Real Analysis MAA 6616
 Lecture 25

Convergence in L^{p} Spaces and Completness

Let $(X,\|\cdot\|)$ be a normed space. A sequence $\left\{f_{n}\right\}_{n} \subset X$ is said to converge in X if there exists $f \in X$ such that $\lim _{n \rightarrow \infty}\left\|f_{n}-f\right\|=0$ and we write $f_{n} \rightarrow f$ in X or $\lim _{n \rightarrow \infty} f_{n}=f$.
A sequence $\left\{f_{n}\right\}_{n} \subset L^{\infty}(E)$ converges in $L^{\infty}(E)$, if and only there exists $f \in L^{\infty}(E)$ such that $\left\|f_{n}-f\right\|_{\infty} \rightarrow 0$. This means that there exists a set of $Z \subset E$ of measure 0 such that $\left\{f_{n}\right\}_{n}$ converges uniformly to f on $E \backslash Z$.
A sequence $\left\{f_{n}\right\}_{n} \subset L^{p}(E)$, with $1 \leq p<\infty$, converges in $L^{p}(E)$, if and only there exists $f \in L^{p}(E)$ such that $\left\|f_{n}-f\right\|_{p} \rightarrow 0$. This means that $\lim _{n \rightarrow \infty} \int_{E}\left|f_{n}-f\right|^{p} d x=0$.
A sequence $\left\{f_{n}\right\}_{n} \subset X$ is said to be Cauchy in X if for every $\epsilon>0$, there exists $N>0$ such that $\left\|f_{n}-f_{m}\right\|<\epsilon$ for all $n, m>N$. A normed space $(X,\|\cdot\|)$ is said to be a Banach space or complete space if every Cauchy sequence in X is convergent.

Proposition (1)

If $\left\{f_{n}\right\}_{n} \subset X$ is a convergent sequence, then it is a Cauchy sequence. Furthermore, a Cauchy sequence in X converges if it has a convergent subsequence.

Proof.

Let $\left\{f_{n}\right\}_{n} \subset X$ be a convergent sequence (to $f \in X$) and let $\epsilon>0$. Then there exists $N \in \mathbb{N}$ such that $\left\|f_{n}-f\right\|<\epsilon / 2$ for all $n>N$. Let $n, m>N$, then $\left\|f_{n}-f_{m}\right\| \leq\left\|f_{n}-f\right\|+\left\|f-f_{m}\right\|<\epsilon$ and the sequence is Cauchy.
Next, suppose $\left\{f_{n}\right\}_{n} \subset X$ is Cauchy and has a convergent subsequence $\left\{f_{n_{j}}\right\}_{j}$ with limit f. Let $\epsilon>0$. There exists $N \in \mathbb{N}$ such that $\left\|f_{n}-f_{m}\right\|<\epsilon / 2$ for all $n, m \geq N$ ($\left\{f_{n}\right\}_{n}$ is Cauchy). There exists $J \in \mathbb{N}$ such $\left\|f_{n_{j}}-f\right\|<\epsilon / 2$ for all $j \geq J$ ($\left\{f_{n_{j}}\right\}_{j}$ converges to f). Let $K=\max (N, J)$ for $n \geq K$, we have

$$
\left\|f_{n}-f\right\| \leq\left\|f_{n}-f_{n_{j}}\right\|+\left\|f_{n_{j}}-f\right\| \leq \frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon
$$

Hence $f_{n} \rightarrow f$ in X.

Theorem (1. Riesz-Fischer (Completeness of $\left.L^{p}(E)\right)$)

For $1 \leq p \leq \infty, L^{p}(E)$ is a Banach space. Furthermore if $f_{n} \rightarrow f$ in $L^{p}(E)$, then $\left\{f_{n}\right\}_{n}$ has a subsequence that converges to f pointwise a.e. on E.

Proof.

- Case $p=\infty$. Let $\left\{f_{n}\right\}_{n} \in L^{\infty}(E)$ be a Cauchy sequence. First note that $\left\{f_{n}\right\}_{n}$ is uniformly bounded in $L^{\infty}(E)$. That is, there exists $M>0$ such that $\left\|f_{n}\right\|_{\infty} \leq M$. Indeed for $\epsilon=1$, there exists $N_{1} \in \mathbb{N}$ such that $\left\|f_{n}-f_{m}\right\| \leq 1$ for all $n, m \geq N_{1}$, let $M=1+\max \left\{\left\|f_{j}\right\|_{\infty}: j=1, \cdots, N_{1}\right\}$. Then $\left\|f_{n}\right\|_{\infty} \leq M$ for $n \leq N_{1}$ and for $n \geq N_{1}$, we have

$$
\left\|f_{n}\right\|_{\infty} \leq\left\|f_{n}-f_{N_{1}}\right\|_{\infty}+\left\|f_{N_{1}}\right\|_{\infty} \leq 1+\left\|f_{N_{1}}\right\|_{\infty} \leq M
$$

There exists $Z \subset E$ with $m(Z)=0$ such that for a given $\epsilon>0$ there exists $N \in \mathbb{N}$ such that $\sup \left|f_{n}(x)-f_{m}(x)\right|<\epsilon$ for all $n, m \geq N$. It follows that $\left\{f_{n}(x)\right\}_{n}$ is a Cauchy sequence in \mathbb{R} for all $x \in E \backslash Z$. $x \in E \backslash Z$
Therefore there exists $f(x) \in \mathbb{R}$ such that $f_{n}(x) \rightarrow f(x)$ for all $x \in E \backslash Z$.
Next we prove that $f \in L^{\infty}(E)$ and $f_{n} \rightarrow f$ in $L^{\infty}(E)$. Let $x \in E \backslash Z$, there exists $n=n(x)$ such that $\left|f(x)-f_{n}(x)\right| \leq 1$. Therefore

$$
|f(x)| \leq\left|f(x)-f_{n}(x)\right|+\left|f_{n}(x)\right| \leq 1+\left\|f_{n}\right\|_{\infty} \leq 1+M .
$$

Let $\epsilon>0$, and $N \in \mathbb{N}$ such that $\left\|f_{n}-f_{m}\right\|_{\infty}<\epsilon$ for all $n, m>N$. For $x \in E \backslash Z$ we have

$$
\left|f(x)-f_{n}(x)\right|=\lim _{m \rightarrow \infty}\left|f_{m}(x)-f_{n}(x)\right| \leq \lim _{m \rightarrow \infty}\left\|f_{m}-f_{n}\right\|_{\infty} \leq \epsilon
$$

- Case $1 \leq p<\infty$. Let $\left\{f_{n}\right\}_{n} \in L^{p}(E)$ be a Cauchy sequence. We are going to construct a convergent subsequence. For this let $k \in \mathbb{N}$, and let $\epsilon_{k}=\frac{1}{2^{k+1}}$ it follows from the Cauchy condition that there exists $N_{k} \in \mathbb{N}$ such that $\left\|f_{n}-f_{m}\right\| \leq \epsilon_{k}$ for all $n, m \geq N_{k}$. We can assume that the sequence of integers $\left\{N_{k}\right\}_{k}$ is strictly increasing. Set $N_{0}=0$ and $f_{0}=0$. For $j \in \mathbb{N}$ define functions g_{j} and h_{j} by

$$
g_{j}=\sum_{k=1}^{j}\left(f_{N_{k}}-f_{N_{k-1}}\right) \text { and } h_{j}=\sum_{k=1}^{j}\left|f_{N_{k}}-f_{N_{k-1}}\right|
$$

Now we show that h_{j} converges in $L^{p}(E)$.

Proof.

CONTINUED:
It follows from Minkowski inequality that

$$
\left\|h_{j}\right\|_{p} \leq \sum_{k=1}^{j}\left\|f_{N_{k}}-f_{N_{k-1}}\right\|_{p} \leq \sum_{k=1}^{j} \frac{1}{2^{k}}=2-\frac{1}{2^{j}}
$$

Hence $\left\{h_{j}\right\}_{j}$ is a sequence of nonnegative and increasing functions in $L^{p}(E)$. Therefore it converges to a function h and furthermore, Fatou's Lemma implies that

$$
\int_{E}|h|^{p} d x \leq \lim _{j \rightarrow \infty} \int_{E}\left|h_{j}\right|^{p} d x=\lim _{j \rightarrow \infty}\left\|h_{j}\right\|_{p}^{p} \leq 2^{p}
$$

The limit function $h=\sum_{k=1}^{\infty}\left|f_{N_{k}}-f_{N_{k-1}}\right|$ is therefore finite a.e. in E.
This means that the series $g=\sum_{k=1}^{\infty}\left(f_{N_{k}}-f_{N_{k-1}}\right)$ is absolutely convergent a.e. in E. Since the series is telescoping and $f_{0}=0$, we have $g(x)=\lim _{j \rightarrow \infty} f_{N_{j}}(x)$. Again using Fatou's Lemma we have

$$
\left\|g-f_{N_{j}}\right\|_{p}^{p}=\int_{E}\left|g-f_{N_{j}}\right|^{p} d x \leq \liminf _{i \rightarrow \infty} \int_{E}\left|f_{N_{i}}-f_{N_{j}}\right|^{p} d x \leq \liminf _{i \rightarrow \infty}\left\|f_{N_{i}}-f_{N_{j}}\right\|_{p}^{p} \leq\left(\frac{1}{2^{j+1}}\right)^{p}
$$

Hence the subsequence $\left\{f_{N_{j}}\right\}_{j}$ of the Cauchy sequence $\left\{f_{n}\right\}_{n}$ is convergent in $L^{p}(E)$. Therefore $\left\{f_{n}\right\}_{n}$ is convergent (Proposition 1).

Remark (1)

Note that pointwise convergence does not imply convergence in L^{p}. For example the sequence of functions $f_{n}(x)=\sqrt[p]{n} \chi_{(0,1 / n)}$ converges pointwise to $f=0$ on $(0,1)$ but f_{n} does not converge in $L^{p}(0,1)$ to f since $\left\|f_{n}\right\|_{p}=1$ for all n and $\|f\|_{p}=0$.

Remark (2)

The following example shows that convergence in L^{p} does not imply pointwise convergence a.e. In $[0,1] \subset \mathbb{R}$ define a sequence f_{n} as follows: $f_{1}=\chi_{[0,1]}, f_{2}=\chi_{[0,1 / 2]}, f_{3}=\chi_{[1 / 2,1]}$. By induction suppose that for $k \in \mathbb{N}$ the functions $f_{1}, \cdots, f_{2^{k}-1}$ are defined, define $f_{2^{k}}, \cdots, f_{2^{k+1}-1}$ as $f_{2^{k}+j}=\chi_{\left[\frac{j}{2^{k}}, \frac{j+1}{2^{k}}\right]}$ for $j=1, \cdots, 2^{k}-1$. We have $f_{n} \rightarrow 0$ in $L^{p}(0,1)$ since $\left\|f_{2^{k}+j}\right\|_{p}=2^{-k / p}$ for all $k \in \mathbb{N}$ and $j \in\left\{0, \cdots, 2^{k}-1\right\}$. Next for $x \in(0,1)$, and for any $k \in \mathbb{N}$ there exists a unique $j \in\left\{0, \cdots, 2^{k}-1\right\}$ such that $x \in\left[\frac{j}{2^{k}}, \frac{j+1}{2^{k}}\right]$ and then $f_{2^{k}+j}(x)=1$ but $f_{2^{k}+j+1}(x)=0$. This means that the sequence $f_{n}(x)$ is not a Cauchy sequence.

Theorem (2)

Let $E \subset \mathbb{R}^{n}$ be measurable and $1 \leq p<\infty$. Let $\left\{f_{n}\right\}_{n}$ in $L^{p}(E)$. Suppose that $f_{n} \rightarrow f$ a.e. on E. Then $f_{n} \rightarrow f$ in L^{p} if and only if $\lim _{n \rightarrow \infty} \int_{E}\left|f_{n}\right|^{p} d x=\int_{E}|f|^{p} d x$.

Proof.

There exists a set $Z \subset E$ such that $m(Z)=0$, the f_{n} 's and f are finite on $E_{1}=E \backslash Z$ and $f_{n} \rightarrow f$ pointwise on E_{1}. It follows from the triangle inequality that $\left|\left\|f_{n}\right\|_{p}-\|f\|_{p}\right| \leq\left\|f_{n}-f\right\|_{p}$. Consequently if $f_{n} \rightarrow f$ in $L^{p}(E)$, then $\left\|f_{n}\right\|_{p} \rightarrow\|f\|_{p}$. Conversely suppose that $\left\|f_{n}\right\|_{p} \rightarrow\|f\|_{p}$, we need to show that $\left\|f_{n}-f\right\|_{p} \rightarrow 0$. Recall that for all $a, b \in \mathbb{R}$ we have $|a-b|^{p} \leq 2^{p-1}\left(|a|^{p}+|b|^{p}\right)$. We rewrite this inequality as $\frac{|a|^{p}+|b|^{p}}{2}-\frac{|a-b|^{p}}{2^{p}} \geq 0$ so that for every $x \in E_{1}$ the function g_{n} given by

$$
g_{n}(x)=\frac{\left|f_{n}(x)\right|^{p}+|f(x)|^{p}}{2}-\frac{\left|f_{n}(x)-f(x)\right|^{p}}{2^{p}} \quad x \in E_{1}
$$

is nonnegative and moreover, $g_{n} \rightarrow|f|^{p}$ pointwise on E_{1}. Now Fatou's Lemma implies that

$$
\int_{E_{1}}\left|f^{p}\right| d x \leq \liminf _{n \rightarrow \infty} \int_{E_{1}} g_{n} d x=\int_{E_{1}}|f|^{p} d x-\limsup _{n \rightarrow \infty} \int_{E_{1}} \frac{\left|f_{n}-f\right|^{p}}{2^{p}} d x
$$

Consequently $\limsup _{n \rightarrow \infty} \int_{E_{1}}\left|f_{n}-f\right|^{p} d x=0$ and $\left\|f_{n}-f\right\|_{p} \rightarrow 0$.

Let $(X,\|\cdot\|)$ be a normed space and let \mathcal{F} and \mathcal{G} be such that $\mathcal{F} \subset \mathcal{G} \subset X$. The family \mathcal{F} is said to be dense in \mathcal{G} if for every $g \in \mathcal{G}$ and for every $\epsilon>0$ there exists $f \in \mathcal{F}$ such that $\|f-g\|<\epsilon$. This is equivalent to saying \mathcal{F} dense in \mathcal{G} if and only if for every $g \in \mathcal{G}$ there exists a sequence $\left\{f_{n}\right\}_{n} \subset \mathcal{F}$ such that $\left\|f_{n}-g\right\| \rightarrow 0$. This means that the closure of \mathcal{F} is the closure of \mathcal{G}.
Note that if $\mathcal{F} \subset \mathcal{G} \subset \mathcal{H} \subset X$, then \mathcal{F} dense in \mathcal{G} and \mathcal{G} dense in \mathcal{H} implies \mathcal{F} dense in \mathcal{H}. Also \mathcal{F} dense in \mathcal{H} implies \mathcal{G} dense in \mathcal{H}

Let $E \subset \mathbb{R}^{n}$ be measurable. A function $f \in L^{p}(E)$ is said to have compact support if there exists a compact set $K \subset \mathbb{R}^{q}$ such that $f=0$ a.e. on $E \backslash K$. Denote by $L_{c}^{p}(E)$ the space of functions in $L^{p}(E)$ with compact support.

Theorem (3)

$L_{c}^{p}(E)$ is dense in $L^{p}(E)$.

Proof.

Let $f \in L^{p}(E)$, we need to show that there exists a sequence $\left\{f_{j}\right\} \subset L_{c}^{p}(E)$ such that $\left\|f-f_{j}\right\|_{p} \rightarrow 0$ as $j \rightarrow \infty$. Let C_{j} be the cube in \mathbb{R}^{n} centered at 0 and with side length $2 j: C_{j}=[-j, j]^{n}$. Define f_{j} by $f_{j}=f \chi_{C_{j} \cap E}$. Then f_{j} is compactly supported with support C_{j} and so $f_{j} \in L_{c}^{p}(E)$. Furthermore, $f_{j} \rightarrow f$ pointwise on E and
$\left|f-f_{j}\right|^{p}=\left|f \chi_{E \backslash C_{j}}\right|^{p} \leq|f|^{p} \in \mathcal{L}(E)$. It follows from the Dominated Convergence Theorem that $\int_{E}\left|f-f_{j}\right|^{p} \rightarrow 0$. That is f_{j} converges to f in $L^{p}(E)$.

Proposition (1)

Let $E \subset \mathbb{R}^{n}$ be measurable, $1 \leq p \leq \infty$, and let $\mathcal{S}^{p}(E)$ be the family of simple functions in $L^{p}(E)$. Then $\mathcal{S}^{p}(E)$ is dense in $L^{p}(E)$.

Proof.

First consider the case $p=\infty$. Let $f \in L^{\infty}(E)$. There exists a set $Z \subset E$ with $m(Z)=0$ and $M>0$ such that $|f| \leq M$ on $E_{1}=E \backslash Z$. Given $\epsilon>0$, there exists a simple function ϕ on E_{1} such that $|\phi-f|<\epsilon$ (Simple Approximation Lemma). Therefore $\mathcal{S}^{\infty}(E)$ is dense in $L^{\infty}(E)$.
Next suppose that $1 \leq p<\infty$. Let $f \in L^{p}(E)$. Then f is measurable on E and so there exists a sequence $\left\{\phi_{n}\right\}_{n}$ of simple functions on E such that $\phi_{n} \rightarrow f$ pointwise a.e on E and $\left|\phi_{n}\right| \leq|f|$ on E for all n (Simple Approximation Theorem). It follows that, $\int_{E}\left|\phi_{n}\right|^{p} d x \leq \int_{E}|f|^{p} d x$. This means $\left\{\phi_{n}\right\}_{n} \subset \mathcal{S}^{p}(E)$. We are left to verify that $\phi_{n} \rightarrow f$ in $L^{p}(E)$.
We have $\left|\phi_{n}-f\right|^{p} \rightarrow 0$ pointwise on E. Moreover,

$$
\left|\phi_{n}-f\right|^{p} \leq 2^{p}\left(\left|\phi_{n}\right|^{p}+|f|^{p}\right) \leq 2^{p+1}|f|^{p} .
$$

It follows from Lebesgue Dominated Convergence Theorem that $\lim _{n \rightarrow \infty} \int_{E}\left|\phi_{n}-f\right|^{p} d x=0$.

A normed space $(X,\|\cdot\|)$ is said to be separable if there exists $\mathcal{C} \subset X$ such that \mathcal{C} is countable and dense in X. For example \mathbb{R}^{n} is separable since \mathbb{Q}^{n} is countable is dense in \mathbb{R}^{n}.

Theorem (4)

Let $E \subset \mathbb{R}^{n}$ be a measurable and $1 \leq p<\infty$. Then $L^{p}(E)$ is separable.

Proof.

First we prove that $L^{p}\left(\mathbb{R}^{n}\right)$ is separable. Consider the dyadic decomposition of $\mathbb{R}^{n}:$ Let $C=[0,1)^{n}$ be the unit cube of \mathbb{R}^{n}. For $k \in \mathbb{N}$ and $J \in \mathbb{Z}^{n}$, let $C_{k, J}=\frac{J+C}{2^{k}}$ (the cube with a side length $1 / 2^{k}$ and a vertex at $J / 2^{k}$). Then for every k, $\mathbb{R}^{n}=\bigcup_{k \in \mathbb{N}, J \in \mathbb{Z}^{n}} C_{k, J}$. The set $S=\left\{(J, k): J \in \mathbb{Z}^{n}, k \in \mathbb{N}\right\}$ is countable and for every open set $U \in \mathbb{R}^{n}$ there exists a set $I \subset S$ such that $U=\bigcup_{(J, k) \in I} C_{k, J}$.
Let $\mathcal{S}_{\mathbb{Q}}\left(\mathbb{R}^{n}\right)$ be the collection of all (finite) linear combinations of characteristic functions of the dyadic cubes with coefficients in \mathbb{Q}. Thus a simple function ϕ is in $\mathcal{S}_{\mathbb{Q}}\left(\mathbb{R}^{n}\right)$ if and only if there exist $\left(J_{1}, k_{1}\right), \cdots,\left(J_{s}, k_{s}\right) \in S$ and $r_{1}, \cdots, r_{s} \in \mathbb{Q}$ such that $\phi=\sum_{j=1}^{s} r_{j} \chi_{C_{k_{j}, J_{j}}}$. Similarly consider the family $\mathcal{S}_{\mathbb{R}}\left(\mathbb{R}^{n}\right)$ of all (finite) linear combinations of characteristic functions of the dyadic cubes with coefficients in \mathbb{R}. The family $\mathcal{S}_{\mathbb{Q}}\left(\mathbb{R}^{n}\right)$ is countable and $\mathcal{S}_{\mathbb{Q}}\left(\mathbb{R}^{n}\right) \subset \mathcal{S}_{\mathbb{R}}\left(\mathbb{R}^{n}\right) \subset L^{p}\left(\mathbb{R}^{n}\right)$. It follows from the density of \mathbb{Q} in \mathbb{R} that $\mathcal{S}_{\mathbb{Q}}\left(\mathbb{R}^{n}\right)$ is dense in $\mathcal{S}_{\mathbb{R}}\left(\mathbb{R}^{n}\right)$.
Let $f \in L^{p}\left(\mathbb{R}^{n}\right)$. Given $\epsilon>0$, we know (Proposition 1) that there exists a simple function ψ such that $\|f-\psi\|_{p}<\epsilon$. Thus to prove the density of $\mathcal{S}_{\mathbb{R}}\left(\mathbb{R}^{n}\right)$ in $L^{p}\left(\mathbb{R}^{n}\right)$ it is enough to prove that given a simple function ψ and $\epsilon>0$, there exists $\phi \in \mathcal{S}_{\mathbb{R}}\left(\mathbb{R}^{n}\right)$ such that $\|\phi-\psi\|_{p}<\epsilon$. Since $\psi=\sum_{j=1}^{N} a_{j} \chi_{A_{j}}$ for some disjoint measurable sets $A_{1}, \cdots, A_{N} \subset \mathbb{R}^{n}$, then to prove the density of $\mathcal{S}_{\mathbb{R}}\left(\mathbb{R}^{n}\right)$ in the space simple functions in $L^{p}\left(\mathbb{R}^{n}\right)$ it is enough to prove that given any measurable $\operatorname{set} A \subset \mathbb{R}^{n}$ and $\epsilon>0$, there exists a $\phi \in \mathcal{S}_{\mathbb{R}}\left(\mathbb{R}^{n}\right)$ such that $\left\|\phi-\chi_{A}\right\|_{p}<\epsilon$.

Proof.

CONTINUED: Given $A \subset \mathbb{R}^{n}$ measurable with A bounded. We can find an open set $U \supset A$ such that $m(U \backslash A)<\epsilon$. There exist a finite set $I \subset S$ such that $\bigcup_{(J, k) \in I} C_{k, J} \subset U$ and $m(U)-\sum_{(J, k) \in I} \operatorname{vol}\left(C_{k, J}\right)<\epsilon$. The function

$$
\phi=\sum_{(J, k) \in I} \chi_{C_{k, J}}
$$

is in $\mathcal{S}_{\mathbb{Q}}\left(\mathbb{R}^{n}\right)$ and

$$
\left\|\chi_{A}-\phi\right\|_{p} \leq\left\|\chi_{A}-\chi_{U}\right\|_{p}+\left\|\chi_{U}-\phi\right\|_{p} \leq m(U \backslash A)^{1 / p}+\left[m(U)-\sum_{(J, k) \in I} \operatorname{vol}\left(C_{k, J}\right)\right]^{1 / p} \leq 2 \epsilon^{1 / p}
$$

If A is unbounded and $m(A)<\infty$. Write $A=\bigcup_{i \in \mathbb{N}} A_{i}$ where $A_{i}=A \cap B(0, i)$, where $B(0, i)$ is the ball centered at 0 with radius i and apply the preceding result to A_{i}.

Remark (2)

In general the space $L^{\infty}(E)$ is not separable.

Example

Let $a, b \in \mathbb{R}$ with $a<b$ we are going to prove that $L^{\infty}[a, b]$ is not separabale. By contradiction, suppose that it is separable. Then there would exists sequence $\left\{f_{n}\right\}_{n \in \mathbb{N}}$ that is dense in $L^{\infty}[a, b]$. For every $x \in[a, b]$ we can find an integer $n(x) \in \mathbb{N}$ such that

$$
\left\|\chi_{[a, x]}-f_{n(x)}\right\|_{\infty}<1 / 2
$$

Let $a<x_{1}<x_{2}<b$, then $\left\|\chi_{\left[a, x_{1}\right]}-\chi_{\left[a, x_{2}\right]}\right\|_{\infty}=1$. Hence

$$
\begin{aligned}
\left\|f_{n\left(x_{1}\right)}-f_{n\left(x_{2}\right)}\right\|_{\infty} & =\left\|f_{n\left(x_{1}\right)}-\chi_{\left[a, x_{1}\right]}+\chi_{\left[a, x_{1}\right]}-\chi_{\left[a, x_{2}\right]}+\chi_{\left[a, x_{2}\right]}-f_{n\left(x_{2}\right)}\right\|_{\infty} \\
& \geq\left\|\chi_{\left[a, x_{1}\right]}-\chi_{\left[a, x_{2}\right]}\right\|_{\infty}-\left\|f_{n\left(x_{1}\right)}-\chi_{\left[a, x_{1}\right]}\right\|_{\infty}-\left\|\chi_{\left[a, x_{2}\right]}-f_{n\left(x_{2}\right)}\right\|_{\infty} \\
& >0
\end{aligned}
$$

This means $f_{n\left(x_{1}\right)} \neq f_{n\left(x_{2}\right)}$ and the map $[a, b] \longrightarrow \mathbb{N}$ given by $x \rightarrow n(x)$ is one to one. This is a contradiction since $[a, b]$ is uncountable. Therefore $L^{\infty}[a, b]$ is not separable.

