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Lecture 22

Absolutely Continuous Functions



A function f : [a, b] −→ R is absolutely continuous on [a, b] if for any ε > 0 there exists
δ > 0 such that for any countable (finite or infinite) collection of non overlapping intervals
{Ij = [aj, bj]}j in [a, b] we have∑

j

(bj − aj) < δ =⇒
∑

j

|f (bj)− f (aj)| < ε .

Denote by AC[a, b] the space of absolutely continuous functions on [a, b]. Note that if
f ∈ AC[a, b], then f is (uniformly) continuous on [a, b]. However the converse is not true.

Lemma (1)
The Cantor-Lebesgue function φ : [0, 1] −→ [0, 1] is continuous increasing but it is not
absolutely continuous.

Proof.
Recall that the Cantor function φ is constant on each (removed) middle third interval in the construction of the Cantor set and
that φ is increasing and φ(0) = 0, φ(1) = 1.
At the first step in the construction of the Cantor set. We have the two remaining intervals [a1, b1] = [0, 1/3] and
[a2, b2] = [2/3, 1] so that

2∑
j=1

(bj − aj) =
2

3
and

2∑
j=1

φ(bj)− φ(aj) = 1

At the second step C2 is the union of the 22 intervals of length 3−2: [a1, b1] = [0, 1/9], [a2, b2] = [2/9, 3/9],
[a3, b3] = [6/9, 7/9], and [a4, b4] = [8/9, 9/9]. Hence

22∑
j=1

(bj − aj) =

( 2

3

)2
and

22∑
j=1

φ(bj)− φ(aj) = 1

In general at the n-th step we get Cn as the disjoint union of 2n intervals [aj, bj] each with length 3−n so that
2n∑

j=1

(bj − aj) =

( 2

3

)n
and

2n∑
j=1

φ(bj)− φ(aj) = 1

It follows that for ε = 1/2, the condition for absolute continuity does not hold since we have a collection of finitely many

intervals with total measure (2/3)n which can be made as small as we which while total variation of φ is 1.



Denote by Lip[a, b] the space of Lipschitz function on [a, b]. That is f ∈ Lip[a, b] if and only
if there exists c > 0 such that |f (x)− f (y)| ≤ c |x− y| for all x, y ∈ [a, b].

Theorem (1)
A Lipschitz function on [a, b] is absolutely continuous on [a, b]: Lip[a, b] ⊂ AC[a, b]

Proof.
If [aj, bj] ⊂ [a, b], then

∣∣f (bj)− f (aj)
∣∣ ≤ c

∣∣bj − aj
∣∣. Hence∑

j

∣∣f (bj)− f (aj)
∣∣ ≤ c

∑
j

∣∣bj − aj
∣∣

Therefore for ε > 0, we can take δ = ε/c for f to satisfy the definition of absolute continuity.

There exist absolutely continuous functions that are not Lipschitz continuous as illustrated
below.
The Function f (x) =

√
s is in AC[0, 1] but not in Lip[0, 1]. First we verify

√
x /∈ Lip[0, 1]. If it were Lipschitz, then there

would be c > 0 such that for every 0 ≤ x < y ≤ 1, we would have
√

y−
√

x ≤ c(y− x). In particular for x = 0 we
would have

√
y ≤ cy for all y ∈ (0, 1). This means 1 ≤ c

√
y for all y > 0 which is absurd.

However f ∈ Lip[α, 1], with Lipschitz constant c =
1

2
√
α

if α > 0. Indeed for α ≤ x < y ≤ 1, we have

√
y−
√

x =
y− x
√

y +
√

x
≤

1

2
√
α

(y− x).

Now we prove that
√

x ∈ AC[0, 1]. Given ε > 0, let δ =
ε2

2
. Let {Ik = [uk, vk]}k be a countable collection of non

overlapping intervals in [0, 1] such that
∑

k `(Ik) < δ. Consider the point x0 = ε2/4, there exists at most one interval Ik0
that contains x0 in its interior. In which we split Ik0 into two intervals [uk0 , x0] and [x0, vk0 ]. Let C1 be the collection of

intervals Ik contained in [0, x0] and C2 be the collection of intervals Ik contained in [x0, 1]. Using the fact that
√

x is an

increasing function, we have
∑

k, Ik∈C1

(
√

vk −
√

uk) ≤
√

x0 =
ε

2
. Using the fact that

√
x ∈ Lip[x0, 1] with Lipschitz

constant c = 1/2
√

x0 = 1/ε, we have
∑

k, Ik∈C2

(
√

vk −
√

uk) ≤
1

ε

∑
k, Ik∈C2

`(Ik) ≤
ε

2
. This shows that

√
x ∈ AC[0, 1]



Theorem (2)
An absolutely continuous function on [a, b] is of bounded variation on [a, b]:
AC[a, b] ⊂ BV[a, b]. Moreover, an absolutely continuous function can be written as the
difference of two increasing absolutely continuous functions

Proof.
Let f ∈ AC[a, b], we need to show f ∈ BV[a, b]. Let ε = 1 and δ > 0 be a corresponding positive number so that f

satisfies the absolute continuity property for the pair (ε, δ). Let N ∈ N be such that N >
b− a

δ
and for i = 0, · · · , N let

xi = a + i b−a
N so P = {xi}N

i=0 be a partition of [a, b] by equally spaces points and xi+1 − xi < δ. Now let Q be any
partition of [a, b] and for every i = 1, · · · , N, let Qi = (Q ∩ [xi−1, xi]) ∪ {xi−1, xi} so that Qi is a partition of the
interval [xi−1, xi]. Since xi − xi−1 < δ, then V(f[xi−1, xi]

,Qi) < 1 (absolute continuity of f restricted to [xi−1, xi]).

Hence,

V(f ,Q) ≤
N∑

i=1

V(f[xi−1, xi]
,Qi) ≤

N∑
i=1

1 = N.

Therefore V(f , [a, b]) ≤ N and f ∈ BV[a, b].

Now we prove that f can be written as the difference of two absolutely continuous and increasing functions. As was done earlier

(Lecture 21), since f ∈ BV[a, b] we can write f as the difference of two increasing functions. Namely, f = g− h, where

h(x) = V(f , [a, x]) and g(x) = f (x) + V(f , [a, x]). To complete the proof, we need to verify that h is absolutely

continuous. Let ε > and let δ > 0 so that f satisfies the absolute continuity property for the pair ε/2, δ. Let

{Ik = [uk, vk]}n
k=1 be a collection of disjoint subintervals of [a, b] such that

∑
k `(Ik) < δ. For k ∈ {1, · · · , n}, let Pk

be a partition of the interval Ik . Then
n∑

k=1

V(fIk , Pk) <
ε

2
. By taking the supremum over each partition Pk of Ik , we get

n∑
k=1

V(fIk ) ≤ ε/2. Since V(fIk ) = h(vk)− h(uk), we have proved

n∑
k=1

(vk − uk) < δ =⇒
n∑

k=1

(h(vk)− h(uk)) < ε.

That is h ∈ AC[a, b].



Let f ∈ L(a, b). Extend f to the interval [a, b + 1] by defining it as f (x) = f (b) for any
x ∈ (b, b + 1]. For any 0 < h < 1 define the divided difference function Dhf and the average
function Avhf on [a, b] by

Dhf (x) =
f (x + h)− f (x)

h
and Avhf (x) =

1
h

∫ x+h

x
f (s)ds .

Note that if [c, d] ⊂ [a, b], then
∫ d

c
Dhf (x)dx = Avhf (d)− Avhf (c).

Recall that a collection C of measurable functions on a set E is said to be uniformly integrable

over E if for every ε > 0, there exists δ > 0 such that for every f ∈ C we have
∫

A
|f | dx < ε for

all A ⊂ E with m(A) < δ.

Theorem (3)
Let f be a continuous function on a closed and bounded interval [a, b]. Then f is absolutely
continuous on [a, b] if and only if the family of divided difference functions {Dhf}0<h≤1 is
uniformly integrable over [a, b].

Proof.
"⇐=" Suppose that {Dhf}0<h≤1 is uniformly integrable over [a, b]. Let ε > 0 and a corresponding δ > 0 such that for

every h ∈ (0, 1] we have
∫

A
|Dhf | dx < ε whenever A ⊂ [a, b] has measure m(A) < δ.

Now let {Ik = (uk, vk)}n
k=1 be a collection of disjoint intervals in [a, b] such that

∑
k `(Ik) < δ. Let E =

⋃
k Ik . We

have m(E) < δ. For any h ∈ (0, 1] and any index k = 1, · · · , n we have Avhf (vk)− Avhf (uk) =

∫ vk

uk
Dhf (x)dx

Therefore for every h ∈ (0, 1] we
n∑

k=1

|Avhf (vk)− Avhf (uk)| ≤
n∑

k=1

∫
Ik
|Dhf (x)| dx =

∫
E
|Dhf (x)| dx < ε .

Since f is continuous, then Avhf (x) −→ f (x) as h −→ 0, then it follows from the passage to the limit in the above inequality

that
n∑

k=1

|f (vk)− f (uk)| ≤ ε and f ∈ AC[a, b].



Proof.
CONTINUED:
"=⇒" Suppose f ∈ AC[a, b]. Then we can express f as f = g− h with g, h ∈ AC[a, b] and increasing. We can therefore
assume that f is increasing. This implies that the divided difference functions Dhf are nonnegative. Observe that if
[α, β] ⊂ [a, b + 1] then, using change of variables, we have∫ β

α
Dhf (x)dx =

1

h

[∫ β+h

α+h
f (s)ds−

∫ β
α

f (s)ds

]
=

1

h

∫ h

0
m(t)dt

where m(t) = f (β + t)− f (α + t).
Now we prove that {Dhf}0<h≤1 is uniformly integrable over [a, b]. Let ε > 0 and let δ > 0 such that f satisfies the
absolute continuity property for the pair ε′ , δ with ε′ < ε. Thus if {Ik = (uk, vk)}n

k=1 is a collection of disjoint intervals in
[a, b] such that

∑
k `(Ik) < δ, then

∑
k(f (vk)− f (uk)) < ε′ . Note that for any 0 ≤ t ≤ 1, we have

∑
k `(t + Ik) < δ,

and
∑

k(f (vk + t)− f (uk + t)) < ε′ . Let U =
⋃

k Ik . Then m(U) < δ and it follows from the above observations that∫
U

Dhf (x)dx =
1

h

∫ h

0

n∑
k=1

(f (vk + t)− f (uk + t))dt < ε
′

Let E ⊂ [a, b] be such that m(E) < δ/2. There exists a Gδ set G such that E ⊂ G and m(G) = m(E). The set G can be

written as G =
⋂

n Un where {Un}n is nested collection of open set. Then there exists p ∈ N such that E ⊂ Up and

m(Up) < 2δ/3. Now Up =
⋃

k Vk,p where Vk,p is a disjoint union of a finite collection of open intervals and

Vk,p ⊂ Vk+1,p . Since m(Vk,p) < m(Up) < 2δ/3, then it follows from the above estimate that
∫

Vk,p
Dhf (x)dx < ε

′ for

all k. Hence ∫
Up

Dhf (x)dx = lim
k→∞

∫
Vk,p

Dhf (x)dx ≤ ε′.

Finally ∫
E

Dhf (x)dx ≤
∫

Up
Dhf (x)dx = lim

k→∞

∫
Vk,p

Dhf (x)dx ≤ ε′ < ε.



Fundamental Theorem of Calculus

Theorem (4)
Let f ∈ AC[a, b]. Then f is differentiable a.e. on [a, b], f ′ ∈ L(a, b), and∫ b

a
f ′(x)dx = f (b)− f (a).

Proof.
Since f ∈ AC[a, b], then it follows from∫ b

a
Dhf (x)dx = Avhf (b)− Avhf (a) =

1

h

∫ b+h

b
f (x)dx−

∫ a+h

a
f (x)dx ,

by letting h→ 0 that

lim
h→0

1

h

[∫ b

a
(f (x + h)− f (x))dx

]
= f (b)− f (a).

The function f can be written as f = g− h with g, h ∈ AC[a, b] increasing. Then f is differentiable a.e. and f ′ ∈ L(a, b)

(Corollary 1 in Lecture 21). Therefore D1/nf −→ f ′ pointwise a.e. in [a, b]. We know from Theorem 3 that the collection

{D1/nf}n is uniformly integrable. Consequently the Vitali Convergence Theorem (Lecture 16) implies

f (b)− f (a) = lim
n→∞

∫ b

a
D1/nf (x)dx =

∫ b

a
lim

n→∞
D1/nf (x)dx =

∫ b

a
f ′(x)dx

Let g ∈ L(a, b), the function f : [a, b] −→ R defined by

f (x) = λ+

∫ x

a
g(t)dt ,

λ ∈ R constant, is called an indefinite integral of g over [a, b].

Theorem (5)
We have the following: f ∈ AC[a, b] if and only if f is an indefinite integral (of f ′).



Proof.
"=⇒" Let f ∈ AC[a, b], then f differentiable a.e. and f ′ ∈ L(a, b). For any x ∈ [a, b] we have f ∈ AC[a, x] and

Theorem 4 gives f (x) = f (a) +

∫ x

a
f ′(t)dt. Therefore f is an indefinite integral of f ′ .

"⇐=" Suppose that f is an indefinite integral of g ∈ L(a, b): f (x) = f (a) +

∫ x

a
g(t)dt.

Let ε > 0. It follows from |g| ∈ L(a, b) that there exists δ > 0 such that
∫

E
|g|dx < ε whenever E ⊂ [a, b] satisfies

m(E) < δ (Proposition 1, Lecture 17). Let {Ik = (uk, vk)}n
k=1 be a collection of disjoint open intervals in [a, b] such that∑

k `(Ik) < δ. Let E =
⋃

k Ik . Then
n∑

k=1

|f (vk)− f (uk)| =
n∑

k=1

∣∣∣∣∣
∫ vk

uk
g(t)dt

∣∣∣∣∣ ≤
n∑

k=1

∫ vk

uk
|g(t)| dt =

∫
E
|g(t)|dt < ε

Therefore f ∈ AC[a, b].

Corollary (1)
Let f : [a, b] −→ R be a monotone function. Then f ∈ AC[a, b] if and only if∫ b

a
f ′(x)dx = f (b)− f (a).

Proof.
"=⇒" This is a consequence of Theorem 5.

"⇐=" Suppose that f is monotone (increasing). We know from Lebesgue’s Theorem that f is differentiable a.e. moreover∫ d

c
f ′(x)dx ≤ f (d)− f (c) for all a ≤ c ≤ d ≤ b. Suppose further that

∫ b

a
f ′(x)dx = f (b)− f (a). Let x ∈ [a, b].

Then

0 =

∫ b

a
f ′(t)dt − (f (b)− f (a)) =

[∫ x

a
f ′(t)dt − (f (x)− f (a))

]
+

[∫ b

x
f ′(t)dt − (f (b)− f (x))

]
≤ 0

This means f (x) = f (a) +

∫ x

a
f ′(t)dt (f an indefinite integral) and consequently f ∈ AC[a, b] by Theorem 5.



Lemma (2)
Let f ∈ L(a, b). Then f = 0 a.e. on [a, b] if and only if

∫ y

x
f (t)dt = 0 for all a ≤ x ≤ y ≤ b.

Proof.
"⇐=" Suppose that f ∈ L(a, b) and

∫ y

x
f (t)dt = 0 for all a ≤ x ≤ y ≤ b. If U ⊂ [a, b] is open, then U =

⋃
k Ik ,

where {Ik = (uk, vk)}k is a countable collection of disjoint intervals in [a, b], then it follows from the additive property of

the integral that
∫

U
f (x)dx = 0. Now if G ⊂ [a, b] is a Gδ set, then we can write G =

⋂
n Un for some collection {Un}n

of nested open sets in [a, b]. Then
∫

G
fdx = lim

n→∞

∫
Un

fdx = 0. Next, if E ⊂ [a, b] is an arbitrary measurable set, then

there exists a Gδ set G such that E ⊂ G and m(G\E) = 0. Hence∫
E

f (x)dx =

∫
G

f (x)dx−
∫

G\E
f (x)dx = 0.

Let f+ = max(f , 0) and f− = max(−f , 0) be the positive and negative parts of f . Both are nonnegative integrable

functions and f = f+ − f− . Let

E+
= (f+)

−1
(R) = {x ∈ [a, b] : f (x) ≥ 0} and E− = (f−)

−1
(R) = {x ∈ [a, b] : f (x) ≤ 0}.

Then
∫ b

a
f±(x)dx = ±

∫
E±

f (x)dx = 0. We know that if a nonnegative function has a vanishing integral, then the

function is 0 a.e. Thus f± = 0 a.e. and consequently f = f+ − f− = 0 a.e. on [a, b].

Theorem (6)
Let f ∈ L(a, b). Then

d
dx

[∫ x

a
f (t)dt

]
= f (x) for almost all x ∈ [a, b].



Proof.
Define the function F on [a, b] by F(x) =

∫ x

a
fdt. Then as an indefinite integral F ∈ AC[a, b], F is differentiable and

F′ ∈ L([a, b]) (Theorem 5). Now we need to verify that F′ − f = 0 a.e. on [a, b]. For this it is enough to verify that if

a ≤ x1 < x2 ≤ b, then
∫ x2

x1
(F′ − f )dt = 0 (Lemma 2):∫ x2

x1
(F′ − f )dt =

∫ x2

x1
F′dt −

∫ x2

x1
fdt = F(x2)− F(x1)−

∫ x2

x1
fdt

=

∫ x2

a
fdt −

∫ x1

a
fdt −

∫ x2

x1
fdt = 0.

A function s ∈ BV[a, b] is said to be singular if s′ = 0 a.e. on [a, b]. The Cantor-Lebesgue
function φ is an example of a nonconstant singular function. It follows from Theorem 4 that if
an absolutely continuous is singular, then it is constant. The following theorem (Lebesgue)
gives a decomposition of a function with bounded variation as the sum of an absolutely
continuous function and a singular function.

Theorem (7)
Let f ∈ BV[a, b]. Then f can be written as f = g + h, with g ∈ AC[a, b] and h a singular
function.

Proof.
Since f ∈ BV[a, b], then f is differentiable a.e. and f ′ ∈ L(a, b). Let g =

∫ x

a
f ′dt and h = g− f . Then g ∈ AC[a, b],

h ∈ BV[a, b] and g′ = f ′ and h′ = 0


