Real Analysis MAA 6616
Lecture 24
L7 Spaces: Norm



LP Space

Let E C R” be a measurable set and consider the space of measurable functions on E that are
finite a.e.:

My(E) = {f : E— R : f measurable and finite a.e. on onE} .
Consider the relation 2 on M (E) given by f = g <= f = ga.e. on E. Then 2 is an
equivalence relation (exercise). Let M (E)/=~ be the quotient space. Hence M (E)/ is the set
of all equivalence classes x = [f] = {h € M(E) : f = h}. It can be verified that M (E) /= is
a vector space over R. For instance, if x = [f] andy = [g] are in My(E) /=~ and if a,b € R,
then ax + by = z = [af + bg] is well defined. Indeed, if f = f’ and g = g/, then
(af + bg) = (af' + bg’).
When there is no ambiguity, we will identify x = [f] € M(E) /= with its representative
f € My(E) or with any other i € M (E) such that 2 = f. For example if we say that
x = [f] € My(E) /= is continuous, it means that the there exists a continuous function
h: E —> Rsuch that f 2 h.

Letp € Rsuch that 1 < p < co. Note that if f 2 g, then |f|” € L(E) if and only if
|g|P € L(E). Denote by L? (E) the space of functions (more precisely the space of equivalence

classes) in M (E) /= that are p-integrable over E i.e. /[f|p dx < oo.
E

() = {[f] e MaE)e - [P as< oo} ‘

A function f € My(E) is said to be essentially bounded if there exists M > 0 such that
[f (x)] < M for almost all x € E. Again if f = g, and f is essentially bounded then so is g.
Define L°° (E) as the subspace of essentially bounded functions in M (E) /<.



Lemma (1)
Leta, b > 0and1 < p < co. Then (a + b)" §2p71(ap+b").

Proof.

The inequality is trivial if eithera = O orif p = 1. So assume thata > Oand p > 1 andlet b = ta witht > 0. The
inequality of the lemma is equivalent to (1 4 )P < 2P~ ! (1 4 ) forall 1 > 0. Consider the function
FO =271+ = ()

We have f(0) = 2°~! — 1 > 0, f(1) = 0,and f(r) — oo ast — oco. Fort > 0, we have
(1) = p(2~ 1P~ — (14 1)P~1). The equation f/ () = 0 has a unique solution at r = 1. Therefore f(1) = 0isa
global minimum of f and the lemma follows. O

This lemma implies that for 1 < p < oo, LP(E) is a linear space. For instance, for
1 < p < oo, andf, g € LP(E), then the inequality |f + g|” < 2°~!(|f|” + |g|") implies that

Jrearac<et [irace s [l i< oo,
E E E

For p = oo, there exist Zy, Z, C E with measure 0 and My, Mg > 0 such that |f| < My on E\Zf
and |g| < M, on E\Z,. Therefore |f + g| < My + M, on E\(Z; UZ;) and sof + g € L*°(E).



Normed Spaces

Let X be a vector space over R (or over C). A function [|-|| : X — [0, o0) is a norm on X if
> |laf|| = || |If|| forallf € X and o € R (or o € C)
> ||f|| =0ifand only if f =0
> I+l < 71+ llgll forall f, 6 € X.

(X, ]]-]]) is called a normed space.

Examples

1. Forf € L'(E),let ||f||, = /[f| dx. Then |[|-||; is a norm on L' (E). Indeed, if [Ifll; = 0,then |f| = Oae.onE
E

and sof = 0in L' (E) (more precisely f 2 0 and so [f] = [0]). Now we verify the triangle inequality. Let
f,8 € L' (E), then f and g are finite a.e. and so is f + g. Furthermore |f + g| < |f| + |g| a.e. We have therefore

If + ll, :/Ev+g\dx§/E<lf|+|g\)dxs/Ev|dx+/5|g|dx: WALy + lglly

Similarly, one can verify [|af ||, = || |If]l;-
2. Let B(0, R) be the closed ball with center 0 and raduis R > 0inR": B(0,R) = {x € R" : |x| < R}. Let
" (B(0, R)) be the space continuous function on B(0, R). For f € C°(B(0, R)), let Il max = m(ax ) [F(x)].
x€B(0,R

Then (CO(B(O, R)), -l ) is a normed space. The verification is left as an exercise.

max



The space L™ (E)

L®°(E) is the space of essentially bounded functions: f € L (E) (or more precisely [f] for the
equivalence relation 22) if there exists a positive constant M such that |f(x)| < M for almost all
x € E. Define ||-|| ., on L*°(E) by

flloo = inf{M : |[f| <M a.e.onE}.
Now we verify that ||-|| . is a norm.
We first prove that ||f|| ., is an essential upper bound of f, i.e. |f| < [[f||, a.e. on E. To see

1
why, letn € Nand M,, = ||f|| . + —, then M, is an upper bound of f and so there exists a set
Z, C E with m(Z,) = 0 and such that |f(x)| < M, for every x € E\Z,. Let Z = | J;2, Z,.
Then m(Z) = 0 and for every x € E\Z, we have |[f(x)| < M, for all n. Consequently
F(x) < |Ifll oo on E\Z. It follows that if ||f|| ., = 0, then f = O a.e. on E.
Let o € R*. Then
loflle =inf{M: |of] < Ma.e.} =inf {M: Ifl < — a.e}

|al

=inf{la|M : |[f| <Mae} = o] inf{M: |f| <Mae.}=|a| |fll-
If f, g € L*(E), then there exist Zs C E and Z, C E with measure 0 such that [f| < ||f]|, on
E\Zs and |g| < ||g]lo, on E\Z,. Then for x € E\(Z; U Z;) we have

() +g()| < )]+ 18] < [l + llglloo
This means [If + glloo < [Iflloe + ll8lloo



Let E C R" be measurable. For | < p < oo andf € LP(E) defines ||f||, by

i, = ([ lfl”dX)'% .

We will show that ||-||  is norm on L (E). The first two conditions for a norm as easy to verify:
If oo € R, then [|af ||, = || [|f]], follows from the linearity of the integral; and if [|f]|, = 0,

then / [f|P dx = 0 and so f = 0 a.e. on E. To verify the triangle inequality, we need to use

Young’s and Holder inequalities.

Define the conjugate of a number 1 < p < oo as the number g =

P 1 sothat 1 < g < oo
and
+-=1
. . P9
The conjugate of 1 is co and the conjugate of oo is 1

Proposition (1. Young’s Inequality)
Leta,b > 0and let p,q > 1 be a conjugate pair. Then
P pa
ab< %+
p

q



Proof.

First note that the inequality is trivial if a = 0 or b = 0. We assume ab > 0. We give two simple proofs:
1. The function e’ is convex on R: Thus for ever A € [0, 1] and for every f, s € R, we have
e>\1+(l—>\): < A 4+ (1— )\)es.
1
Young’s inequality follows by taking A = — sothat] — A = % and letr = log(a”), s = log(b?).
P

2. Young’s inequality is equivalent to
a < 1 d 1

=1 = p g

a
Since ¢ = Ll = p(q — 1), then this inequality is equivalent to x < — x” 4 —~ where x = = Consider
- P q -
the function ~y defined for x > 0 by
1 1
Y@ = -+ - —x
p q

1
We have v(0) = -, lim ~(x) = co(p > D)and~'(x) = 71— 1 vanishes only at x = 1 where
P X—» 00

1
(1) = - + = — 1 = 0. Therefore (x) > 0forallx > 0.
P g



Theorem (1. Holder’s Inequality )

Let E C R" be measurable, 1 < p < oo and let q be the conjugate of p. If f € LP(E) and
g € LY(E), then

/E ielax < 1171, lgll,
Proof.

If p = land ¢ = oo, we have |g| < [|g]| o, a.e. on E and lherefore/[fg\ dx < If1ly gl oo
Suppose p > 1. If |[pr = Oorif ||g\|q = 0, then [fg| = 0 a.e. on E and Holder’s inequality follows.

Now assume Hf|| > 0and ||g\| > 0.Let F(x) = S ) and G(x) = & . Hence F € P (E) with HFH = land
71, llell,
G € LI(E) with HGH = 1. To prove Holders inequality, it is enough to verify thal/ |FG|dx < 1.

LetZ={x € E: |F(x)| = ococor |G(x)| = co}. Thenm(Z) = 0. Forx € E\Z, we can apply Young’s inequality to get
1 1
[F(x)GH)| < ;lF(-’f)lp p G

1 1
/\chx <! /|F\de+ ! /|c|qu
E pJE qJE

1 N 1 q 1 1
< - IFIL+ = IGlE = = + - =1
P q 14 q

Therefore

O
A special case of Holder’s inequality is the Cauchy-Schwarz inequality: If f, g € L>(E), then

_ 2 2
/Elfgldx < 1Ifl, IIgHz—y//Elfl dx,//E|g| dx



Theorem (2. Minkowski’s Inequality)

Let E C R" be measurable, 1 < p < oo, andf,g € LP(E), thenf + g € I and
I+, < I, + il

Proof.

The case p = 1 and the case p = oo were considered earlier. Assume | < p < oo. We know that I” (E) is a vector space,
hence f + ¢ € LP(E) iff, g € LV (E). If |If + gl|, = O Minkowski is trivial. Assume ||f + gl|,, > 0. We can write
—1 —1 —1
F+sel” =1 +gl lr+el’™ < UL IF+el" + gl If +2I
Now we apply Holder’s inequality to |f| |f + g|p71 andto |g| |f + gl”71 to obtain

1 1
/Fm I+ el” " ax < 71, (/Fv+g|q<”“)dx) ? and /F\gl I+ gl dx < Jlgll, (/Fv+g\q("“>dx) a

1 1
where g is the conjugate of p. Since (p — 1)g = pand - = L4 , it follows that
q P

—1

Jir+ e as < [ust, + el (/Ev+g\”dx)P”

Minkowski’s inequality follows by rearranging this inequality. O

Corollary (1)

Let E C R" be measurable, 1 < p < oo, and let F C LP(E). If the family F is bounded, then
it is uniformly integrable over E ( F bounded in LP (E) means that there exists M > 0, such that
Ifll, < M forallf € F).



Proof.

We need to prove that for any given € > 0, there exists § > 0 such that for any measurable set A C E, with m(A) < &, we
have/[/ldx < eforallf € F.LetM > Osuchthat ||f||, < Mforallf € F.Foragivene > 0,let§ = (i)q
where g is the conjugate of p. Let A C E, withm(A) < 8. Since A has finite measure, then Xy isin L7(A) and the restriction
to A of any element in L” (E) is in L (A). We apply Holder inequality in the set A to f € L”(E) and x, to get

Jirtas= [irix,a < Wy |,

where ||-]| 4 , denotes lhe norm in L (A) to distinguish it from the norm || - l, =1 ”E in I” (E). We have

il = (m(4)) 7. Now forany € F we have ] o < 71l < M. Tt follows that
24 D

1 1
Aw dx < flly, (m(A)7 < M(m(a)9 < e

Corollary (2)

Let E C R" be measurable with finite measure and let 1 < p; < pa < oo. Then
LP2(E) C LPV(E). Furthermore, for every f € LP2(E) we have
P =p

m(E) »72 ifpy < 00

Ifll,, < CIIFl,,, with €= |
m(E) P if p = 0o



Proof.

First, consider the case py = oo. Letf € L (E). Then there exists a set Z C E with m(Z) = 0 such that |[f] < [|f]| oo on
E\Z. Since m(E) < oo, then /Ewpl dz < ||If||7L, m(E) and so H/le < Cfll oo
Nextif py < oo,letp = P > 1 and let g be the p-conjugate. If f € L2 (E), then |f|P1 € L7 (E). The function X, is in

p1
L7(E) (since E has finite measure). We can therefore apply Holder inequality to the pair [f|P1 and x, to get
1 P=p1
/1”1’1 Xpdx < H |f1P1 ||p HXE Hq By using HXEHq =m(E)4 = m(E) P2 , we getfrom the above inequality
E

P2—r| 1 P2—r|
» B B
Wi < el e 2 = (fure)? e e
AN P2—r1
< (fyr)" w7
E
The estimate of the lemma follows by taking the p;-root. O

Remark (1)

In general, when m(E) = oo there is no inclusion between the different L7 (E) spaces (see
exercises)



