Real Analysis MAA 6616
 Lecture 23
 Convex Functions

A function $\phi:(a, b) \longrightarrow \mathbb{R}$ is said to be convex in (a, b) if for every interval $\left[x_{1}, x_{2}\right] \subset(a, b)$, the graph of ϕ over $\left[x_{1}, x_{2}\right]$ lies below or on the the segment line joining the points $P_{1}=\left(x_{1}, \phi\left(x_{1}\right)\right)$ and $P_{2}=\left(x_{2}, \phi\left(x_{2}\right)\right)$.

Since the segment $P_{1} P_{2}$ can be parameterized as

$$
x=t x_{1}+(1-t) x_{2}, \quad y=t \phi\left(x_{1}\right)+(1-t) \phi\left(x_{2}\right) \text { with } 0 \leq t \leq 1,
$$

then ϕ is convex if and only if for every $a<x_{1} \leq x_{2}<b$ and for every $0 \leq t \leq 1$ we have

$$
\phi\left(t x_{1}+(1-t) x_{2}\right) \leq t \phi\left(x_{1}\right)+(1-t) \phi\left(x_{2}\right) .
$$

An equivalent formulation is the following: ϕ is convex if and only if for every $s_{1} \geq 0, s_{2} \geq 0$ such that $s_{1}+s_{2}>0$ and for every $a<x_{1} \leq x_{2}<b$ we have

$$
\phi\left(\frac{s_{1}}{s_{1}+s_{2}} x_{1}+\frac{s_{2}}{s_{1}+s_{2}} x_{2}\right) \leq \frac{s_{1} \phi\left(x_{1}\right)+s_{2} \phi\left(x_{2}\right)}{s_{1}+s_{2}}
$$

By repeated use of this characterization we get the discrete Jensen's Inequality

Proposition (1)

Let $\phi:(a, b) \longrightarrow \mathbb{R}$ be a convex function. Then for every $\left\{x_{j}\right\}_{j=1}^{N} \subset(a, b)$ and for every $\left\{s_{j}\right\}_{j=1}^{N} \subset \mathbb{R}$ with $s_{j} \geq 0$ and $\sum_{j} s_{j}>0$, we have

$$
\phi\left(\frac{\sum_{j=1}^{N} s_{j} x_{j}}{\sum_{j=1}^{N} s_{j}}\right) \leq \frac{\sum_{j=1}^{N} s_{j} \phi\left(x_{j}\right)}{\sum_{j=1}^{N} s_{j}}
$$

Lemma (1)

A function $\phi:(a, b) \longrightarrow \mathbb{R}$ is convex if and only if for every $a<x_{1}<x<x_{2}<b$, we have

$$
\frac{\phi(x)-\phi\left(x_{1}\right)}{x-x_{1}} \leq \frac{\phi(x)-\phi\left(x_{2}\right)}{x-x_{2}} \Longleftrightarrow \operatorname{Slope}\left(P P_{1}\right) \leq \operatorname{Slope}\left(P P_{2}\right)
$$

where P_{1}, P, and P_{2} are the points on the graph of ϕ corresponding to x_{1}, x, and x_{2}

Proof.

Let $a<x_{1}<x<x_{2}<b$, then $x=t x_{1}+(1-t) x_{2}$ with $t=\frac{x_{2}-x}{x_{2}-x_{1}}$ and $1-t=\frac{x-x_{1}}{x_{2}-x_{1}}$. Hence if ϕ is convex then

$$
\phi(x) \leq \frac{x_{2}-x}{x_{2}-x_{1}} \phi\left(x_{1}\right)+\frac{x-x_{1}}{x_{2}-x_{1}} \phi\left(x_{2}\right) .
$$

The Lemma follows from this inequality.

Proposition (2)

Let $\phi:(a, b) \longrightarrow \mathbb{R}$. If ϕ is differentiable and ϕ^{\prime} is increasing in (a, b), then ϕ is convex. In particular, if ϕ has a nonnegative second derivative then ϕ is convex

Proof.

We need to show that ϕ satisfies the condition in Lemma 1. Let $a<x_{1}<x<x_{2}<b$. Then from the Mean Value Theorem and ϕ^{\prime} increasing, there exists $c_{1} \in\left(x_{1}, x\right)$ and $c_{2} \in\left(x, x_{2}\right)$ such that

$$
\left[\frac{\phi(x)-\phi\left(x_{1}\right)}{x-x_{1}}=\phi^{\prime}\left(c_{1}\right)\right] \leq\left[\phi^{\prime}\left(c_{2}\right)=\frac{\phi(x)-\phi\left(x_{2}\right)}{x-x_{2}}\right]
$$

As a consequence, we have the following

- If $p \geq 1$, then x^{p} is convex on $(0, \infty)$.
- If $\lambda \in \mathbb{R}$, then $\mathrm{e}^{\lambda x}$ is convex on $(-\infty, \infty)$.
$\rightarrow \log \frac{1}{x}=-\log x$ is convex on $(0, \infty)$.

Convex functions satisfy the following properties

- If ϕ and ψ are convex on (a, b), then so is $\phi+\psi$.
- If ϕ is convex on (a, b) and $c>0$, then $c \phi$ is also convex on (a, b)
- If $\left\{\phi_{n}\right\}_{n}$ is a sequence of convex functions on (a, b) and if $\phi_{n} \longrightarrow \phi$ pointwise in (a, b), then the limit ϕ is also convex.
For a function $f:(a, b) \longrightarrow \mathbb{R}$ and $c \in(a, b)$, the right-hand derivative $f^{\prime}\left(c^{+}\right)$and left-hand derivative $f^{\prime}\left(c^{-}\right)$are:

$$
f^{\prime}\left(c^{+}\right)=\lim _{h \rightarrow 0^{+}} \frac{f(c+h)-f(c)}{h} \text { and } f^{\prime}\left(c^{-}\right)=\lim _{h \rightarrow 0^{-}} \frac{f(c+h)-f(c)}{h}
$$

(provided the limits exist and are finite).

Proposition (3)

Let $\phi:(a, b) \longrightarrow \mathbb{R}$ be convex. Then

1. $\phi^{\prime}\left(x^{ \pm}\right)$exist for all $x \in(a, b)$. Moreover if $a<x_{1}<x<x_{2}<b$, then

$$
\phi^{\prime}\left(x_{1}^{-}\right) \leq \phi^{\prime}\left(x_{1}^{+}\right) \leq \frac{\phi\left(x_{2}\right)-\phi\left(x_{1}\right)}{x_{2}-x_{1}} \leq \phi^{\prime}\left(x_{2}^{-}\right) \leq \phi^{\prime}\left(x_{2}^{+}\right)
$$

2. For every closed interval $[c, d] \subset(a, b), \phi$ is Lipschitz on $[c, d]$ and consequently $\phi \in \mathrm{AC}[c, d]$.

Proof.

Part 1 is a direct consequence of Lemmal.
To verify part 2 , let $[c, d] \subset(a, b)$ and let $M=\max \left\{\left|\phi^{\prime}\left(c^{+}\right)\right|,\left|\phi^{\prime}\left(d^{-}\right)\right|\right\}$. It follows from part 1 that for every $x, y \in[c, d]$ we have $|\phi(y)-\phi(x)| \leq M|y-x|$.

Theorem (1)

Let $\phi:(a, b) \longrightarrow \mathbb{R}$ be convex. Then $\phi^{\prime}(x)$ exists except at most on a countable set. Furthermore ϕ^{\prime} is increasing.

Proof.

Consider the functions ϕ_{+}^{\prime} and ϕ_{-}^{\prime} defined on (a, b) by $\phi_{ \pm}^{\prime}(x)=\phi^{\prime}\left(x^{ \pm}\right)$. It follows from Proposition 3 that $\phi_{ \pm}^{\prime}$ are increasing functions and $\phi_{-}^{\prime} \leq \phi_{+}^{\prime}$. Since an increasing function is continuous except possible at a countable set, then there exists a countable set $C \subset(a, b)$ such that $\phi_{ \pm}^{\prime}$ are continuous on $E=(a, b) \backslash C$. Let $x_{0} \in E$ and let $\left\{x_{n}\right\}_{n}$ be a decreasing sequence that converges to x_{0}. It follows from

$$
\phi_{-}^{\prime}\left(x_{0}\right) \leq \phi_{+}^{\prime}\left(x_{0}\right) \leq \frac{\phi\left(x_{n}\right)-\phi\left(x_{0}\right)}{x_{n}-x_{0}} \leq \phi_{-}^{\prime}\left(x_{n}\right) \leq \phi_{+}^{\prime}\left(x_{n}\right)
$$

that by letting $n \rightarrow \infty$, that we have $\phi_{-}^{\prime}\left(x_{0}\right) \leq \phi_{+}^{\prime}\left(x_{0}\right) \leq \phi_{-}^{\prime}\left(x_{0}\right)$. Hence $\phi_{-}^{\prime}\left(x_{0}\right)=\phi_{+}^{\prime}\left(x_{0}\right)$ and so ϕ is differentiable at x_{0}.
A line L through a point $P=\left(x_{0}, \phi\left(x_{0}\right)\right)$ on the graph of a convex function ϕ is said to be a supporting line for ϕ if L lies below the graph of ϕ.

Lemma (2)

Let L be a line with equation $y=\alpha\left(x-x_{0}\right)+\phi\left(x_{0}\right)$. Then L is a supporting line for the convex function ϕ if and only if $\phi^{\prime}\left(x_{0}^{-}\right) \leq \alpha \leq \phi^{\prime}\left(x_{0}^{+}\right)$

Proof.

Suppose that L is a supporting line for ϕ through the point $\left(x_{0}, \phi\left(x_{0}\right)\right)$. Let $x \in\left(a, x_{0}\right)$. Then
$\phi(x)-\alpha\left(x-x_{0}\right)+\phi\left(x_{0}\right) \geq 0$ it follows that $\frac{\phi(x)-\phi\left(x_{0}\right)}{x-x_{0}} \leq \alpha$. By letting $x \rightarrow x_{0}^{-}$we get $\phi^{\prime}\left(x_{0}^{-}\right) \leq \alpha$. A similar argument gives $\alpha \leq \phi^{\prime}\left(x_{0}^{+}\right)$. The proof of the converse is left as an exercise.

Theorem (2)

Let $E \subset \mathbb{R}^{q}$ be a measurable set with $0<m(E)<\infty$. Let $f \in \mathcal{L}(E)$ and f finite a.e. on E and let ϕ be a convex function on \mathbb{R}. Then

$$
\phi\left(\frac{1}{m(E)} \int_{E} f d x\right) \leq \frac{1}{m(E)} \int_{E}(\phi \circ f) d x
$$

Proof.

Since f is finite a.e., there exists a set $Z \subset E$ with $m(Z)=0$ and a $M>0$ such that $f(x) \in(-M, M)$ for every $x \in E \backslash Z$. Let $c=\frac{1}{m(E)} \int_{E} f d x$. Then $c \in(-M, M)$. Let $\alpha \in \mathbb{R}$ such that $\phi^{\prime}\left(c^{-}\right) \leq \alpha \leq \phi^{\prime}\left(c^{+}\right)$so that the line with equation $y=\alpha(t-c)+\phi(c)$ is a supporting line through $(c, \phi(c))$ for the function ϕ. Hence for every $x \in E \backslash Z$ we have

$$
\phi(f(x)) \geq \alpha(f(x)-c)+\phi(c)
$$

Now integrate this inequality over E to get

$$
\int_{E} \phi(f(x)) d x \geq \alpha\left(\int_{E} f(x) d x-c m(E)\right)+\phi(c) m(E)=\phi(c) m(E)
$$

The conclusion follows by rearranging this inequality.

