\sqrt{y} - \sqrt{x} = rac{y-x}{\sqrt{y} + \sqrt{x}} \le rac{1}{2\sqrt{\alpha}}(y-x).$$

Now we prove that $\sqrt{x} \in AC[0, 1]$. Given $\epsilon > 0$, let $\delta = \frac{\epsilon^2}{2}$. Let $\{I_k = [u_k, v_k]\}_k$ be a countable collection of non overlapping intervals in [0, 1] such that $\sum_k \ell(I_k) < \delta$. Consider the point $x_0 = \epsilon^2/4$, there exists at most one interval I_{k_0} that contains x_0 in its interior. In which we split I_{k_0} into two intervals $[u_{k_0}, x_0]$ and $[x_0, v_{k_0}]$. Let C_1 be the collection of intervals I_k contained in $[0, x_0]$ and C_2 be the collection of intervals I_k contained in $[x_0, 1]$. Using the fact that \sqrt{x} is an increasing function, we have $\sum (\sqrt{v_k} - \sqrt{u_k}) \le \sqrt{x_0} = \frac{\epsilon}{2}$. Using the fact that $\sqrt{x} \in \text{Lip}[x_0, 1]$ with Lipschitz $k, I_{l} \in C_1$

constant $c = 1/2\sqrt{x_0} = 1/\epsilon$, we have $\sum_{k, \ l_k \in C_2} (\sqrt{v_k} - \sqrt{u_k}) \le \frac{1}{\epsilon} \sum_{k, \ l_k \in C_2} \ell(l_k) \le \frac{\epsilon}{2}$. This shows that $\sqrt{x} \in AC[0, 1]$ ・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Theorem (2)

An absolutely continuous function on [a, b] is of bounded variation on [a, b]: AC $[a, b] \subset$ BV[a, b]. Moreover, an absolutely continuous function can be written as the difference of two increasing absolutely continuous functions

Proof.

Let $f \in AC[a, b]$, we need to show $f \in BV[a, b]$. Let $\epsilon = 1$ and $\delta > 0$ be a corresponding positive number so that f satisfies the absolute continuity property for the pair (ϵ, δ) . Let $N \in \mathbb{N}$ be such that $N > \frac{b-a}{\delta}$ and for $i = 0, \dots, N$ let $x_i = a + i\frac{b-a}{N}$ so $P = \{x_i\}_{i=0}^N$ be a partition of [a, b] by equally spaces points and $x_{i+1} - x_i < \delta$. Now let Q be any partition of [a, b] and for every $i = 1, \dots, N$, let $Q_i = (Q \cap [x_{i-1}, x_i]) \cup \{x_{i-1}, x_i\}$ so that Q_i is a partition of the interval $[x_{i-1}, x_i]$. Since $x_i - x_{i-1} < \delta$, then $V(f_{[x_{i-1}, x_i]}, Q_i) < 1$ (absolute continuity of f restricted to $[x_{i-1}, x_i]$). Hence,

$$V(f, Q) \leq \sum_{i=1}^{N} V(f_{[x_{i-1}, x_i]}, Q_i) \leq \sum_{i=1}^{N} 1 = N.$$

Therefore $V(f, [a, b]) \leq N$ and $f \in BV[a, b]$.

Now we prove that *f* can be written as the difference of two absolutely continuous and increasing functions. As was done earlier (Lecture 21), since $f \in BV[a, b]$ we can write *f* as the difference of two increasing functions. Namely, f = g - h, where h(x) = V(f, [a, x]) and g(x) = f(x) + V(f, [a, x]). To complete the proof, we need to verify that *h* is absolutely continuous. Let $\epsilon >$ and let $\delta > 0$ so that *f* satisfies the absolute continuity property for the pair $\epsilon/2$, δ . Let $\{I_k = [u_k, v_k]\}_{k=1}^n$ be a collection of disjoint subintervals of [a, b] such that $\sum_k \ell(I_k) < \delta$. For $k \in \{1, \dots, n\}$, let P_k be a partition of the interval I_k . Then $\sum_{k=1}^n V(f_{I_k}, P_k) < \frac{\epsilon}{2}$. By taking the supremum over each partition P_k of I_k , we get

$$\sum_{k=1}^{n} V(f_{l_k}) \le \epsilon/2. \text{ Since } V(f_{l_k}) = h(v_k) - h(u_k), \text{ we have proved}$$

$$\sum_{k=1}^{n} (v_k - u_k) < \delta \implies \sum_{k=1}^{n} (h(v_k) - h(u_k)) < \epsilon.$$

That is $h \in AC[a, b]$.

Let $f \in \mathcal{L}(a, b)$. Extend f to the interval [a, b+1] by defining it as f(x) = f(b) for any $x \in (b, b+1]$. For any 0 < h < 1 define the divided difference function $D_h f$ and the average function $Av_h f$ on [a, b] by

$$D_h f(x) = \frac{f(x+h) - f(x)}{h} \text{ and } \operatorname{Av}_h f(x) = \frac{1}{h} \int_x^{x+h} f(s) ds.$$

Note that if $[c, d] \subset [a, b]$, then $\int_c D_h f(x) dx = Av_h f(d) - Av_h f(c)$.

Recall that a collection C of measurable functions on a set E is said to be uniformly integrable over E if for every $\epsilon > 0$, there exists $\delta > 0$ such that for every $f \in C$ we have $\int_A |f| dx < \epsilon$ for all $A \subset E$ with $m(A) < \delta$.

Theorem (3)

Let *f* be a continuous function on a closed and bounded interval [*a*, *b*]. Then *f* is absolutely continuous on [*a*, *b*] if and only if the family of divided difference functions $\{D_h f\}_{0 \le h \le 1}$ is uniformly integrable over [*a*, *b*].

Proof.

" \Leftarrow " Suppose that $\{D_hf\}_{0 \le h \le 1}$ is uniformly integrable over [a, b]. Let $\epsilon > 0$ and a corresponding $\delta > 0$ such that for every $h \in (0, 1]$ we have $\int_A |D_hf| dx < \epsilon$ whenever $A \subset [a, b]$ has measure $m(A) < \delta$. Now let $\{I_k = (u_k, v_k)\}_{k=1}^n$ be a collection of disjoint intervals in [a, b] such that $\sum_k \ell(I_k) < \delta$. Let $E = \bigcup_k I_k$. We have $m(E) < \delta$. For any $h \in (0, 1]$ and any index $k = 1, \cdots, n$ we have $Av_h f(v_k) - Av_h f(u_k) = \int_{u_k}^{v_k} D_h f(x) dx$.

Therefore for every
$$h \in (0, 1]$$
 we

$$\sum_{k=1}^{n} |\operatorname{Av}_{h}f(v_{k}) - \operatorname{Av}_{h}f(u_{k})| \leq \sum_{k=1}^{n} \int_{I_{k}} |\operatorname{D}_{h}f(x)| \, dx = \int_{E} |\operatorname{D}_{h}f(x)| \, dx < \epsilon \,.$$

Since f is continuous, then $Av_h f(x) \longrightarrow f(x)$ as $h \longrightarrow 0$, then it follows from the passage to the limit in the above inequality that $\sum_{k=1}^{n} |f(v_k) - f(u_k)| \le \epsilon$ and $f \in AC[a, b]$.

Proof.

" \Longrightarrow " Suppose $f \in AC[a, b]$. Then we can express f as f = g - h with $g, h \in AC[a, b]$ and increasing. We can therefore assume that f is increasing. This implies that the divided difference functions $D_h f$ are nonnegative. Observe that if $[\alpha, \beta] \subset [a, b + 1]$ then, using change of variables, we have

$$\int_{\alpha}^{\beta} \mathcal{D}_{h}f(x)dx = \frac{1}{h} \left[\int_{\alpha+h}^{\beta+h} f(s)ds - \int_{\alpha}^{\beta} f(s)ds \right] = \frac{1}{h} \int_{0}^{h} m(t)dt$$

where $m(t) = f(\beta + t) - f(\alpha + t)$.

Now we prove that $\{D_k f\}_{0 \le h \le 1}$ is uniformly integrable over [a, b]. Let $\epsilon > 0$ and let $\delta > 0$ such that f satisfies the absolute continuity property for the pair ϵ', δ with $\epsilon' < \epsilon$. Thus if $\{I_k = (u_k, v_k)\}_{k=1}^n$ is a collection of disjoint intervals in [a, b] such that $\sum_k \ell(I_k) < \delta$, then $\sum_k (f(v_k) - f(u_k)) < \epsilon'$. Note that for any $0 \le t \le 1$, we have $\sum_k \ell(t + I_k) < \delta$, and $\sum_k (f(v_k + t) - f(u_k + t)) < \epsilon'$. Let $U = \bigcup_k I_k$. Then $m(U) < \delta$ and it follows from the above observations that

$$\int_U \mathcal{D}_h f(x) dx = \frac{1}{h} \int_0^h \sum_{k=1}^n (f(v_k + t) - f(u_k + t)) dt < \epsilon'$$

Let $E \subset [a, b]$ be such that $m(E) < \delta/2$. There exists a G_{δ} set G such that $E \subset G$ and m(G) = m(E). The set G can be written as $G = \bigcap_n U_n$ where $\{U_n\}_n$ is nested collection of open set. Then there exists $p \in \mathbb{N}$ such that $E \subset U_p$ and $m(U_p) < 2\delta/3$. Now $U_p = \bigcup_k V_{k,p}$ where $V_{k,p}$ is a disjoint union of a finite collection of open intervals and $V_{k,p} \subset V_{k,p}$. Since $m(V_p) < 2\delta/3$ then it follows from the above estimate that $\int_{0}^{1} D_{k}f(x)dx < c'$ for

 $V_{k,p} \subset V_{k+1,p}$. Since $m(V_{k,p}) < m(U_p) < 2\delta/3$, then it follows from the above estimate that $\int_{V_{k,p}} D_h f(x) dx < \epsilon'$ for $u \in V_{k+1,p}$.

all k. Hence

$$\int_{U_p} \mathcal{D}_h f(x) dx = \lim_{k \to \infty} \int_{V_{k,p}} \mathcal{D}_h f(x) dx \le \epsilon'.$$

Finally

$$\int_E D_h f(x) dx \leq \int_{U_p} D_h f(x) dx = \lim_{k \to \infty} \int_{V_{k,p}} D_h f(x) dx \leq \epsilon' < \epsilon.$$

Fundamental Theorem of Calculus

Theorem (4) Let $f \in AC[a, b]$. Then f is differentiable a.e. on $[a, b], f' \in \mathcal{L}(a, b)$, and $\int_{a}^{b} f'(x)dx = f(b) - f(a).$

Proof.

Since $f \in AC[a, b]$, then it follows from

$$\int_{a}^{b} \mathcal{D}_{h}f(x)dx = \mathcal{A}\mathbf{v}_{h}f(b) - \mathcal{A}\mathbf{v}_{h}f(a) = \frac{1}{h}\int_{b}^{b+h}f(x)dx - \int_{a}^{a+h}f(x)dx$$

by letting $h \rightarrow 0$ that

$$\lim_{h \to 0} \frac{1}{h} \left[\int_a^b (f(x+h) - f(x)) dx \right] = f(b) - f(a).$$

The function f can be written as f = g - h with $g, h \in AC[a, b]$ increasing. Then f is differentiable a.e. and $f' \in \mathcal{L}(a, b)$ (Corollary 1 in Lecture 21). Therefore $D_{1/n}f \longrightarrow f'$ pointwise a.e. in [a, b]. We know from Theorem 3 that the collection $\{D_{1/n}f\}_n$ is uniformly integrable. Consequently the Vitali Convergence Theorem (Lecture 16) implies

$$f(b) - f(a) = \lim_{n \to \infty} \int_a^b \mathcal{D}_{1/n} f(x) dx = \int_a^b \lim_{n \to \infty} \mathcal{D}_{1/n} f(x) dx = \int_a^b f'(x) dx$$

Let $g \in \mathcal{L}(a, b)$, the function $f : [a, b] \longrightarrow \mathbb{R}$ defined by $f(x) = \lambda + \int_a^x g(t)dt$,

 $\lambda \in \mathbb{R}$ constant, is called an indefinite integral of g over [a, b].

Theorem (5)

We have the following: $f \in AC[a, b]$ if and only if f is an indefinite integral (of f').

Proof.

" \Longrightarrow " Let $f \in AC[a, b]$, then f differentiable a.e. and $f' \in \mathcal{L}(a, b)$. For any $x \in [a, b]$ we have $f \in AC[a, x]$ and Theorem 4 gives $f(x) = f(a) + \int_a^x f'(t)dt$. Therefore f is an indefinite integral of f'. " \Leftarrow " Suppose that f is an indefinite integral of $g \in \mathcal{L}(a, b)$: $f(x) = f(a) + \int_a^x g(t)dt$. Let $\epsilon > 0$. It follows from $|g| \in \mathcal{L}(a, b)$ that there exists $\delta > 0$ such that $\int_E |g|dx < \epsilon$ whenever $E \subset [a, b]$ satisfies $m(E) < \delta$ (Proposition 1, Lecture 17). Let $\{I_k = (u_k, v_k)\}_{k=1}^n$ be a collection of disjoint open intervals in [a, b] such that $\sum_k \ell(I_k) < \delta$. Let $E = \bigcup_k I_k$. Then $\sum_{k=1}^n |f(v_k) - f(u_k)| = \sum_{k=1}^n \left| \int_{u_k}^{v_k} g(t)dt \right| \le \sum_{k=1}^n \int_{u_k}^{v_k} |g(t)| dt = \int_E |g(t)| dt < \epsilon$ Therefore $f \in AC[a, b]$.

Corollary (1)

Let $f : [a, b] \longrightarrow \mathbb{R}$ be a monotone function. Then $f \in AC[a, b]$ if and only if $\int_{a}^{b} f'(x) dx = f(b) - f(a).$

Proof.

">> " This is a consequence of Theorem 5.

" \leftarrow " Suppose that *f* is monotone (increasing). We know from Lebesgue's Theorem that *f* is differentiable a.e. moreover $\int_{c}^{d} f'(x)dx \leq f(d) - f(c) \text{ for all } a \leq c \leq d \leq b. \text{ Suppose further that } \int_{a}^{b} f'(x)dx = f(b) - f(a). \text{ Let } x \in [a, b].$ Then

$$0 = \int_{a}^{b} f'(t)dt - (f(b) - f(a)) = \left[\int_{a}^{x} f'(t)dt - (f(x) - f(a))\right] + \left[\int_{x}^{b} f'(t)dt - (f(b) - f(x))\right] \le 0$$

This means $f(x) = f(a) + \int_{a}^{x} f'(t)dt$ (*f* an indefinite integral) and consequently $f \in AC[a, b]$ by Theorem 5.

Lemma (2)

Let $f \in \mathcal{L}(a, b)$. Then f = 0 a.e. on [a, b] if and only if $\int_x^y f(t)dt = 0$ for all $a \le x \le y \le b$.

Proof.

" \Leftarrow " Suppose that $f \in \mathcal{L}(a, b)$ and $\int_x^y f(t)dt = 0$ for all $a \le x \le y \le b$. If $U \subset [a, b]$ is open, then $U = \bigcup_k I_k$, where $\{I_k = (u_k, v_k)\}_k$ is a countable collection of disjoint intervals in [a, b], then it follows from the additive property of the integral that $\int_U f(x)dx = 0$. Now if $G \subset [a, b]$ is a G_δ set, then we can write $G = \bigcap_n U_n$ for some collection $\{U_n\}_n$ of nested open sets in [a, b]. Then $\int_G fdx = \lim_{n \to \infty} \int_{U_n} fdx = 0$. Next, if $E \subset [a, b]$ is an arbitrary measurable set, then there exists a G_δ set G such that $E \subset G$ and $m(G \setminus E) = 0$. Hence

$$\int_{E} f(x)dx = \int_{G} f(x)dx - \int_{G \setminus E} f(x)dx = 0.$$

Let $f^+ = \max(f, 0)$ and $f^- = \max(-f, 0)$ be the positive and negative parts of f. Both are nonnegative integrable functions and $f = f^+ - f^-$. Let

 $E^+ = (f^+)^{-1}(\mathbb{R}) = \{x \in [a, b] : f(x) \ge 0\} \text{ and } E^- = (f^-)^{-1}(\mathbb{R}) = \{x \in [a, b] : f(x) \le 0\}.$ Then $\int_a^b f^{\pm}(x) dx = \pm \int_{E^{\pm}} f(x) dx = 0$. We know that if a nonnegative function has a vanishing integral, then the function is 0 a.e. Thus $f^{\pm} = 0$ a.e. and consequently $f = f^+ - f^- = 0$ a.e. on [a, b].

Theorem (6) Let $f \in \mathcal{L}(a, b)$. Then $\frac{d}{dx} \left[\int_{a}^{x} f(t) dt \right] = f(x)$ for almost all $x \in [a, b]$.

Proof.

Define the function F on [a, b] by $F(x) = \int_a^x f dt$. Then as an indefinite integral $F \in AC[a, b]$, F is differentiable and $F' \in \mathcal{L}([a, b])$ (Theorem 5). Now we need to verify that F' - f = 0 a.e. on [a, b]. For this it is enough to verify that if $a \le x_1 < x_2 \le b$, then $\int_{x_1}^{x_2} (F' - f) dt = 0$ (Lemma 2): $\int_{x_1}^{x_2} (F' - f) dt = \int_{x_1}^{x_2} F' dt - \int_{x_1}^{x_2} f dt = F(x_2) - F(x_1) - \int_{x_1}^{x_2} f dt = \int_a^{x_2} f dt - \int_a^{x_2} f dt - \int_{x_1}^{x_2} f dt = 0.$

A function $s \in BV[a, b]$ is said to be singular if s' = 0 a.e. on [a, b]. The Cantor-Lebesgue function ϕ is an example of a nonconstant singular function. It follows from Theorem 4 that if an absolutely continuous is singular, then it is constant. The following theorem (Lebesgue) gives a decomposition of a function with bounded variation as the sum of an absolutely continuous function and a singular function.

Theorem (7)

Let $f \in BV[a, b]$. Then f can be written as f = g + h, with $g \in AC[a, b]$ and h a singular function.

Proof.

Since $f \in BV[a, b]$, then f is differentiable a.e. and $f' \in \mathcal{L}(a, b)$. Let $g = \int_{a}^{x} f' dt$ and h = g - f. Then $g \in AC[a, b]$, $h \in BV[a, b]$ and g' = f' and h' = 0