Real Analysis MAA 6616 Lecture 24 L^p Spaces: Norm

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

L^p Space

Let $E \subset \mathbb{R}^n$ be a measurable set and consider the space of measurable functions on *E* that are finite a.e.:

 $\mathcal{M}_0(E) = \left\{ f: E \longrightarrow \overline{\mathbb{R}} : f \text{ measurable and finite a.e. on } onE \right\}.$ Consider the relation \cong on $\mathcal{M}_0(E)$ given by $f \cong g \iff f = g$ a.e. on E. Then \cong is an equivalence relation (exercise). Let $\mathcal{M}_0(E)/\cong$ be the quotient space. Hence $\mathcal{M}_0(E)/\cong$ is the set of all equivalence classes $\mathbf{x} = [f] = \{h \in \mathcal{M}_0(E) : f \cong h\}$. It can be verified that $\mathcal{M}_0(E)/\cong$ is a vector space over \mathbb{R} . For instance, if $\mathbf{x} = [f]$ and $\mathbf{y} = [g]$ are in $\mathcal{M}_0(E)/\cong$ and if $a, b \in \mathbb{R}$, then $a\mathbf{x} + b\mathbf{y} = \mathbf{z} = [af + bg]$ is well defined. Indeed, if $f \cong f'$ and $g \cong g'$, then $(af + bg) \cong (af' + bg')$.

When there is no ambiguity, we will identify $\mathbf{x} = [f] \in \mathcal{M}_0(E)/\cong$ with its representative $f \in \mathcal{M}_0(E)$ or with any other $h \in \mathcal{M}_0(E)$ such that $h \cong f$. For example if we say that $\mathbf{x} = [f] \in \mathcal{M}_0(E)/\cong$ is continuous, it means that the there exists a continuous function $h : E \longrightarrow \mathbb{R}$ such that $f \cong h$.

Let $p \in \mathbb{R}$ such that $1 \le p < \infty$. Note that if $f \cong g$, then $|f|^p \in \mathcal{L}(E)$ if and only if $|g|^p \in \mathcal{L}(E)$. Denote by $L^p(E)$ the space of functions (more precisely the space of equivalence classes) in $\mathcal{M}_0(E)/\cong$ that are *p*-integrable over *E* i.e. $\int_{E_1}^{|f|^p} dx < \infty$.

$$L^{p}(E) = \left\{ [f] \in \mathcal{M}_{0}(E) / \cong : \int_{E} |f|^{p} dx < \infty \right\}.$$

A function $f \in \mathcal{M}_0(E)$ is said to be essentially bounded if there exists M > 0 such that $|f(x)| \leq M$ for almost all $x \in E$. Again if $f \cong g$, and f is essentially bounded then so is g. Define $L^{\infty}(E)$ as the subspace of essentially bounded functions in $\mathcal{M}_0(E)/\cong$.

Lemma (1) Let $a, b \ge 0$ and $1 \le p < \infty$. Then $(a + b)^p \le 2^{p-1}(a^p + b^p)$.

Proof.

The inequality is trivial if either a = 0 or if p = 1. So assume that a > 0 and p > 1 and let b = ta with $t \ge 0$. The inequality of the lemma is equivalent to $(1 + t)^p \le 2^{p-1}(1 + t^p)$ for all $t \ge 0$. Consider the function $f(t) = 2^{p-1}(1 + t^p) - (1 + t)^p$.

We have $f(0) = 2^{p-1} - 1 > 0$, f(1) = 0, and $f(t) \to \infty$ as $t \to \infty$. For t > 0, we have $f'(t) = p(2^{p-1}t^{p-1} - (1+t)^{p-1})$. The equation f'(t) = 0 has a unique solution at t = 1. Therefore f(1) = 0 is a global minimum of f and the lemma follows.

This lemma implies that for $1 \le p \le \infty$, $L^p(E)$ is a linear space. For instance, for $1 \le p < \infty$, and $f, g \in L^p(E)$, then the inequality $|f + g|^p \le 2^{p-1}(|f|^p + |g|^p)$ implies that $\int_E |f + g|^p dx \le 2^{p-1} \int_E |f|^p dx + 2^{p-1} \int_E |g|^p dx < \infty$. For $p = \infty$, there exist $Z_f, Z_g \subset E$ with measure 0 and $M_f, M_g > 0$ such that $|f| < M_f$ on $E \setminus Z_f$ and $|g| < M_g$ on $E \setminus Z_g$. Therefore $|f + g| < M_f + M_g$ on $E \setminus (Z_f \cup Z_g)$ and so $f + g \in L^\infty(E)$.

Normed Spaces

Let X be a vector space over \mathbb{R} (or over \mathbb{C}). A function $\|\cdot\| : X \longrightarrow [0, \infty)$ is a norm on X if

- $||\alpha f|| = |\alpha| ||f|| \text{ for all } f \in X \text{ and } \alpha \in \mathbb{R} \text{ (or } \alpha \in \mathbb{C})$
- ||f|| = 0 if and only if f = 0
- ▶ $||f + g|| \le ||f|| + ||g||$ for all $f, g \in X$.

 $(X, \|\cdot\|)$ is called a normed space.

Examples

- 1. For $f \in L^1(E)$, let $||f||_1 = \int_E |f| dx$. Then $||\cdot||_1$ is a norm on $L^1(E)$. Indeed, if $||f||_1 = 0$, then |f| = 0 a.e. on E and so f = 0 in $L^1(E)$ (more precisely $f \cong 0$ and so [f] = [0]). Now we verify the triangle inequality. Let $f, g \in L^1(E)$, then f and g are finite a.e. and so is f + g. Furthermore $|f + g| \le |f| + |g|$ a.e. We have therefore $||f + g||_1 = \int_E |f + g| dx \le \int_E (|f| + |g|) dx \le \int_E |f| dx + \int_E |g| dx = ||f||_1 + ||g||_1$ Similarly, one can verify $||\alpha f||_1 = |\alpha| ||f||_1$.
- 2. Let B(0, R) be the closed ball with center 0 and raduis R > 0 in \mathbb{R}^n : $B(0, R) = \{x \in \mathbb{R}^n : |x| \le R\}$. Let $C^0(B(0, R))$ be the space continuous function on B(0, R). For $f \in C^0(B(0, R))$, let $||f||_{\max} = \max_{x \in B(0, R)} |f(x)|$. Then $(C^0(B(0, R)), \|\cdot\|_{\max})$ is a normed space. The verification is left as an exercise.

The space $L^{\infty}(E)$

 $L^{\infty}(E)$ is the space of essentially bounded functions: $f \in L^{\infty}(E)$ (or more precisely [f] for the equivalence relation \cong) if there exists a positive constant *M* such that $|f(x)| \leq M$ for almost all $x \in E$. Define $\|\cdot\|_{\infty}$ on $L^{\infty}(E)$ by

$$||f||_{\infty} = \inf\{M : |f| \le M \text{ a.e. on } E\}.$$

Now we verify that $\|\cdot\|_{\infty}$ is a norm. We first prove that $\|f\|_{\infty}$ is an essential upper bound of f, i.e. $|f| \le \|f\|_{\infty}$ a.e. on E. To see why, let $n \in \mathbb{N}$ and $M_n = \|f\|_{\infty} + \frac{1}{n}$, then M_n is an upper bound of f and so there exists a set $Z_n \subset E$ with $m(Z_n) = 0$ and such that $|f(x)| \le M_n$ for every $x \in E \setminus Z_n$. Let $Z = \bigcup_{n=1}^{\infty} Z_n$. Then m(Z) = 0 and for every $x \in E \setminus Z$, we have $|f(x)| \le M_n$ for all n. Consequently $f(x) \le \|f\|_{\infty}$ on $E \setminus Z$. It follows that if $\|f\|_{\infty} = 0$, then f = 0 a.e. on E. Let $\alpha \in \mathbb{R}^*$. Then

$$\left\|lpha f
ight\|_{\infty} = \inf\{\hat{M}: \ |lpha f| < \hat{M} ext{ a.e.}\} = \inf\left\{\hat{M}: \ |f| < rac{\hat{M}}{|lpha|} ext{ a.e.}
ight\}$$

 $= \inf\{|\alpha|M : |f| < M \text{ a.e.}\} = |\alpha| \inf\{M : |f| < M \text{ a.e.}\} = |\alpha| \|f\|_{\infty}$ If $f, g \in L^{\infty}(E)$, then there exist $Z_f \subset E$ and $Z_g \subset E$ with measure 0 such that $|f| \le ||f||_{\infty}$ on $E \setminus Z_f$ and $|g| \le ||g||_{\infty}$ on $E \setminus Z_g$. Then for $x \in E \setminus (Z_f \cup Z_g)$ we have $|f(x) + g(x)| \le |f(x)| + |g(x)| \le ||f||_{\infty} + ||g||_{\infty}$ This means $||f + g||_{\infty} \le ||f||_{\infty} + ||g||_{\infty}$ Let $E \subset \mathbb{R}^n$ be measurable. For $1 and <math>f \in L^p(E)$ defines $||f||_p$ by

$$\left\|f\right\|_{p} = \left(\int_{E} |f|^{p} dx\right)^{\frac{1}{p}} .$$

We will show that $\|\cdot\|_p$ is norm on $L^p(E)$. The first two conditions for a norm as easy to verify: If $\alpha \in \mathbb{R}$, then $\|\alpha f\|_p = |\alpha| \|f\|_p$ follows from the linearity of the integral; and if $\|f\|_p = 0$, then $\int_E |f|^p dx = 0$ and so f = 0 a.e. on *E*. To verify the triangle inequality, we need to use Young's and Hölder inequalities.

Define the conjugate of a number $1 as the number <math>q = \frac{p}{p-1}$ so that $1 < q < \infty$ and

$$\frac{1}{p} + \frac{1}{q} = 1$$

The conjugate of 1 is ∞ and the conjugate of ∞ is 1

Proposition (1. Young's Inequality) Let $a, b \ge 0$ and let p, q > 1 be a conjugate pair. Then $ab \le \frac{a^p}{p} + \frac{b^q}{a}$

Proof.

First note that the inequality is trivial if a = 0 or b = 0. We assume ab > 0. We give two simple proofs:

- 1. The function e^t is convex on \mathbb{R} : Thus for ever $\lambda \in [0, 1]$ and for every $t, s \in \mathbb{R}$, we have $e^{\lambda t + (1-\lambda)s} \leq \lambda e^t + (1-\lambda)e^s$. Young's inequality follows by taking $\lambda = \frac{1}{s}$ so that $1 - \lambda = \frac{1}{p}$ and let $t = \log(a^p)$, $s = \log(b^q)$.
- 2. Young's inequality is equivalent to

$$\frac{a}{b^{q-1}} \le \frac{1}{p} \frac{a^p}{b^q} + \frac{1}{q}.$$

Since $q = \frac{p}{p-1} = p(q-1)$, then this inequality is equivalent to $x \le \frac{1}{p} x^p + \frac{1}{q}$ where $x = \frac{a}{b^{q-1}}$. Consider the function γ defined for $x \ge 0$ by

$$\gamma(x) = \frac{1}{p}x^p + \frac{1}{q} - x$$

We have $\gamma(0) = \frac{1}{p}$, $\lim_{x \to \infty} \gamma(x) = \infty$ (p > 1) and $\gamma'(x) = x^{p-1} - 1$ vanishes only at x = 1 where $\gamma(1) = \frac{1}{p} + \frac{1}{q} - 1 = 0$. Therefore $\gamma(x) \ge 0$ for all $x \ge 0$.

Theorem (1. Hölder's Inequality)

Let $E \subset \mathbb{R}^n$ be measurable, $1 \leq p < \infty$ and let q be the conjugate of p. If $f \in L^p(E)$ and $g \in L^q(E)$, then

$$\int_{E} |fg| \, dx \leq \left\| f \right\|_{p} \left\| g \right\|_{q}$$

Proof.

If p = 1 and $q = \infty$, we have $|g| \le ||g||_{\infty}$ a.e. on E and therefore $\int_{E} |fg| \, dx \le ||f||_1 \, ||g||_{\infty}$. Suppose p > 1. If $||f||_p = 0$ or if $||g||_q = 0$, then |fg| = 0 a.e. on E and Hölder's inequality follows.

Now assume $\|f\|_p > 0$ and $\|g\|_q > 0$. Let $F(x) = \frac{f(x)}{\|f\|_p}$ and $G(x) = \frac{g(x)}{\|g\|_q}$. Hence $F \in L^p(E)$ with $\|F\|_p = 1$ and

 $G \in L^{q}(E)$ with $||G||_{q} = 1$. To prove Hölders inequality, it is enough to verify that $\int_{E} |FG| dx \le 1$. Let $Z = \{x \in E : |F(x)| = \infty$ or $|G(x)| = \infty\}$. Then m(Z) = 0. For $x \in E \setminus Z$, we can apply Young's inequality to get

$$|F(x)G(x)| \leq \frac{1}{p} |F(x)|^p + \frac{1}{q} |G(x)|^q$$

Therefore

$$\begin{aligned} \int_{E} |FG| \, dx &\leq \frac{1}{p} \int_{E} |F|^{p} \, dx + \frac{1}{q} \int_{E} |G|^{q} \, dx \\ &\leq \frac{1}{p} \, \|F\|_{p}^{p} + \frac{1}{q} \, \|G\|_{q}^{q} = \frac{1}{p} + \frac{1}{q} = 1 \end{aligned}$$

A special case of Hölder's inequality is the Cauchy-Schwarz inequality: If $f, g \in L^2(E)$, then

$$\int_{E} |fg| \, dx \, \leq \, \|f\|_2 \, \|g\|_2 = \sqrt{\int_{E} |f|^2 \, dx} \, \sqrt{\int_{E} |g|^2 \, dx}$$

Theorem (2. Minkowski's Inequality)

Let
$$E \subset \mathbb{R}^n$$
 be measurable, $1 \le p \le \infty$, and $f, g \in L^p(E)$, then $f + g \in L^p$ and $\|f + g\|_p \le \|f\|_p + \|g\|_p$

Proof.

The case p = 1 and the case $p = \infty$ were considered earlier. Assume $1 . We know that <math>L^p(E)$ is a vector space, hence $f + g \in L^p(E)$ if $f, g \in L^p(E)$. If $||f + g||_p = 0$ Minkowski is trivial. Assume $||f + g||_p > 0$. We can write $||f + g|^p = |f + g| ||f + g|^{p-1} \le |f| ||f + g|^{p-1} + ||g| ||f + g|^{p-1}$

Now we apply Hölder's inequality to $|f| |f + g|^{p-1}$ and to $|g| |f + g|^{p-1}$ to obtain

$$\int_{E} |f| |f+g|^{p-1} dx \le \||f\|_{p} \left(\int_{E} |f+g|^{q(p-1)} dx \right)^{\frac{1}{q}} and \int_{E} |g| |f+g|^{p-1} dx \le \|g\|_{p} \left(\int_{E} |f+g|^{q(p-1)} dx \right)^{\frac{1}{q}}$$

where q is the conjugate of p. Since (p-1)q = p and $\frac{1}{q} = \frac{p-1}{p}$, it follows that

$$\int_{E} |f + g|^{p} dx \leq \left[||f||_{p} + ||g||_{p} \right] \left(\int_{E} |f + g|^{p} dx \right)^{\frac{p-1}{p}}$$

Minkowski's inequality follows by rearranging this inequality.

Corollary (1)

Let $E \subset \mathbb{R}^n$ be measurable, $1 , and let <math>\mathcal{F} \subset L^p(E)$. If the family \mathcal{F} is bounded, then it is uniformly integrable over E (\mathcal{F} bounded in $L^p(E)$ means that there exists M > 0, such that $||f||_p \leq M$ for all $f \in \mathcal{F}$).

Proof.

We need to prove that for any given $\epsilon > 0$, there exists $\delta > 0$ such that for any measurable set $A \subset E$, with $m(A) < \delta$, we have $\int_A |f| \, dx < \epsilon$ for all $f \in \mathcal{F}$. Let M > 0 such that $||f||_p \le M$ for all $f \in \mathcal{F}$. For a given $\epsilon > 0$, let $\delta = \left(\frac{\epsilon}{M}\right)^q$ where q is the conjugate of p. Let $A \subset E$, with $m(A) < \delta$. Since A has finite measure, then χ_A is in $L^q(A)$ and the restriction to A of any element in $L^p(E)$ is in $L^p(A)$. We apply Hölder inequality in the set A to $f \in L^p(E)$ and χ_A to get

$$\int_{A} |f| \, dx = \int_{A} |f| \, \chi_A \, dx \leq \|f\|_{A,p} \, \left\|\chi_A\right\|_{A,q}$$

where $\|\cdot\|_{A,p}$ denotes the norm in $L^p(A)$ to distinguish it from the norm $\|\cdot\|_p = \|\cdot\|_{E,p}$ in $L^p(E)$. We have $\|\chi_A\|_{A,q} = (m(A))^{\frac{1}{q}}$. Now for any $f \in \mathcal{F}$ we have $\|f\|_{A,p} \le \|f\|_p \le M$. It follows that $\int_A |f| \, dx \le \|f\|_{A,p} (m(A))^{\frac{1}{q}} \le M(m(A))^{\frac{1}{q}} < \epsilon$

Corollary (2)

Let $E \subset \mathbb{R}^n$ be measurable with finite measure and let $1 \leq p_1 < p_2 \leq \infty$. Then $L^{p_2}(E) \subset L^{p_1}(E)$. Furthermore, for every $f \in L^{p_2}(E)$ we have

$$\|f\|_{p_1} \le C \|f\|_{p_2}, \text{ with } C = \begin{cases} m(E)^{\frac{p_2 - p_1}{p_1 p_2}} & \text{if } p_2 < \infty \\ m(E)^{\frac{1}{p_1}} & \text{if } p_2 = \infty \end{cases}$$

Proof.

First, consider the case $p_2 = \infty$. Let $f \in L^{\infty}(E)$. Then there exists a set $Z \subset E$ with m(Z) = 0 such that $|f| \le ||f||_{\infty}$ on $E \setminus Z$. Since $m(E) < \infty$, then $\int_E ||f||^{p_1} dz \le ||f||_{\infty}^{p_1} m(E)$ and so $||f||_{p_1} \le C ||f||_{\infty}$. Next if $p_2 < \infty$, let $p = \frac{p_2}{p_1} > 1$ and let q be the p-conjugate. If $f \in L^{p_2}(E)$, then $|f|^{p_1} \in L^p(E)$. The function χ_E is in $L^q(E)$ (since E has finite measure). We can therefore apply Hölder inequality to the pair $|f|^{p_1}$ and χ_E to get $\int_E ||f||_{p_1}^p |\chi_E dx \le ||f||_{p_1}^p ||\chi_E ||_q$. By using $||\chi_E ||_q = m(E)^{\frac{1}{q}} = m(E)^{\frac{p_2 - p_1}{p_2}}$, we get from the above inequality $||f||_{p_1}^{p_1} \le ||f||_{p_1}^p ||m(E)^{\frac{p_2 - p_1}{p_2}} = \left(\int_E |f|^{p_1}p\right)^{\frac{1}{p}} m(E)^{\frac{p_2 - p_1}{p_2}}$.

The estimate of the lemma follows by taking the p1-root.

Remark (1)

In general, when $m(E) = \infty$ there is no inclusion between the different $L^{p}(E)$ spaces (see exercises)