Real Analysis MAA 6616
Lecture 23
Convex Functions



A function ¢ : (a, b) —> R is said to be convex in (a, b) if for every interval
[x1, x2] C (a, b), the graph of ¢ over [x], x;] lies below or on the the segment line joining the
points P; = (xl, ¢(X1)) and Pp = (Xz, ¢(xz))

Since the segment P P, can be parameterized as
x=tx;+ (1 —0xy, y=1td(x1) + (1 —)p(xp) with 0 <r <1,

then ¢ is convex if and only if for every a < x; < x, < b and for every 0 < ¢ < 1 we have

(1 + (1 = 0)x2) < 19(x1) + (1 — 1)P(x2).
An equivalent formulation is the following: ¢ is convex if and only if for every s; > 0,5, > 0
such that s; + s, > 0 and for every a < x; < x; < b we have

S 2 < s19(x1) + 29(x2)

51+ 82 51+ 52 51+ 52
By repeated use of this characterization we get the discrete Jensen’s Inequality
Proposition (1)
Let ¢ : (a, b) — R be a convex function. Then for every {xj}}v:l C (a, b) and for every
{Sj}jl-\’:1 C Rwithsj > 0and 37 s; > 0, we have
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Lemma (1)

A function ¢ : (a, b) — R is convex if and only if for every a < x; < x < xp < b, we have
o) — dn) _ o) — ¢(x2)

X — X X — X
where Py, P, and P, are the points on the graph of ¢ corresponding to xy, x, and x

Proof.

<= Slope(PP;) < Slope(PP;)

X —Xx X—x
Leta < x; < x < xp < b,thenx = tx; 4+ (1 — t)xp withr = 2 and 1 — 1 = L Hence if ¢ is convex then
X2 — X1 X — X
X —Xx X =X
#(x) < B(x1) + #(x2) -
X — x| Xy —
The Lemma follows from this inequality. O

Proposition (2)
Let ¢ : (a, b) — R. If ¢ is differentiable and ¢’ is increasing in (a, b), then ¢ is convex. In
particular, if ¢ has a nonnegative second derivative then ¢ is convex

Proof.

We need to show that ¢ satisfies the condition in Lemma 1. Leta < x; < x < x5 < b. Then from the Mean Value Theorem
and ¢’ increasing, there exists ¢; € (xy, x) and ¢y € (x, x2) such that

o) — o) _ ¢>'<61>] < |¢'(e) =

X —x

P(x) — p(x2)

X —x

As a consequence, we have the following
» If p > 1, then x” is convex on (0, o).
> If X € R, then e is convex on (—oo, 00).

1
» log — = —logx is convex on (0, 00).
X



Convex functions satisfy the following properties
> If ¢ and v are convex on (a, b), then so is ¢ + ).
» If ¢ is convex on (a, b) and ¢ > 0, then c¢ is also convex on (a, b)

» If {¢pn }n is a sequence of convex functions on (a, b) and if ¢, — ¢ pointwise in
(a, b), then the limit ¢ is also convex.
For a function f : (a, b)) — Rand ¢ € (a, b), the right-hand derivative f’(c*) and left-hand
derivative f/(c™) are:
h) —
ety = tim LI IO g ey = tim

h—0t h h—0—

(provided the limits exist and are finite).

fle+h) —f(o)
h

Proposition (3)
Let ¢ : (a, b) — R be convex. Then
1. ¢/ (x%) exist for all x € (a, b). Moreoverifa < x| < x < xy < b, then
#0r) < f) < PRI < gy < i)

“x
2. For every closed interval [c, d] C (a, b), ¢ is Lipschitz on [c, d] and consequently
¢ € AC[c, d].

Proof.

Part 1 is a direct consequence of Lemmal.
To verify part 2, let [c, d] C (a, b) andletM = max{‘¢’(c+)’ s ¢'(d7)‘}, It follows from part 1 that for every
x,y € [e, d] wehave [¢(y) — d(x)] < M|y —x]|. d




Theorem (1)

Let ¢ : (a, b) — R be convex. Then ¢’ (x) exists except at most on a countable set.
Furthermore ¢' is increasing.

Proof.

Consider the functions qb'Jr and ¢’_ defined on (a, b) by qb/i (x) = (p/(xi ). It follows from Proposition 3 that ¢/i are
increasing functions and ¢’ < zi)g_A Since an increasing function is continuous except possible at a countable set, then there
exists a countable set C C (a, b) such that d’/i are continuous on E = (a, b)\C. Letxy € E and let {x, }, be a decreasing

sequence that converges to xg. It follows from
() — p(x0)
¢ (x0) < ¢ () € — < L (1) < ¢ ()
Xp — XQ
that by letting n — oo, that we have ¢ (xg) < qbg_ (x0) < ¢’ (x0). Hence ¢’ _(xg) = ¢f'_ (x0) and so ¢ is
differentiable at xg. O

A line L through a point P = (xq, ¢(xp)) on the graph of a convex function ¢ is said to be a
supporting line for ¢ if L lies below the graph of ¢.

Lemma (2)
Let L be a line with equationy = a(x — xo) + ¢(xo). Then L is a supporting line for the convex
function ¢ if and only if ¢'(x; ) < a < ¢/ (xaL)

Proof.

Suppose that L is a supporting line for ¢ through the point (xo, ¢(xp)). Letx € (a, xg). Then
x) — (x
¢(x) — a(x — xp) + ¢(x9) > 0it follows that M < o By letting x — x;~ we get ¢'(x(;) < a A
X —xp

similar argument gives o < ¢’ (xgr) The proof of the converse is left as an exercise. O



Jensen’s Inequality

Theorem (2)

Let E C RY be a measurable set with 0 < m(E) < oo. Letf € L(E) andf finite a.e. on E and
let ¢ be a convex function on R. Then

¢($ /Efdx) < ﬁ/b_wof)dx

Proof.
Since f is finite a.e., there exists aset Z C E withm(Z) = OandaM > O such thatf(x) € (—M, M) foreveryx € E\Z.
Letc = $ /Efdx. Thenc € (=M, M). Leta € Rsuchthat ¢’ (¢ ™) < o < ¢’ (c¢T) so that the line with equation
y = a(t — ¢) + ¢(c) is a supporting line through (¢, ¢(c)) for the function ¢. Hence for every x € E\Z we have
PU() = a(f(x) =) + ¢(c).
Now integrate this inequality over E to get
Jo0ea = o ([ 1was—ane)) + o6 m(E) = o) m(e).

The conclusion follows by rearranging this inequality. O



