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Lp Spaces: Norm



Lp Space

Let E ⊂ Rn be a measurable set and consider the space of measurable functions on E that are
finite a.e.:

M0(E) =
{

f : E −→ R : f measurable and finite a.e. on onE
}
.

Consider the relation ∼= onM0(E) given by f ∼= g ⇐⇒ f = g a.e. on E. Then ∼= is an
equivalence relation (exercise). LetM0(E)/∼= be the quotient space. HenceM0(E)/∼= is the set
of all equivalence classes x = [f ] = {h ∈M0(E) : f ∼= h}. It can be verified thatM0(E)/∼= is
a vector space over R. For instance, if x = [f ] and y = [g] are inM0(E)/∼= and if a, b ∈ R,
then ax + by = z = [af + bg] is well defined. Indeed, if f ∼= f ′ and g ∼= g′, then
(af + bg) ∼= (af ′ + bg′).
When there is no ambiguity, we will identify x = [f ] ∈M0(E)/∼= with its representative
f ∈M0(E) or with any other h ∈M0(E) such that h ∼= f . For example if we say that
x = [f ] ∈M0(E)/∼= is continuous, it means that the there exists a continuous function
h : E −→ R such that f ∼= h.

Let p ∈ R such that 1 ≤ p <∞. Note that if f ∼= g, then |f |p ∈ L(E) if and only if
|g|p ∈ L(E). Denote by Lp(E) the space of functions (more precisely the space of equivalence

classes) inM0(E)/∼= that are p-integrable over E i.e.
∫

E
|f |p dx <∞.

Lp(E) =
{
[f ] ∈M0(E)/∼= :

∫
E
|f |p dx <∞

}
.

A function f ∈M0(E) is said to be essentially bounded if there exists M > 0 such that
|f (x)| ≤ M for almost all x ∈ E. Again if f ∼= g, and f is essentially bounded then so is g.
Define L∞(E) as the subspace of essentially bounded functions inM0(E)/∼=.



Lemma (1)
Let a, b ≥ 0 and 1 ≤ p <∞. Then (a + b)p ≤ 2p−1(ap + bp).

Proof.
The inequality is trivial if either a = 0 or if p = 1. So assume that a > 0 and p > 1 and let b = ta with t ≥ 0. The
inequality of the lemma is equivalent to (1 + t)p ≤ 2p−1

(1 + tp) for all t ≥ 0. Consider the function
f (t) = 2p−1

(1 + tp)− (1 + t)p .

We have f (0) = 2p−1 − 1 > 0, f (1) = 0, and f (t)→∞ as t →∞. For t > 0, we have

f ′(t) = p(2p−1tp−1 − (1 + t)p−1). The equation f ′(t) = 0 has a unique solution at t = 1. Therefore f (1) = 0 is a

global minimum of f and the lemma follows.

This lemma implies that for 1 ≤ p ≤ ∞, Lp(E) is a linear space. For instance, for
1 ≤ p <∞, and f , g ∈ Lp(E), then the inequality |f + g|p ≤ 2p−1(|f |p + |g|p) implies that∫

E
|f + g|p dx ≤ 2p−1

∫
E
|f |p dx + 2p−1

∫
E
|g|p dx <∞.

For p =∞, there exist Zf , Zg ⊂ E with measure 0 and Mf ,Mg > 0 such that |f | < Mf on E\Zf
and |g| < Mg on E\Zg. Therefore |f + g| < Mf + Mg on E\(Zf ∪ Zg) and so f + g ∈ L∞(E).



Normed Spaces

Let X be a vector space over R (or over C). A function ‖·‖ : X −→ [0, ∞) is a norm on X if
I ‖αf‖ = |α| ‖f‖ for all f ∈ X and α ∈ R (or α ∈ C)
I ‖f‖ = 0 if and only if f = 0
I ‖f + g‖ ≤ ‖f‖+ ‖g‖ for all f , g ∈ X.

(X, ‖·‖) is called a normed space.

Examples
1. For f ∈ L1(E), let ‖f‖1 =

∫
E
|f | dx. Then ‖·‖1 is a norm on L1(E). Indeed, if ‖f‖1 = 0, then |f | = 0 a.e. on E

and so f = 0 in L1(E) (more precisely f ∼= 0 and so [f ] = [0]). Now we verify the triangle inequality. Let
f , g ∈ L1(E), then f and g are finite a.e. and so is f + g. Furthermore |f + g| ≤ |f | + |g| a.e. We have therefore

‖f + g‖1 =

∫
E
|f + g| dx ≤

∫
E
(|f | + |g|) dx ≤

∫
E
|f | dx +

∫
E
|g| dx = ‖f‖1 + ‖g‖1

Similarly, one can verify ‖αf‖1 = |α| ‖f‖1 .

2. Let B(0, R) be the closed ball with center 0 and raduis R > 0 in Rn: B(0, R) = {x ∈ Rn
: |x| ≤ R}. Let

C0(B(0, R)) be the space continuous function on B(0, R). For f ∈ C0(B(0, R)), let ‖f‖max = max
x∈B(0,R)

|f (x)|.

Then
(

C0
(B(0, R)), ‖·‖max

)
is a normed space. The verification is left as an exercise.



The space L∞(E)

L∞(E) is the space of essentially bounded functions: f ∈ L∞(E) (or more precisely [f ] for the
equivalence relation ∼=) if there exists a positive constant M such that |f (x)| ≤ M for almost all
x ∈ E. Define ‖·‖∞ on L∞(E) by

‖f‖∞ = inf{M : |f | ≤ M a.e. on E}.
Now we verify that ‖·‖∞ is a norm.
We first prove that ‖f‖∞ is an essential upper bound of f , i.e. |f | ≤ ‖f‖∞ a.e. on E. To see

why, let n ∈ N and Mn = ‖f‖∞ +
1
n

, then Mn is an upper bound of f and so there exists a set

Zn ⊂ E with m(Zn) = 0 and such that |f (x)| ≤ Mn for every x ∈ E\Zn. Let Z =
⋃∞

n=1 Zn.
Then m(Z) = 0 and for every x ∈ E\Z, we have |f (x)| ≤ Mn for all n. Consequently
f (x) ≤ ‖f‖∞ on E\Z. It follows that if ‖f‖∞ = 0, then f = 0 a.e. on E.
Let α ∈ R∗. Then

‖αf‖∞ = inf{M̂ : |αf | < M̂ a.e.} = inf

{
M̂ : |f | <

M̂
|α|

a.e.

}

= inf{|α|M : |f | < M a.e.} = |α| inf{M : |f | < M a.e.} = |α| ‖f‖∞
If f , g ∈ L∞(E), then there exist Zf ⊂ E and Zg ⊂ E with measure 0 such that |f | ≤ ‖f‖∞ on
E\Zf and |g| ≤ ‖g‖∞ on E\Zg. Then for x ∈ E\(Zf ∪ Zg) we have

|f (x) + g(x)| ≤ |f (x)|+ |g(x)| ≤ ‖f‖∞ + ‖g‖∞
This means ‖f + g‖∞ ≤ ‖f‖∞ + ‖g‖∞



Let E ⊂ Rn be measurable. For 1 < p <∞ and f ∈ Lp(E) defines ‖f‖p by

‖f‖p =

(∫
E
|f |p dx

) 1
p
.

We will show that ‖·‖p is norm on Lp(E). The first two conditions for a norm as easy to verify:
If α ∈ R, then ‖αf‖p = |α| ‖f‖p follows from the linearity of the integral; and if ‖f‖p = 0,

then
∫

E
|f |p dx = 0 and so f = 0 a.e. on E. To verify the triangle inequality, we need to use

Young’s and Hölder inequalities.

Define the conjugate of a number 1 < p <∞ as the number q =
p

p− 1
so that 1 < q <∞

and
1
p
+

1
q
= 1

The conjugate of 1 is∞ and the conjugate of∞ is 1

Proposition (1. Young’s Inequality)
Let a, b ≥ 0 and let p, q > 1 be a conjugate pair. Then

ab ≤
ap

p
+

bq

q



Proof.
First note that the inequality is trivial if a = 0 or b = 0. We assume ab > 0. We give two simple proofs:

1. The function et is convex on R: Thus for ever λ ∈ [0, 1] and for every t, s ∈ R, we have

eλt+(1−λ)s ≤ λet
+ (1− λ)es

.

Young’s inequality follows by taking λ =
1

p
so that 1− λ = 1

p and let t = log(ap), s = log(bq).

2. Young’s inequality is equivalent to
a

bq−1
≤

1

p

ap

bq
+

1

q
.

Since q =
p

p− 1
= p(q− 1), then this inequality is equivalent to x ≤

1

p
xp

+
1

q
where x =

a

bq−1
. Consider

the function γ defined for x ≥ 0 by

γ(x) =
1

p
xp

+
1

q
− x

We have γ(0) =
1

p
, lim

x→∞
γ(x) =∞ (p > 1) and γ′(x) = xp−1 − 1 vanishes only at x = 1 where

γ(1) =
1

p
+

1

q
− 1 = 0. Therefore γ(x) ≥ 0 for all x ≥ 0.



Theorem (1. Hölder’s Inequality )
Let E ⊂ Rn be measurable, 1 ≤ p <∞ and let q be the conjugate of p. If f ∈ Lp(E) and
g ∈ Lq(E), then ∫

E
|fg| dx ≤ ‖f‖p ‖g‖q

Proof.
If p = 1 and q =∞, we have |g| ≤ ‖g‖∞ a.e. on E and therefore

∫
E
|fg| dx ≤ ‖f‖1 ‖g‖∞ .

Suppose p > 1. If ‖f‖p = 0 or if ‖g‖q = 0, then |fg| = 0 a.e. on E and Hölder’s inequality follows.

Now assume ‖f‖p > 0 and ‖g‖q > 0. Let F(x) =
f (x)

‖f‖p
and G(x) =

g(x)

‖g‖q
. Hence F ∈ Lp(E) with ‖F‖p = 1 and

G ∈ Lq(E) with ‖G‖q = 1. To prove Hölders inequality, it is enough to verify that
∫

E
|FG| dx ≤ 1.

Let Z = {x ∈ E : |F(x)| =∞ or |G(x)| =∞}. Then m(Z) = 0. For x ∈ E\Z, we can apply Young’s inequality to get

|F(x)G(x)| ≤
1

p
|F(x)|p +

1

q
|G(x)|q .

Therefore ∫
E
|FG| dx ≤

1

p

∫
E
|F|p dx +

1

q

∫
E
|G|q dx

≤
1

p
‖F‖p

p +
1

q
‖G‖q

q =
1

p
+

1

q
= 1

A special case of Hölder’s inequality is the Cauchy-Schwarz inequality: If f , g ∈ L2(E), then∫
E
|fg| dx ≤ ‖f‖2 ‖g‖2 =

√∫
E
|f |2 dx

√∫
E
|g|2 dx



Theorem (2. Minkowski’s Inequality)
Let E ⊂ Rn be measurable, 1 ≤ p ≤ ∞, and f , g ∈ Lp(E), then f + g ∈ Lp and

‖f + g‖p ≤ ‖f‖p + ‖g‖p

Proof.
The case p = 1 and the case p =∞ were considered earlier. Assume 1 < p <∞. We know that Lp(E) is a vector space,

hence f + g ∈ Lp(E) if f , g ∈ Lp(E). If ‖f + g‖p = 0 Minkowski is trivial. Assume ‖f + g‖p > 0. We can write

|f + g|p = |f + g| |f + g|p−1 ≤ |f | |f + g|p−1
+ |g| |f + g|p−1

Now we apply Hölder’s inequality to |f | |f + g|p−1 and to |g| |f + g|p−1 to obtain∫
E
|f | |f + g|p−1 dx ≤ ‖f‖p

(∫
E
|f + g|q(p−1) dx

) 1
q and

∫
E
|g| |f + g|p−1 dx ≤ ‖g‖p

(∫
E
|f + g|q(p−1) dx

) 1
q

where q is the conjugate of p. Since (p− 1)q = p and
1

q
=

p− 1

p
, it follows that

∫
E
|f + g|p dx ≤

[
‖f‖p + ‖g‖p

] (∫
E
|f + g|p dx

) p−1
p

.

Minkowski’s inequality follows by rearranging this inequality.

Corollary (1)
Let E ⊂ Rn be measurable, 1 < p <∞, and let F ⊂ Lp(E). If the family F is bounded, then
it is uniformly integrable over E ( F bounded in Lp(E) means that there exists M > 0, such that
‖f‖p ≤ M for all f ∈ F ).



Proof.
We need to prove that for any given ε > 0, there exists δ > 0 such that for any measurable set A ⊂ E, with m(A) < δ, we

have
∫

A
|f | dx < ε for all f ∈ F . Let M > 0 such that ‖f‖p ≤ M for all f ∈ F . For a given ε > 0, let δ =

(
ε

M

)q

where q is the conjugate of p. Let A ⊂ E, with m(A) < δ. Since A has finite measure, then χA is in Lq(A) and the restriction

to A of any element in Lp(E) is in Lp(A). We apply Hölder inequality in the set A to f ∈ Lp(E) and χA to get∫
A
|f | dx =

∫
A
|f |χA dx ≤ ‖f‖A,p

∥∥∥χA

∥∥∥
A,q

where ‖·‖A,p denotes the norm in Lp(A) to distinguish it from the norm ‖·‖p = ‖·‖E,p in Lp(E). We have∥∥∥χA

∥∥∥
A,q

= (m(A))
1
q . Now for any f ∈ F we have ‖f‖A,p ≤ ‖f‖p ≤ M. It follows that∫

A
|f | dx ≤ ‖f‖A,p (m(A))

1
q ≤ M (m(A))

1
q < ε

Corollary (2)
Let E ⊂ Rn be measurable with finite measure and let 1 ≤ p1 < p2 ≤ ∞. Then
Lp2 (E) ⊂ Lp1 (E). Furthermore, for every f ∈ Lp2 (E) we have

‖f‖p1
≤ C ‖f‖p2

, with C =


m(E)

p2−p1
p1p2 if p2 <∞

m(E)
1

p1 if p2 =∞



Proof.
First, consider the case p2 =∞. Let f ∈ L∞(E). Then there exists a set Z ⊂ E with m(Z) = 0 such that |f | ≤ ‖f‖∞ on

E\Z. Since m(E) <∞, then
∫

E
|f |p1 dz ≤ ‖f‖p1∞ m(E) and so ‖f‖p1

≤ C ‖f‖∞ .

Next if p2 <∞, let p =
p2

p1
> 1 and let q be the p-conjugate. If f ∈ Lp2 (E), then |f |p1 ∈ Lp(E). The function χE is in

Lq(E) (since E has finite measure). We can therefore apply Hölder inequality to the pair |f |p1 and χE to get∫
E
|f |p1 χE dx ≤

∥∥|f |p1
∥∥

p

∥∥χE

∥∥
q
. By using

∥∥χE

∥∥
q
= m(E)

1
q = m(E)

p2−p1
p2 , we get from the above inequality

‖f‖p1
p1

≤
∥∥ |f |p1

∥∥
p m(E)

p2−p1
p2 =

(∫
E
|f |p1p

) 1
p m(E)

p2−p1
p2

≤
(∫

E
|f |p2

) p1
p2 m(E)

p2−p1
p2 .

The estimate of the lemma follows by taking the p1-root.

Remark (1)
In general, when m(E) =∞ there is no inclusion between the different Lp(E) spaces (see
exercises)


