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Convergence in Lp Spaces and Completness



Let (X, ∥·∥) be a normed space. A sequence {fn}n ⊂ X is said to converge in X if there exists
f ∈ X such that lim

n→∞
∥fn − f∥ = 0 and we write fn → f in X or lim

n→∞
fn = f .

A sequence {fn}n ⊂ L∞(E) converges in L∞(E), if and only there exists f ∈ L∞(E) such that
∥fn − f∥∞ → 0. This means that there exists a set of Z ⊂ E of measure 0 such that {fn}n
converges uniformly to f on E\Z.

A sequence {fn}n ⊂ Lp(E), with 1 ≤ p < ∞, converges in Lp(E), if and only there exists

f ∈ Lp(E) such that ∥fn − f∥p → 0. This means that lim
n→∞

∫
E
|fn − f |p dx = 0.

A sequence {fn}n ⊂ X is said to be Cauchy in X if for every ϵ > 0, there exists N > 0 such that
∥fn − fm∥ < ϵ for all n,m > N. A normed space (X, ∥·∥) is said to be a Banach space or
complete space if every Cauchy sequence in X is convergent.

Proposition (1)
If {fn}n ⊂ X is a convergent sequence, then it is a Cauchy sequence. Furthermore, a Cauchy
sequence in X converges if it has a convergent subsequence.

Proof.
Let {fn}n ⊂ X be a convergent sequence (to f ∈ X) and let ϵ > 0. Then there exists N ∈ N such that ∥fn − f∥ < ϵ/2 for
all n > N. Let n,m > N, then ∥fn − fm∥ ≤ ∥fn − f∥ + ∥f − fm∥ < ϵ and the sequence is Cauchy.

Next, suppose {fn}n ⊂ X is Cauchy and has a convergent subsequence {fnj}j with limit f . Let ϵ > 0. There exists N ∈ N

such that ∥fn − fm∥ < ϵ/2 for all n,m ≥ N ( {fn}n is Cauchy). There exists J ∈ N such
∥∥∥fnj − f

∥∥∥ < ϵ/2 for all j ≥ J (

{fnj}j converges to f ). Let K = max(N, J) for n ≥ K, we have

∥fn − f∥ ≤
∥∥∥fn − fnj

∥∥∥ +
∥∥∥fnj − f

∥∥∥ ≤
ϵ

2
+
ϵ

2
= ϵ

Hence fn → f in X.



Theorem (1. Riesz-Fischer (Completeness of Lp(E)) )
For 1 ≤ p ≤ ∞, Lp(E) is a Banach space. Furthermore if fn → f in Lp(E), then {fn}n has a
subsequence that converges to f pointwise a.e. on E.

Proof.
▶ Case p = ∞. Let {fn}n ∈ L∞(E) be a Cauchy sequence. First note that {fn}n is uniformly bounded in L∞(E).

That is, there exists M > 0 such that ∥fn∥∞ ≤ M. Indeed for ϵ = 1, there exists N1 ∈ N such that
∥fn − fm∥ ≤ 1 for all n,m ≥ N1 , let M = 1 + max{

∥∥fj
∥∥
∞ : j = 1, · · · , N1}. Then ∥fn∥∞ ≤ M for

n ≤ N1 and for n ≥ N1 , we have

∥fn∥∞ ≤
∥∥∥fn − fN1

∥∥∥
∞

+
∥∥∥fN1

∥∥∥
∞

≤ 1 +
∥∥∥fN1

∥∥∥
∞

≤ M .

There exists Z ⊂ E with m(Z) = 0 such that for a given ϵ > 0 there exists N ∈ N such that
sup

x∈E\Z
|fn(x) − fm(x)| < ϵ for all n,m ≥ N. It follows that {fn(x)}n is a Cauchy sequence in R for all x ∈ E\Z.

Therefore there exists f (x) ∈ R such that fn(x) → f (x) for all x ∈ E\Z.
Next we prove that f ∈ L∞(E) and fn → f in L∞(E). Let x ∈ E\Z, there exists n = n(x) such that
|f (x) − fn(x)| ≤ 1. Therefore

|f (x)| ≤ |f (x) − fn(x)| + |fn(x)| ≤ 1 + ∥fn∥∞ ≤ 1 + M .
Let ϵ > 0, and N ∈ N such that ∥fn − fm∥∞ < ϵ for all n,m > N. For x ∈ E\Z we have

|f (x) − fn(x)| = lim
m→∞

|fm(x) − fn(x)| ≤ lim
m→∞

∥fm − fn∥∞ ≤ ϵ.

▶ Case 1 ≤ p < ∞. Let {fn}n ∈ Lp(E) be a Cauchy sequence. We are going to construct a convergent subsequence.

For this let k ∈ N, and let ϵk =
1

2k+1
it follows from the Cauchy condition that there exists Nk ∈ N such that

∥fn − fm∥ ≤ ϵk for all n,m ≥ Nk . We can assume that the sequence of integers {Nk}k is strictly increasing. Set
N0 = 0 and f0 = 0. For j ∈ N define functions gj and hj by

gj =

j∑
k=1

(fNk − fNk−1 ) and hj =

j∑
k=1

∣∣∣fNk − fNk−1

∣∣∣
Now we show that hj converges in Lp(E).



Proof.
CONTINUED:

It follows from Minkowski inequality that∥∥hj
∥∥

p ≤
j∑

k=1

∥∥∥fNk − fNk−1

∥∥∥
p
≤

j∑
k=1

1

2k
= 2 −

1

2j

Hence {hj}j is a sequence of nonnegative and increasing functions in Lp(E). Therefore it converges to a function h
and furthermore, Fatou’s Lemma implies that∫

E
|h|p dx ≤ lim

j→∞

∫
E

∣∣hj
∣∣p dx = lim

j→∞

∥∥hj
∥∥p

p ≤ 2p
.

The limit function h =
∞∑

k=1

∣∣∣fNk − fNk−1

∣∣∣ is therefore finite a.e. in E.

This means that the series g =
∞∑

k=1

(fNk − fNk−1 ) is absolutely convergent a.e. in E. Since the series is telescoping

and f0 = 0, we have g(x) = lim
j→∞

fNj (x). Again using Fatou’s Lemma we have∥∥∥g − fNj

∥∥∥p

p
=

∫
E

∣∣∣g − fNj

∣∣∣p
dx ≤ lim inf

i→∞

∫
E

∣∣∣fNi − fNj

∣∣∣p
dx ≤ lim inf

i→∞

∥∥∥fNi − fNj

∥∥∥p

p
≤

( 1

2j+1

)p

Hence the subsequence {fNj}j of the Cauchy sequence {fn}n is convergent in Lp(E). Therefore {fn}n is convergent
(Proposition 1).

Remark (1)
Note that pointwise convergence does not imply convergence in Lp. For example the sequence
of functions fn(x) = p√nχ

(0, 1/n] converges pointwise to f = 0 on (0, 1) but fn does not
converge in Lp(0, 1) to f since ∥fn∥p = 1 for all n and ∥f∥p = 0.



Remark (2)
The following example shows that convergence in Lp does not imply pointwise convergence a.e.
In [0, 1] ⊂ R define a sequence fn as follows: f1 = χ

[0, 1]
, f2 = χ

[0, 1/2]
, f3 = χ

[1/2, 1]
. By induction suppose that

for k ∈ N the functions f1, · · · , f2k−1 are defined, define f2k , · · · , f2k+1−1 as f2k+j = χ[
j

2k ,
j+1
2k

] for

j = 1, · · · , 2k − 1. We have fn → 0 in Lp(0, 1) since
∥∥∥f2k+j

∥∥∥
p
= 2−k/p for all k ∈ N and j ∈ {0, · · · , 2k − 1}.

Next for x ∈ (0, 1), and for any k ∈ N there exists a unique j ∈ {0, · · · , 2k − 1} such that x ∈
[ j

2k
,

j + 1

2k

]
and then

f2k+j(x) = 1 but f2k+j+1(x) = 0. This means that the sequence fn(x) is not a Cauchy sequence.

Theorem (2)
Let E ⊂ Rn be measurable and 1 ≤ p < ∞. Let {fn}n in Lp(E). Suppose that fn → f a.e. on

E. Then fn → f in Lp if and only if lim
n→∞

∫
E
|fn|p dx =

∫
E
|f |p dx.

Proof.
There exists a set Z ⊂ E such that m(Z) = 0, the fn’s and f are finite on E1 = E\Z and fn → f pointwise on E1 . It follows

from the triangle inequality that
∣∣∣∥fn∥p − ∥f∥p

∣∣∣ ≤ ∥fn − f∥p . Consequently if fn → f in Lp(E), then ∥fn∥p → ∥f∥p .

Conversely suppose that ∥fn∥p → ∥f∥p , we need to show that ∥fn − f∥p → 0. Recall that for all a, b ∈ R we have

|a − b|p ≤ 2p−1(|a|p + |b|p). We rewrite this inequality as
|a|p + |b|p

2
−

|a − b|p

2p
≥ 0 so that for every x ∈ E1 the

function gn given by

gn(x) =
|fn(x)|p + |f (x)|p

2
−

|fn(x) − f (x)|p

2p
x ∈ E1

is nonnegative and moreover, gn → |f |p pointwise on E1 . Now Fatou’s Lemma implies that∫
E1

∣∣f p∣∣ dx ≤ lim inf
n→∞

∫
E1

gndx =

∫
E1
|f |p dx − lim sup

n→∞

∫
E1

|fn − f |p

2p
dx .

Consequently lim sup
n→∞

∫
E1
|fn − f |pdx = 0 and ∥fn − f∥p → 0.



Density in Lp(E)

Let (X, ∥·∥) be a normed space and let F and G be such that F ⊂ G ⊂ X. The family F is said
to be dense in G if for every g ∈ G and for every ϵ > 0 there exists f ∈ F such that
∥f − g∥ < ϵ. This is equivalent to saying F dense in G if and only if for every g ∈ G there
exists a sequence {fn}n ⊂ F such that ∥fn − g∥ → 0. This means that the closure of F is the
closure of G.
Note that if F ⊂ G ⊂ H ⊂ X, then F dense in G and G dense in H implies F dense in H.
Also F dense in H implies G dense in H

Let E ⊂ Rn be measurable. A function f ∈ Lp(E) is said to have compact support if there exists
a compact set K ⊂ Rq such that f = 0 a.e. on E\K. Denote by Lp

c(E) the space of functions in
Lp(E) with compact support.

Theorem (3)
Lp

c(E) is dense in Lp(E).

Proof.
Let f ∈ Lp(E), we need to show that there exists a sequence {fj} ⊂ Lp

c(E) such that
∥∥f − fj

∥∥
p → 0 as j → ∞. Let Cj be

the cube in Rn centered at 0 and with side length 2j: Cj = [−j, j]n . Define fj by fj = fχCj∩E . Then fj is compactly

supported with support Cj and so fj ∈ Lp
c(E). Furthermore, fj → f pointwise on E and∣∣f − fj

∣∣p
=

∣∣∣∣fχE\Cj

∣∣∣∣p
≤ |f |p ∈ L(E). It follows from the Dominated Convergence Theorem that

∫
E

∣∣f − fj
∣∣p → 0.

That is fj converges to f in Lp(E).



Proposition (1)
Let E ⊂ Rn be measurable, 1 ≤ p ≤ ∞, and let Sp(E) be the family of simple functions in
Lp(E). Then Sp(E) is dense in Lp(E).

Proof.
First consider the case p = ∞. Let f ∈ L∞(E). There exists a set Z ⊂ E with m(Z) = 0 and M > 0 such that |f | ≤ M
on E1 = E\Z. Given ϵ > 0, there exists a simple function ϕ on E1 such that |ϕ− f | < ϵ (Simple Approximation Lemma).
Therefore S∞(E) is dense in L∞(E).
Next suppose that 1 ≤ p < ∞. Let f ∈ Lp(E). Then f is measurable on E and so there exists a sequence {ϕn}n of simple
functions on E such that ϕn → f pointwise a.e on E and |ϕn| ≤ |f | on E for all n (Simple Approximation Theorem). It

follows that,
∫

E
|ϕn|p dx ≤

∫
E
|f |p dx. This means {ϕn}n ⊂ Sp(E). We are left to verify that ϕn → f in Lp(E).

We have |ϕn − f |p → 0 pointwise on E. Moreover,

|ϕn − f |p ≤ 2p (
|ϕn|p + |f |p

)
≤ 2p+1 |f |p .

It follows from Lebesgue Dominated Convergence Theorem that lim
n→∞

∫
E
|ϕn − f |p dx = 0.



A normed space (X, ∥·∥) is said to be separable if there exists C ⊂ X such that C is countable
and dense in X. For example Rn is separable since Qn is countable is dense in Rn.

Theorem (4)
Let E ⊂ Rn be a measurable and 1 ≤ p < ∞. Then Lp(E) is separable.

Proof.
First we prove that Lp(Rn) is separable. Consider the dyadic decomposition of Rn: Let C = [0, 1)n be the unit cube of Rn .

For k ∈ N and J ∈ Zn , let Ck,J =
J + C

2k
( the cube with a side length 1/2k and a vertex at J/2k). Then for every k,

Rn =
⋃

k∈N, J∈Zn Ck,J . The set S = {(J, k) : J ∈ Zn, k ∈ N} is countable and for every open set U ∈ Rn there exists
a set I ⊂ S such that U =

⋃
(J,k)∈I Ck,J .

Let SQ(Rn) be the collection of all (finite) linear combinations of characteristic functions of the dyadic cubes with coefficients
in Q. Thus a simple function ϕ is in SQ(Rn) if and only if there exist (J1, k1), · · · , (Js, ks) ∈ S and r1, · · · , rs ∈ Q

such that ϕ =
s∑

j=1

rjχCkj,Jj
. Similarly consider the family SR(Rn) of all (finite) linear combinations of characteristic

functions of the dyadic cubes with coefficients in R. The family SQ(Rn) is countable and SQ(Rn) ⊂ SR(Rn) ⊂ Lp(Rn).
It follows from the density of Q in R that SQ(Rn) is dense in SR(Rn).
Let f ∈ Lp(Rn). Given ϵ > 0, we know (Proposition 1) that there exists a simple functionψ such that ∥f − ψ∥p < ϵ. Thus
to prove the density of SR(Rn) in Lp(Rn) it is enough to prove that given a simple function ψ and ϵ > 0, there exists

ϕ ∈ SR(Rn) such that ∥ϕ− ψ∥p < ϵ. Since ψ =
N∑

j=1

ajχAj
for some disjoint measurable sets A1, · · · , AN ⊂ Rn ,

then to prove the density of SR(Rn) in the space simple functions in Lp(Rn) it is enough to prove that given any measurable

set A ⊂ Rn and ϵ > 0, there exists a ϕ ∈ SR(Rn) such that
∥∥∥ϕ− χA

∥∥∥
p
< ϵ.



Proof.
CONTINUED: Given A ⊂ Rn measurable with A bounded. We can find an open set U ⊃ A such that m(U\A) < ϵ. There
exist a finite set I ⊂ S such that

⋃
(J,k)∈I Ck,J ⊂ U and m(U) −

∑
(J,k)∈I vol(Ck,J) < ϵ. The function

ϕ =
∑

(J,k)∈I

χCk,J

is in SQ(Rn) and∥∥∥χA − ϕ
∥∥∥

p
≤

∥∥∥χA − χU

∥∥∥
p
+

∥∥∥χU − ϕ
∥∥∥

p
≤ m(U\A)1/p

+

m(U) −
∑

(J,k)∈I

vol(Ck,J)

1/p

≤ 2ϵ1/p

If A is unbounded and m(A) < ∞. Write A =
⋃

i∈N Ai where Ai = A ∩ B(0, i), where B(0, i) is the ball centered at 0

with radius i and apply the preceding result to Ai .

Remark (2)
In general the space L∞(E) is not separable.

Example
Let a, b ∈ R with a < b we are going to prove that L∞[a, b] is not separabale. By
contradiction, suppose that it is separable. Then there would exists sequence {fn}n∈N that is
dense in L∞[a, b]. For every x ∈ [a, b] we can find an integer n(x) ∈ N such that∥∥∥χ[a, x] − fn(x)

∥∥∥
∞

< 1/2.

Let a < x1 < x2 < b, then
∥∥∥χ[a, x1]

− χ
[a, x2]

∥∥∥
∞

= 1. Hence∥∥fn(x1)
− fn(x2)

∥∥
∞ =

∥∥∥fn(x1)
− χ

[a, x1]
+ χ

[a, x1]
− χ

[a, x2]
+ χ

[a, x2]
− fn(x2)

∥∥∥
∞

≥
∥∥∥χ[a, x1]

− χ
[a, x2]

∥∥∥
∞

−
∥∥∥fn(x1)

− χ
[a, x1]

∥∥∥
∞

−
∥∥∥χ[a, x2]

− fn(x2)

∥∥∥
∞

> 0
This means fn(x1)

̸= fn(x2)
and the map [a, b] −→ N given by x → n(x) is one to one. This is a

contradiction since [a, b] is uncountable. Therefore L∞[a, b] is not separable.


