Real Analysis MAA 6616
Lecture 25
Convergence in 7 Spaces and Completness



Let (X, ||-]|) be a normed space. A sequence {f, }» C X is said to converge in X if there exists
f € X suchthat lim ||f, — f|| = 0 and we write f, — finX or lim f, = f.
n—oo n—0o0

A sequence {f,}» C L°°(E) converges in L>°(E), if and only there exists f € L°°(E) such that
lfi = flloo — 0. This means that there exists a set of Z C E of measure 0 such that {f;, },
converges uniformly to f on E\Z.

A sequence {f, }» C LP(E), with 1 < p < oo, converges in L?(E), if and only there exists

f € IP(E) such that [|fy — f]|,, — 0. This means that lim /[f,, —flPdx=0.
n—oo E

A sequence {f,}» C X is said to be Cauchy in X if for every e > 0, there exists N > 0 such that
lfn — finll < € forall n,m > N. A normed space (X, ||-||) is said to be a Banach space or
complete space if every Cauchy sequence in X is convergent.

Proposition (1)
If {f,,}n C X is a convergent sequence, then it is a Cauchy sequence. Furthermore, a Cauchy
sequence in X converges if it has a convergent subsequence.

Proof.

Let {f4 }» C X be a convergent sequence (to / € X) and let € > 0. Then there exists N € N such that ||f, — f|| < €/2 for
alln > N.Letn,m > N, then [|fy — full < |Ifu —fIl + If — fll < € and the sequence is Cauchy.

Next, suppose {f, }» C X is Cauchy and has a convergent subsequence {fn/. }; with limit f. Let € > 0. There exists N € N

such that ||f, — fiu|| < €/2foralln,m > N ( {f,}, is Cauchy). There exists J € N such |f,,j 7f|| < e/2forallj > J(
{fnl. }; converges to f). Let K = max (N, J) forn > K, we have

e €

W =1 < [l = | + Iy =] < 5 + 3

Hence f, — fin X. O

=€




Theorem (1. Riesz-Fischer (Completeness of L7 (E)) )

For1 < p < oo, LP(E) is a Banach space. Furthermore if f,, — f in LP(E), then {f, }» has a
subsequence that converges to f pointwise a.e. on E.

Proof.

P Case p = oco. Let {f;, }» € L°°(E) be a Cauchy sequence. First note that {f; } is uniformly bounded in L°° (E).
That is, there exists M > 0 such that ||f,, || ., < M. Indeed for € = 1, there exists N; € N such that

o = full < lforalln,m > Ny,letM =1 + max{H/}”w s j=1,--- ,Ni}. Then [|fy|l o < M for
n < Np and forn > Ny, we have
Willoo < |l =t ||+ < 14 ] <m-
oo oo oo

There exists Z C E with m(Z) = 0 such that for a given € > 0 there exists N € N such that
sup |fu(x) — fin(x)| < eforalln,m > N. It follows that {f, (x) }, is a Cauchy sequence in R for all x € E\Z.
xEE\Z

Therefore there exists f(x) € R such that f, (x) — f(x) forallx € E\Z.
Next we prove thatf € L°° (E) and f, — fin L°° (E). Letx € E\Z, there exists n = n(x) such that
|f(x) = fu(x)] < 1. Therefore

PO <) =@+ @ < 1T+ falle S T+M.
Lete > 0,and N € Nsuch that ||fy — finll oo < €foralln,m > N.Forx € E\Z we have

) — ()= Tim_ () — ()] < lim_ [~ falloo < e
P> Casel < p < oo.Let {fy}n € L”(E) be a Cauchy sequence. We are going to construct a convergent subsequence.

For this letk € N, and let ¢}, =

Py it follows from the Cauchy condition that there exists Ny € N such that

[fn = fnll < € foralln, m > Nj. We can assume that the sequence of integers { N } is strictly increasing. Set
No = Oandfy = 0. Forj € N define functions g; and /; by
J J
g =2 U —fi_,) and Iy =3 ‘ka — Ny
k=1 k=1
Now we show that /; converges in LP (E).



Proof.

CONTINUED:

It follows from Minkowski inequality that
1 1

J J
il < 32w =], < 325 =2 5
k=1 k=1

Hence {/;}; is a sequence of nonnegative and increasing functions in 1P (E). Therefore it converges to a function
and furthermore, Fatou’s Lemma implies that

/|h|“dx < lim /|hj|pdx: lim ||h|P < 2°.
E j—oo JE Jj—r oo P

oo
The limit function i = Z ‘ka —ka71 ‘ is therefore finite a.e. in E.

k=

This means that the series g = Z(ka ka 1 ) is absolutely convergent a.e. in E. Since the series is telescoping

=1
and fy = 0, we have g(x) = hrn fN (x). Again using Fatou’s Lemma we have

1 4
_ _ N B L P
Hg*fN/»ll,r/E\g [l ar < mine [l gl ac < vmint 5~ < (557)

Hence the subsequence {fN/. }; of the Cauchy sequence {f; },, is convergent in L’ (E). Therefore {f, }, is convergent
(Proposition 1).

O
Remark (1)

Note that pointwise convergence does not imply convergence in L”. For example the sequence
of functions f, (x) = ¢/n X(0, 1/ CONVErges pointwise to f = 0 on (0, 1) butf;, does not
converge in L/(0, 1) to f since ||fu[|, = 1 for all n and ||f]|, = 0.



Remark (2)

The following example shows that convergence in I/ does not imply pointwise convergence a.e.
In [0, 1] C R define a sequence f, as follows: fj = X[o 1 h = X[U 12 = X[I/Z R By induction suppose that

for k € N the functions fj, - - - ,f2k71 are defined, define fzk, e 7.f2k+1 _yas -/2k+j =x i i for
Ed
j=1,---,2 — 1. Wehave f, — 0inZP(0, 1) since HfzkHH =27 P forallk € Nandj € {0, - - - ,2% — 1}.
P
. . Lo k JoJjt+1
Next forx € (0, 1), and for any k € N there exists a unique j € {0, - - - ,2% — 1} such that x € * and then
f2k+j (x) = 1 but f2k+]+1 (x) = 0. This means that the sequence f; (x) is not a Cauchy sequence.

Theorem (2)
Let E C R" be measurable and 1 < p < oo. Let {fu}n in LP(E). Suppose that f, — f a.e. on

E. Then f, — f in I if and only if lim /Vn|pdx = /V|p dx.
n— o0 E E

Proof.

There exists a set Z C E such that m(Z) = 0, the f;,’s and f are finite on E; = E\Z and f;, — f pointwise on E|. It follows
from the triangle inequality that ‘anHp — Hpr) < |lfa — fII,- Consequently if f, — £ in 1P (E), then [lAll, = 1A,
Conversely suppose that ||f;, Hp — Hpr, we need to show that [|f;, — pr — 0. Recall that for all a, b € R we have

, i L Lo al” + ()P e —b|P
la —b|P < 277 (|a|P 4 |b|P). We rewrite this inequality as T > 0 so that for every x € Ej the

b4
function g, given by

P P () — F(0)P
on() = P + P () —f()I ceE

2r
is nonnegative and moreover, g, — |f|” pointwise on E1. Now Fatou’s Lemma implies that

P
/ ‘f"‘ dx < lim inf/ gndx = [fIP dx — lim sup Vn fl
E] n— oo bl E] n— oo L] 2])

Consequently lim sup/ Ify = fIPdx = 0and ||f, —pr — 0. O
n—oo JE



Density in L7 (E)

Let (X, ||-]|) be a normed space and let F and G be such that 7 C G C X. The family F is said
to be dense in G if for every g € G and for every € > 0 there exists f € F such that

Ilf — gll < e. This is equivalent to saying F dense in G if and only if for every g € G there
exists a sequence {f, }» C F such that ||f, — g|| — 0. This means that the closure of F is the
closure of G.

Note that if 7 C G C ‘H C X, then F dense in G and G dense in H implies F dense in H.
Also F dense in H implies G dense in H

Let E C R" be measurable. A function f € LP(E) is said to have compact support if there exists
a compact set K C RY such that f = 0 a.e. on E\K. Denote by L7 (E) the space of functions in
LP(E) with compact support.

Theorem (3)
LL(E) is dense in P (E).

Proof.

Letf € LP(E), we need to show that there exists a sequence {f;} C L (E) such that ||f —f,-”P — Oasj — oo. Let Cj be
the cube in R” centered at 0 and with side length 2;: Ci = [—j, A" Define fj by f; = fXCme' Then f; is compactly
supported with support Cj and so f; € L’C’ (E). Furthermore, f; — f pointwise on £ and

V=l = xp g
That is f; converges to f in LP (E). O

< |fI” € L(E). It follows from the Dominated Convergence Theorem that /[/ —fj‘p — 0.
E



Proposition (1)
Let E C R" be measurable, 1 < p < oo, and let SP (E) be the family of simple functions in
LP(E). Then SP(E) is dense in LP (E).

Proof.

First consider the case p = co. Letf € L° (E). There exists aset Z C E withm(Z) = 0and M > O such that |[f| < M
on E; = E\Z. Given € > 0, there exists a simple function ¢ on E; such that |¢ — f| < e (Simple Approximation Lemma).
Therefore S°° (E) is dense in L (E).

Next suppose that | < p < oco. Letf € LP(E). Then f is measurable on E and so there exists a sequence { ¢, }, of simple
functions on E such that ¢, — f pointwise a.c on E and |¢,| < |f| on E for all n (Simple Approximation Theorem). It

follows that, /|¢,, [P ax < /U'|p dx. This means {¢, }, C SP(E). We are left to verify that ¢, — fin L (E).
E E
We have |, — f|” — 0 pointwise on E. Moreover,
[én —FI1P <2 (Ial” + I7) < 27117

It follows from Lebesgue Dominated Convergence Theorem that gm / |n — f \p dx = 0. O
n—oo Jg



A normed space (X, ||-||) is said to be separable if there exists C C X such that C is countable
and dense in X. For example R” is separable since Q" is countable is dense in R".

Theorem (4)
Let E C R" be a measurable and 1 < p < oo. Then LP(E) is separable.

Proof.

First we prove that Z” (R") is separable. Consider the dyadic decomposition of R": Let C = [0, 1)" be the unit cube of R".
J+C .

Fork € NandJ € Z", let Cry = i ( the cube with a side length 1/2" and a vertex atJ/Z"). Then for every k,

R" = Ugen, yezn Ck,g- Theset S = {(J, k) : J € Z", k € N} is countable and for every open set U € R" there exists

aset/ C Ssuchthat U = U(/ ©er Ca-

Let Sg (R") be the collection of all (finite) linear combinations of characteristic functions of the dyadic cubes with coefficients

in Q. Thus a simple function ¢ is in Sg (R") if and only if there exist (J1, k1), - -+ , (Js, ks) € Sandry, - -+ ,ry € Q

s
such that ¢ = Z TiXey, - Similarly consider the family Si (R") of all (finite) linear combinations of characteristic
=1 J

functions of the dyadic cubes with coefficients in R. The family S (R") is countable and Sg (R") C Sr(R") C L’ (R").
It follows from the density of Q in R that S (R") is dense in Sg (R").
Letf € LP(R"). Given € > 0, we know (Proposition 1) that there exists a simple function ¢/ such that ||f — 4[|, < e. Thus

to prove the density of Sg (R") in L (R") it is enough to prove that given a simple function 1) and € > 0, there exists
N

¢ € Sg(R") such that [[¢ — w||P < e. Since p = ZanAj for some disjoint measurable sets Ay, - - - , Ay C R”,
j=1
then to prove the density of Sg (R") in the space simple functions in L” (R") it is enough to prove that given any measurable
setA C R" and € > 0, there exists a ¢ € Sg(R") such that Hd) - Xy ” < e
P

O



Proof.

CONTINUED: Given A C R" measurable with A bounded. We can find an open set U D A such that m(U\A) < e. There
exist a finite set / C S such that U(_, ver Cky C Uand m(U) — Z(J,k)el vol(Cy,y) < e. The function

kel
isin Sg (R") and
1/p
1 1
HX,, - ¢H < HXA - XUH + HXU - ¢H < m(U\A)'/? + |:m(U) - > vol(Cry) < 2P
P P P 3
.k el

If A is unbounded and m(A) < oco. Write A = [J;cy A; where A; = A N B(0, i), where B(0, i) is the ball centered at 0
with radius i and apply the preceding result to A;. O

Remark (2)

In general the space L°° (E) is not separable.

Example

Leta, b € R with a < b we are going to prove that L [a, b] is not separabale. By
contradiction, suppose that it is separable. Then there would exists sequence {f; },cn that is
dense in L°[a, b]. For every x € [a, b] we can find an integer n(x) € N such that

HX["' x] 7fn(x) < 1/2-

oo

= 1. Hence

Leta < x; < xo < b, then HX[”’ Al ™ Xia, vl
Hf"(xl) 7f"(~’f2)||oo

‘ oo

‘ oo}

‘X[u, ] *fn(n)Hoo

= vn(n) X, 1] T X ] ™ X, 1) T Xa, ) — fa(xy)
o Vn(a’l) T Xa, 5]

This means f,,(y,y 7 fu(x,) and the map [a, b] — N given by x — n(x) is one to one. This is a
contradiction since [a, b] is uncountable. Therefore L>[a, b] is not separable.

: |

2 Hx[u,n] X, 1)
>0



