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Convex Functions



A function φ : (a, b) −→ R is said to be convex in (a, b) if for every interval
[x1, x2] ⊂ (a, b), the graph of φ over [x1, x2] lies below or on the the segment line joining the
points P1 = (x1, φ(x1)) and P2 = (x2, φ(x2)).

Since the segment P1P2 can be parameterized as
x = tx1 + (1− t)x2, y = tφ(x1) + (1− t)φ(x2) with 0 ≤ t ≤ 1,

then φ is convex if and only if for every a < x1 ≤ x2 < b and for every 0 ≤ t ≤ 1 we have
φ(tx1 + (1− t)x2) ≤ tφ(x1) + (1− t)φ(x2).

An equivalent formulation is the following: φ is convex if and only if for every s1 ≥ 0, s2 ≥ 0
such that s1 + s2 > 0 and for every a < x1 ≤ x2 < b we have

φ

(
s1

s1 + s2
x1 +

s2

s1 + s2
x2

)
≤

s1φ(x1) + s2φ(x2)

s1 + s2
.

By repeated use of this characterization we get the discrete Jensen’s Inequality

Proposition (1)
Let φ : (a, b) −→ R be a convex function. Then for every {xj}N

j=1 ⊂ (a, b) and for every
{sj}N

j=1 ⊂ R with sj ≥ 0 and
∑

j sj > 0, we have

φ

(∑N
j=1 sjxj∑N
j=1 sj

)
≤
∑N

j=1 sjφ(xj)∑N
j=1 sj



Lemma (1)
A function φ : (a, b) −→ R is convex if and only if for every a < x1 < x < x2 < b, we have

φ(x)− φ(x1)

x− x1
≤

φ(x)− φ(x2)

x− x2
⇐⇒ Slope(PP1) ≤ Slope(PP2)

where P1, P, and P2 are the points on the graph of φ corresponding to x1, x, and x2

Proof.
Let a < x1 < x < x2 < b, then x = tx1 +(1− t)x2 with t =

x2 − x

x2 − x1
and 1− t =

x− x1

x2 − x1
. Hence if φ is convex then

φ(x) ≤
x2 − x

x2 − x1
φ(x1) +

x− x1

x2 − x1
φ(x2) .

The Lemma follows from this inequality.

Proposition (2)
Let φ : (a, b) −→ R. If φ is differentiable and φ′ is increasing in (a, b), then φ is convex. In
particular, if φ has a nonnegative second derivative then φ is convex

Proof.
We need to show that φ satisfies the condition in Lemma 1. Let a < x1 < x < x2 < b. Then from the Mean Value Theorem

and φ′ increasing, there exists c1 ∈ (x1, x) and c2 ∈ (x, x2) such that[
φ(x)− φ(x1)

x− x1
= φ
′
(c1)

]
≤
[
φ
′
(c2) =

φ(x)− φ(x2)

x− x2

]

As a consequence, we have the following
I If p ≥ 1, then xp is convex on (0, ∞).
I If λ ∈ R, then eλx is convex on (−∞, ∞).

I log
1
x
= − log x is convex on (0, ∞).



Convex functions satisfy the following properties
I If φ and ψ are convex on (a, b), then so is φ+ ψ.
I If φ is convex on (a, b) and c > 0, then cφ is also convex on (a, b)
I If {φn}n is a sequence of convex functions on (a, b) and if φn −→ φ pointwise in

(a, b), then the limit φ is also convex.

For a function f : (a, b) −→ R and c ∈ (a, b), the right-hand derivative f ′(c+) and left-hand
derivative f ′(c−) are:

f ′(c+) = lim
h→0+

f (c + h)− f (c)
h

and f ′(c−) = lim
h→0−

f (c + h)− f (c)
h

(provided the limits exist and are finite).

Proposition (3)
Let φ : (a, b) −→ R be convex. Then

1. φ′(x±) exist for all x ∈ (a, b). Moreover if a < x1 < x < x2 < b, then

φ′(x−1 ) ≤ φ′(x+1 ) ≤
φ(x2)− φ(x1)

x2 − x1
≤ φ′(x−2 ) ≤ φ′(x+2 )

2. For every closed interval [c, d] ⊂ (a, b), φ is Lipschitz on [c, d] and consequently
φ ∈ AC[c, d].

Proof.
Part 1 is a direct consequence of Lemma1.

To verify part 2, let [c, d] ⊂ (a, b) and let M = max{
∣∣∣φ′(c+)

∣∣∣ , ∣∣∣φ′(d−)
∣∣∣}. It follows from part 1 that for every

x, y ∈ [c, d] we have |φ(y)− φ(x)| ≤ M |y− x|.



Theorem (1)
Let φ : (a, b) −→ R be convex. Then φ′(x) exists except at most on a countable set.
Furthermore φ′ is increasing.

Proof.
Consider the functions φ′+ and φ′− defined on (a, b) by φ′±(x) = φ′(x±). It follows from Proposition 3 that φ′± are

increasing functions and φ′− ≤ φ
′
+ . Since an increasing function is continuous except possible at a countable set, then there

exists a countable set C ⊂ (a, b) such that φ′± are continuous on E = (a, b)\C. Let x0 ∈ E and let {xn}n be a decreasing

sequence that converges to x0 . It follows from

φ
′
−(x0) ≤ φ

′
+(x0) ≤

φ(xn)− φ(x0)

xn − x0
≤ φ′−(xn) ≤ φ′+(xn)

that by letting n→∞, that we have φ′−(x0) ≤ φ′+(x0) ≤ φ′−(x0). Hence φ′−(x0) = φ′+(x0) and so φ is

differentiable at x0 .

A line L through a point P = (x0, φ(x0)) on the graph of a convex function φ is said to be a
supporting line for φ if L lies below the graph of φ.

Lemma (2)
Let L be a line with equation y = α(x− x0) + φ(x0). Then L is a supporting line for the convex
function φ if and only if φ′(x−0 ) ≤ α ≤ φ′(x+0 )

Proof.
Suppose that L is a supporting line for φ through the point (x0, φ(x0)). Let x ∈ (a, x0). Then

φ(x)− α(x− x0) + φ(x0) ≥ 0 it follows that
φ(x)− φ(x0)

x− x0
≤ α. By letting x→ x−0 we get φ′(x−0 ) ≤ α. A

similar argument gives α ≤ φ′(x+0 ). The proof of the converse is left as an exercise.



Jensen’s Inequality

Theorem (2)
Let E ⊂ Rq be a measurable set with 0 < m(E) <∞. Let f ∈ L(E) and f finite a.e. on E and
let φ be a convex function on R. Then

φ

(
1

m(E)

∫
E

fdx
)
≤

1
m(E)

∫
E
(φ ◦ f )dx

Proof.
Since f is finite a.e., there exists a set Z ⊂ E with m(Z) = 0 and a M > 0 such that f (x) ∈ (−M, M) for every x ∈ E\Z.

Let c =
1

m(E)

∫
E

fdx. Then c ∈ (−M, M). Let α ∈ R such that φ′(c−) ≤ α ≤ φ′(c+) so that the line with equation

y = α(t − c) + φ(c) is a supporting line through (c, φ(c)) for the function φ. Hence for every x ∈ E\Z we have

φ(f (x)) ≥ α (f (x)− c) + φ(c).

Now integrate this inequality over E to get∫
E
φ(f (x))dx ≥ α

(∫
E

f (x)dx− cm(E)
)

+ φ(c) m(E) = φ(c) m(E).

The conclusion follows by rearranging this inequality.


