Real Analysis MAA 6616 Lecture 23 Convex Functions

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

A function $\phi : (a, b) \longrightarrow \mathbb{R}$ is said to be convex in (a, b) if for every interval $[x_1, x_2] \subset (a, b)$, the graph of ϕ over $[x_1, x_2]$ lies below or on the the segment line joining the points $P_1 = (x_1, \phi(x_1))$ and $P_2 = (x_2, \phi(x_2))$.

Since the segment P_1P_2 can be parameterized as

 $x = tx_1 + (1 - t)x_2, \quad y = t\phi(x_1) + (1 - t)\phi(x_2) \text{ with } 0 \le t \le 1,$ then ϕ is convex if and only if for every $a < x_1 \le x_2 < b$ and for every $0 \le t \le 1$ we have $\phi(tx_1 + (1 - t)x_2) \le t\phi(x_1) + (1 - t)\phi(x_2).$

An equivalent formulation is the following: ϕ is convex if and only if for every $s_1 \ge 0$, $s_2 \ge 0$ such that $s_1 + s_2 > 0$ and for every $a < x_1 \le x_2 < b$ we have

$$\phi\left(\frac{s_1}{s_1+s_2}x_1 + \frac{s_2}{s_1+s_2}x_2\right) \le \frac{s_1\phi(x_1) + s_2\phi(x_2)}{s_1+s_2}.$$

By repeated use of this characterization we get the discrete Jensen's Inequality

Proposition (1)

Let $\phi: (a, b) \longrightarrow \mathbb{R}$ be a convex function. Then for every $\{x_j\}_{j=1}^N \subset (a, b)$ and for every $\{s_j\}_{j=1}^N \subset \mathbb{R}$ with $s_j \ge 0$ and $\sum_j s_j > 0$, we have $\phi\left(\frac{\sum_{j=1}^N s_j x_j}{\sum_{j=1}^N s_j}\right) \le \frac{\sum_{j=1}^N s_j \phi(x_j)}{\sum_{j=1}^N s_j}$

Lemma (1)

A function $\phi : (a, b) \longrightarrow \mathbb{R}$ is convex if and only if for every $a < x_1 < x < x_2 < b$, we have $\frac{\phi(x) - \phi(x_1)}{x - x_1} \le \frac{\phi(x) - \phi(x_2)}{x - x_2} \iff \text{Slope}(PP_1) \le \text{Slope}(PP_2)$

where P_1 , P, and P_2 are the points on the graph of ϕ corresponding to x_1 , x, and x_2

Proof.

Let $a < x_1 < x < x_2 < b$, then $x = tx_1 + (1 - t)x_2$ with $t = \frac{x_2 - x}{x_2 - x_1}$ and $1 - t = \frac{x - x_1}{x_2 - x_1}$. Hence if ϕ is convex then $\phi(x) \le \frac{x_2 - x}{x_2 - x_1}\phi(x_1) + \frac{x - x_1}{x_2 - x_1}\phi(x_2)$.

The Lemma follows from this inequality.

Proposition (2)

Let $\phi : (a, b) \longrightarrow \mathbb{R}$. If ϕ is differentiable and ϕ' is increasing in (a, b), then ϕ is convex. In particular, if ϕ has a nonnegative second derivative then ϕ is convex

Proof.

We need to show that ϕ satisfies the condition in Lemma 1. Let $a < x_1 < x < x_2 < b$. Then from the Mean Value Theorem and ϕ' increasing, there exists $c_1 \in (x_1, x)$ and $c_2 \in (x, x_2)$ such that

$$\left[\frac{\phi(x) - \phi(x_1)}{x - x_1} = \phi'(c_1)\right] \le \left[\phi'(c_2) = \frac{\phi(x) - \phi(x_2)}{x - x_2}\right]$$

As a consequence, we have the following

- If p ≥ 1, then x^p is convex on (0, ∞).
 If λ ∈ ℝ, then e^{λx} is convex on (-∞, ∞).
- $\log \frac{1}{x} = -\log x$ is convex on $(0, \infty)$.

Convex functions satisfy the following properties

- If ϕ and ψ are convex on (a, b), then so is $\phi + \psi$.
- If ϕ is convex on (a, b) and c > 0, then $c\phi$ is also convex on (a, b)
- If $\{\phi_n\}_n$ is a sequence of convex functions on (a, b) and if $\phi_n \longrightarrow \phi$ pointwise in (a, b), then the limit ϕ is also convex.

For a function $f:(a, b) \longrightarrow \mathbb{R}$ and $c \in (a, b)$, the right-hand derivative $f'(c^+)$ and left-hand derivative $f'(c^-)$ are:

$$f'(c^+) = \lim_{h \to 0^+} \frac{f(c+h) - f(c)}{h} \quad \text{and} \quad f'(c^-) = \lim_{h \to 0^-} \frac{f(c+h) - f(c)}{h}$$

(provided the limits exist and are finite)

Proposition (3)

Let $\phi : (a, b) \longrightarrow \mathbb{R}$ be convex. Then

1.
$$\phi'(x^{\pm})$$
 exist for all $x \in (a, b)$. Moreover if $a < x_1 < x < x_2 < b$, then
 $\phi'(x_1^-) \le \phi'(x_1^+) \le \frac{\phi(x_2) - \phi(x_1)}{x_2 - x_1} \le \phi'(x_2^-) \le \phi'(x_2^+)$

2. For every closed interval $[c, d] \subset (a, b)$, ϕ is Lipschitz on [c, d] and consequently $\phi \in AC[c, d]$.

Proof.

Part 1 is a direct consequence of Lemma1.

To verify part 2, let $[c, d] \subset (a, b)$ and let $M = \max\{\left|\phi'(c^+)\right|, \left|\phi'(d^-)\right|\}$. It follows from part 1 that for every $x, y \in [c, d]$ we have $|\phi(y) - \phi(x)| \leq M |y - x|$.

Theorem (1)

Let $\phi : (a, b) \longrightarrow \mathbb{R}$ be convex. Then $\phi'(x)$ exists except at most on a countable set. Furthermore ϕ' is increasing.

Proof.

Consider the functions ϕ'_+ and ϕ'_- defined on (a, b) by $\phi'_{\pm}(x) = \phi'(x^{\pm})$. It follows from Proposition 3 that ϕ'_{\pm} are increasing functions and $\phi'_- \leq \phi'_+$. Since an increasing function is continuous except possible at a countable set, then there exists a countable set $C \subset (a, b)$ such that ϕ'_{\pm} are continuous on $E = (a, b) \setminus C$. Let $x_0 \in E$ and let $\{x_n\}_n$ be a decreasing sequence that converges to x_0 . It follows from

$$\phi'_{-}(x_{0}) \leq \phi'_{+}(x_{0}) \leq \frac{\phi(x_{n}) - \phi(x_{0})}{x_{n} - x_{0}} \leq \phi'_{-}(x_{n}) \leq \phi'_{+}(x_{n})$$

that by letting $n \to \infty$, that we have $\phi'_{-}(x_0) \leq \phi'_{+}(x_0) \leq \phi'_{-}(x_0)$. Hence $\phi'_{-}(x_0) = \phi'_{+}(x_0)$ and so ϕ is differentiable at x_0 .

A line *L* through a point $P = (x_0, \phi(x_0))$ on the graph of a convex function ϕ is said to be a supporting line for ϕ if *L* lies below the graph of ϕ .

Lemma (2)

Let *L* be a line with equation $y = \alpha(x - x_0) + \phi(x_0)$. Then *L* is a supporting line for the convex function ϕ if and only if $\phi'(x_0^-) \le \alpha \le \phi'(x_0^+)$

Proof.

Suppose that *L* is a supporting line for ϕ through the point $(x_0, \phi(x_0))$. Let $x \in (a, x_0)$. Then $\phi(x) - \alpha(x - x_0) + \phi(x_0) \ge 0$ it follows that $\frac{\phi(x) - \phi(x_0)}{x - x_0} \le \alpha$. By letting $x \to x_0^-$ we get $\phi'(x_0^-) \le \alpha$. A similar argument gives $\alpha \le \phi'(x_0^+)$. The proof of the converse is left as an exercise.

Jensen's Inequality

Theorem (2)

Let $E \subset \mathbb{R}^q$ be a measurable set with $0 < m(E) < \infty$. Let $f \in \mathcal{L}(E)$ and f finite a.e. on E and let ϕ be a convex function on \mathbb{R} . Then

$$\phi\left(\frac{1}{m(E)}\int_{E}fdx\right) \leq \frac{1}{m(E)}\int_{E}(\phi\circ f)dx$$

Proof.

Since *f* is finite a.e., there exists a set $Z \subset E$ with m(Z) = 0 and a M > 0 such that $f(x) \in (-M, M)$ for every $x \in E \setminus Z$. Let $c = \frac{1}{m(E)} \int_E fdx$. Then $c \in (-M, M)$. Let $\alpha \in \mathbb{R}$ such that $\phi'(c^-) \le \alpha \le \phi'(c^+)$ so that the line with equation $y = \alpha(t - c) + \phi(c)$ is a supporting line through $(c, \phi(c))$ for the function ϕ . Hence for every $x \in E \setminus Z$ we have $\phi(f(x)) \ge \alpha (f(x) - c) + \phi(c)$.

Now integrate this inequality over E to get

$$\int_{E} \phi(f(x))dx \ge \alpha \left(\int_{E} f(x)dx - cm(E) \right) + \phi(c) m(E) = \phi(c) m(E).$$

The conclusion follows by rearranging this inequality.