Real Analysis MAA 6616 Lecture 26
 Bounded Linear Functionals on L^{p} Weak Convergence

Let $(X,\|\cdot\|)$ be a normed space. A linear functional on X is a map
$T: X \longrightarrow \mathbb{R}$ such that $T(\alpha f+\beta g)=\alpha T(f)+\beta T(g)$ for all $f, g \in X$ and $\alpha, \beta \in \mathbb{R}$.
Note that if T and S are two linear functional on X, and $a, b \in \mathbb{R}$, the $a T+b S$ defined on X by $(a T+b S)(f)=a T(f)+b S(f)$ is again a linear functional on X. Thus the set of all linear functionals on X is a linear space.
The linear functional T is said to be bounded if there exists $M>0$ such that $|T(f)| \leq M\|f\|$ for all $f \in X$. Denote by X^{*} the space of all bounded linear functionals on X. the space X^{*} is called the dual of X.
For linear functional $T \in X^{*}$, define $\|T\|_{*}$ by

$$
\|T\|_{*}=\inf \{M:|T f| \leq M\|f\| \text { for all } f \in X .\}=\sup \{|T f|: f \in X \text { with }\|f\| \leq 1 .\}
$$

Theorem (1)

$\left(X^{*},\|\cdot\|_{*}\right)$ is a normed space. Moreover, if X is a Banach space, then so is X^{*}.

Proof.

The verification that $\|\cdot\|_{*}$ is a norm is left as an exercise. Next we very that X^{*} is Banach when X is Banach. Let $\left\{T_{n}\right\}$ be a Cauchy sequence in X^{*}. Thus for any given $\epsilon>0$, there exists $N \in \mathbb{N}$ such that $\left\|T_{n}-T_{m}\right\|_{*}<\epsilon$ for all $n, m>N$. Hence for any given $f \in X$, we have $\left|T_{n} f-T_{m} f\right|<\epsilon\|f\|$. This implies that $\left\{T_{n} f\right\}$ is a Cauchy sequence in \mathbb{R}. Therefore $T_{n} f \rightarrow T(f)$ for some $T(f) \in \mathbb{R}$. It follows from the linearity of T_{n} that $\left.T_{n}(\alpha f+\beta g)\right) \rightarrow \alpha T(f)+\beta T(g)$ so that $T=\lim _{n \rightarrow \infty} T_{n}$ is a linear operator on X. Next we need to verify that T is bounded and $\left\|T-T_{n}\right\|_{*} \rightarrow 0$.
Since the sequence $\left\{T_{n}\right\}$ is Cauchy, then it is uniformly bounded (by M). It follows that for $f \in X$, we have $|T f| \leq \lim _{n \rightarrow \infty}\left[\left|T f-T_{n} f\right|+\left|T_{n} f\right|\right] \leq \lim _{n \rightarrow \infty}\left[\left|T f-T_{n} f\right|+M\|f\|\right] \leq M\|f\|$. Hence $T \in X^{*}$. Finally, for $\epsilon>0$ there exists $f \in X$ with $\|f\| \leq 1$, such that $\left\|T-T_{n}\right\|_{*} \leq\left|T f-T_{n} f\right|+\epsilon$. Since $\left|T f-T_{n} f\right| \rightarrow 0$, then $\left\|T-T_{n}\right\|_{*} \rightarrow 0$.

Bounded Functional on $L^{p}(E)$

Let $E \subset \mathbb{R}^{n}$ measurable. For $1 \leq p<\infty$, the dual space of $L^{p}(E)$ is the space

$$
L^{p}(E)^{*}=\left\{T: L^{p}(E) \longrightarrow \mathbb{R}: T \text { linear and bounded }\right\}
$$

with norm
$\|T\|_{*}=\inf \left\{M:|T f| \leq M\|f\|_{p}\right.$ for all $\left.f \in L^{p}(E).\right\}=\sup \left\{|T f|: f \in L^{p}(E)\right.$ with $\|f\| \leq 1$. $\}$

Theorem (2)

Let $1 \leq p<\infty$. Then $L^{p}(E)^{*} \cong L^{q}(E)$, where q is the conjugate of p.
The theorem says that the dual of $L^{p}(E)$ can be identified through an isometry with the space $L^{q}(E)$ where $1 / p+1 / q=1$. This is an important theorem in analysis whose proof will be postponed until we develop the necessary tools of abstract measure theory and prove another result: Radon-Nikodym Theorem. For now we take a closer look at bounded functionals on L^{p}.
For a real number a define $\operatorname{sgn}(a)=1$ if $a>0, \operatorname{sgn}(a)=0$ if $a=0$, and $\operatorname{sgn}(a)=-1$ if $a<0$.

Lemma (1)

Let $1 \leq q<\infty$ and $g \in L^{q}(E)$ with $g \neq 0$, then the function $g^{*}=\|g\|_{q}^{1-q} \operatorname{sgn}(g)|g|^{q-1}$ is in $L^{p}(E)$ with $p^{-1}+q^{-1}=1$ and $\left\|g^{*}\right\|_{p}=1$.

Proof.

Use the relation $p(q-1)=q$ to get

$$
\left\|g^{*}\right\|_{p}^{p}=\|g\|_{q}^{p(1-q)} \int_{E}|g|^{p(q-1)}=\|g\|_{q}^{p(1-q)}\|g\|_{q}^{p(q-1)}=1
$$

Theorem (3)

Let $1<p \leq \infty$ and $1 \leq q<\infty$ with $p^{-1}+q^{-1}=1$. Let $g \in L^{q}(E)$. Consider the map $T: L^{p}(E) \longrightarrow \mathbb{R}$ given by

$$
T f=\int_{E} f g d m
$$

Then $T \in L^{p}(E)^{*}$ and $\|T\|_{*}=\|g\|_{q}$.

Proof.

The linearity of T follows from the linearity of the integral. The boundedness of T follows from Hölder inequality:

$$
|T f|=\left|\int_{E} f g d m\right| \leq \int_{E}|f||g| d m \leq\|g\|_{q}\|f\|_{p}
$$

So $T \in L^{p}(E)^{*}$ and $\|T\|_{*} \leq\|g\|_{q}$. It remains to show that $\|g\|_{q} \leq\|T\|_{*}$.
For this, we first consider the case $p=\infty$ so that $q=1$. Let $f=\operatorname{sgn}(g)\left(\|f\|_{\infty}=1\right)$. Then
$T(f)=\int_{E}|g| d m=\|g\|_{1}\|f\|_{\infty}$. This means that $\|g\|_{1} \leq\|T\|_{*}$ and the theorem is proved in this case.
When $p<\infty$. Let $f=g^{*}$, where g^{*} is the function given in Lemma 1. Then $f \in L^{p}(E)$ and $\|f\|_{p}=1$. We have

$$
|T f|=\left|\int_{E} g^{*} g d m\right|=\int_{E}\|g\|_{q}^{1-q}|g|^{q}=\|g\|_{q}^{1-q}\|g\|_{q}^{q}=\|g\|_{q}\|f\|_{p}
$$

Therefore $\|g\|_{q} \leq\|T\|_{\text {* }}$.
The next step is to show that if $T \in L^{p}(E)^{*}$, then there exists a unique element $g \in L^{q}(E)$ such that T is given by

$$
T f=\int_{E} f g d m \text { for all } f \in L^{p}(E)
$$

This is known as the Riesz representation.

Recall that the Bolzano Weierstrass Theorem states if $\left\{x_{j}\right\}$ is a bounded sequence in \mathbb{R}^{n}, then it has a convergent subsequence. This result does not extend to infinite dimensional Banach spaces. In particular there exist bounded sequences in L^{p} spaces that do not have convergent subsequences.

Example

Consider the sequence $\left\{f_{n}\right\}$ defined in $[0,1]$ by

$$
f_{n}(x)=(-1)^{j} \text { for } \frac{j}{2^{n}} \leq x<\frac{j+1}{2^{n}} \text { with } j=0,1, \cdots, 2^{n}-1
$$

For $1 \leq p \leq \infty$, each function f_{n} is in $L^{p}([0,1])$ and moreover, $\left\|f_{n}\right\|_{p}=1$ for all n (since $\left|f_{n}(x)\right|=1$ for all x. Therefore $\left\{f_{n}\right\}$ is a bounded sequence in $L^{p}([0,1])$.
Now consider two positive integers $n>m$. Write $n=m+r$ with $r>0$. Let $j \in\left\{0, \cdots, 2^{m}-1\right\}$. The function f_{m} is constant on the interval $I_{j}=\left[\frac{j}{2^{m}}, \frac{j+1}{2^{m}}\right)\left(f_{m}=(-1)^{j}\right)$. In the interval I_{j}, there are 2^{r} intervals $J_{j, k}=\left[\frac{j+k}{2^{m+r}}, \frac{j+k+1}{2^{m+r}}\right)$ in each of which f_{m+r} is constant $f_{m+r}=(-1)^{j+k}$ on $J_{j, k}$. Therefore $\left|f_{m}-f_{m+r}\right|=2$ on the union of 2^{r-1} such intervals with total measure $\frac{2^{r-1}}{2^{m+r}}=2^{-(m+1)}$. Since there are 2^{m} such intervals I_{j}, this means that $\left|f_{m}-f_{m+r}\right|=2$ on a union of intervals with total length 2^{-1}. Consequently, $\left\|f_{n}-f_{m}\right\|_{p}=2^{1-\frac{1}{p}}$. This implies that the sequence does not have any Cauchy subsequence in $L^{p}([0,1])$.

Let $(X,\|\cdot\|)$ be a normed space. A sequence $\left\{f_{n}\right\} \subset X$ is said to converge weakly to f in X if for every $T \in X^{*}$ the sequence $\left\{T f_{n}\right\} \subset \mathbb{R}$ converges to $T f\left(\lim _{n \rightarrow \infty} T f_{n}=T f\right)$. In this case we write $f_{n} \rightharpoonup f$ in X.
This mode of convergence is different from the strong convergence $f_{n} \rightarrow f$ in X which means $\lim _{n \rightarrow \infty}\left\|f-f_{n}\right\|=0$.
Note that

$$
\left[f_{n} \rightarrow f \text { in } X\right] \Longrightarrow\left[f_{n} \rightharpoonup f \text { in } X\right]
$$

Indeed, suppose $f_{n} \rightarrow f$ in X. Let $T \in X^{*}$, then

$$
\left|T f_{n}-T f\right|=\left|T\left(f_{n}-f\right)\right| \leq\|T\|_{*}\left\|f_{n}-f\right\| \rightarrow 0 .
$$

Therefore $f_{n} \rightharpoonup f$. The converse is not true.
Since for for a measurable set E and $1 \leq p<\infty$ the dual space of $L^{p}(E)$ is identified with $L^{q}(E)$ where q is the conjugate of p (i.e. $L^{p}(E)^{*} \cong L^{q}(E)$ to be established), then we have

Proposition (1)

Let $\left\{f_{n}\right\} \subset L^{p}(E)$. Then $f_{n} \rightharpoonup f$ in $L^{p}(E)$ if and only iffor every $g \in L^{q}(E)$ (where $p^{-1}+q^{-1}=1$) we have

$$
\lim _{n \rightarrow \infty} \int_{E} g f_{n} d m=\int_{E} g f d m
$$

Proposition (2)

A sequence $\left\{f_{n}\right\} \subset L^{p}(E)$ can converges weakly to at most one limit $f \in L^{p}(E)$.

Proof.

Suppose that $\left\{f_{n}\right\} \subset L^{p}(E)$ is such that $f_{n} \rightharpoonup f^{1}$ and $f_{n} \rightharpoonup f^{2}$, we need to show $f^{1}=f^{2}$. Let $g=\left(f^{1}-f^{2}\right)^{*}=\left\|f^{1}-f^{2}\right\|_{p}^{1-p} \operatorname{sign}\left(f^{1}-f^{2}\right)\left|f^{1}-f^{2}\right|^{p-1}\left(\right.$ considered in Lemma 1). Then $g \in L^{q}(E)$ and $\|g\|_{q}=1$, where q is the conjugate of p. We have

$$
\int_{E} g f^{1} d m=\lim _{n \rightarrow \infty} \int_{E} g f_{n} d m=\int_{E} g f^{2} d m
$$

As a consequence we have $0=\int_{E} g\left(f^{1}-f^{2}\right) d m=\int_{E}\left(f^{1}-f^{2}\right)^{*}\left(f^{1}-f^{2}\right) d m=\left\|f^{1}-f^{2}\right\|_{p}$. Therefore $f^{1}=f^{2}$.

Theorem (4)

If $\left\{f_{n}\right\} \subset L^{p}(E)$ converges weakly to f, then $\left\{f_{n}\right\}$ is bounded and $\|f\|_{p} \leq \liminf _{n \rightarrow \infty}\left\|f_{n}\right\|_{p}$.

Proof.

We start by proving the inequality. Let q be the conjugate of p and $f^{*} \in L^{q}$ be as in Lemma 1 . Then $\left\|f^{*}\right\|_{q}=1$ and it follows from Hölder's inequality that $\left|\int_{E} f^{*} f_{n} d m\right| \leq\left\|f^{*}\right\|_{q}\left\|f_{n}\right\|_{p}=\left\|f_{n}\right\|_{p}$. It follows from this and the weak convergence of $\left\{f_{n}\right\}$ that

$$
\|f\|_{p}=\int_{E} f^{*} f d m=\lim _{n \rightarrow \infty} \int_{E} f^{*} f_{n} d m \leq \liminf _{n \rightarrow \infty}\left\|f_{n}\right\|_{p}
$$

The boundedness of the sequence will be proved by contradiction. Suppose that $\left\{\left\|f_{n}\right\|_{p}\right\}_{n}$ is unbounded. In this case we are going to show that we can assume without loss of generality that $\left\|f_{n}\right\|_{p}=n 3^{n}$ for all n. This will be achieved by replacing (if necessary) the initially given sequence $\left\{f_{n}\right\}$ by subsequence.

Proof.

CONTINUED: Since our assumption is $\left\{\left\|f_{n}\right\|_{p}\right\}_{n}$ is unbounded, then there exists n_{1} such that $\left\|f_{n_{1}}\right\|_{p} \geq 3$. Let n_{2} be the first integer $>n_{1}$ such that $\left\|f_{n_{2}}\right\|_{p} \geq 2 \cdot 3^{2}$. By induction, suppose that we have $n_{1}<n_{2}<\cdots<n_{j}$ such that $\left\|f_{n_{k}}\right\|_{p} \geq k 3^{k}$ for $k=1, \cdots, j$. Let n_{j+1} be the first integer $>n_{j}$ such that $\left\|f_{n_{j+1}}\right\|_{p} \geq(j+1) 3^{j+1}$. Hence we can assume (after replacing $\left\{f_{n}\right\}_{n}$ by its subsequence $\left.\left\{f_{n_{j}}\right\}_{j}\right)$ that $\left\|f_{n}\right\|_{p} \geq n 3^{n}$ for all n.
Now let $r_{n}=\frac{f_{n}}{n 3^{n}}$ then $\left\|r_{n}\right\|_{p} \geq 1$ for all n. If $\left\{\left\|r_{n}\right\|_{p}\right\}_{n}$ is bounded, then we can find a subsequence $\left\{r_{n_{j}}\right\}_{j}$ such that $\left\|r_{n_{j}}\right\|_{p}$ converges to a limit $\alpha \geq 1$. If $\left\{\left\|r_{n}\right\|_{p}\right\}_{n}$ is unbounded, then we can find a subsequence $\left\{r_{n_{j}}\right\}_{j}$ that converges to ∞. In both cases we have a subsequence $\left\{r_{n_{j}}\right\}_{j}$ such that $\left\|r_{n_{j}}\right\|_{p} \rightarrow \alpha$ with $\alpha \in[1, \infty]$. This means that we can assume that $\left\|\frac{f_{n}}{n 3^{n}}\right\|_{p}$ converges to $\alpha \in[1, \infty]$.
Next, let $s_{n}=\frac{n 3^{n}}{\left\|f_{n}\right\|_{p}} f_{n}$. Then $\left\|s_{n}\right\|_{p}=n 3^{n}$. Moreover, for any $g \in L^{q}(E)$ we have

$$
\int_{E} s_{n} g d m=\frac{n 3^{n}}{\left\|f_{n}\right\|_{p}} \int_{E} f_{n} g d m \longrightarrow \frac{1}{\alpha} \int_{E} f g d m
$$

This means $s_{n} \rightharpoonup f / \alpha$.
After this reduction, we are now in a situation where $\left\|f_{n}\right\|_{p}=n 3^{n}$ and $f_{n} \rightharpoonup f$. For each n let $f_{n}^{*} \in L^{q}(E)$ be the function defined in Lemma 1 so that $\left\|f_{n}^{*}\right\|_{q}=1$. Define the sequence of real numbers $\left\{\beta_{k}\right\}$ as follows: $\beta_{1}=\frac{1}{3} ; \beta_{2}=\frac{1}{3^{2}}$ if $\int_{E} f_{1}^{*} f_{2} d m \geq 0$ and $\beta_{2}=\frac{-1}{3^{2}}$ if $\int_{E} f_{1}^{*} f_{2} d m<0$. In general, suppose that $\beta_{1}, \cdots, \beta_{n}$ are defined, we define β_{n+1} as

$$
\beta_{n+1} \begin{cases}\frac{1}{3^{n+1}} & \text { if } \int_{E}\left[\sum_{j=1}^{n} \beta_{j} f_{j}^{*}\right] f_{n+1} d m \geq 0 \\ \frac{-1}{3^{n+1}} & \text { if } \int_{E}\left[\sum_{j=1}^{n} \beta_{j} f_{j}^{*}\right] f_{n+1} d m<0\end{cases}
$$

Proof.

CONTINUED: Note that since $\int_{E} f_{n}^{*} f_{n} d m=\left\|f_{n}\right\|_{p}=n 3^{n}$ and since β_{n} and $\int_{E}\left[\sum_{j=1}^{n-1} \beta_{j} f_{j}^{*}\right] f_{n} d m$ have the same sign, then

$$
\left|\int_{E}\left[\sum_{j=1}^{n} \beta_{j} f_{j}^{*}\right] f_{n} d m\right|=\left|\int_{E}\left[\sum_{j=1}^{n-1} \beta_{j} f_{j}^{*}\right] f_{n} d m+\int_{E} \beta_{n} f_{n}^{*} f_{n} d m\right| \geq \frac{1}{3^{n}}\left\|f_{n}\right\|_{p}=n
$$

Consider the sequence in $L^{q}(E)$ given by $g_{n}=\sum_{j=1}^{n} \beta_{j} f_{j}^{*}$. We have $\left\|\beta_{j} f_{j}^{*}\right\|_{q}=3^{-j}$. Hence for $n=m+k>m$, we have

$$
\left\|g_{n}-g_{m}\right\|_{q}=\left\|\sum_{j=1}^{k} \beta_{m+j} f_{m+j}^{*}\right\|_{q} \leq \sum_{j=1}^{k}\left\|\beta_{m+j} f_{m+j}^{*}\right\|_{p}=\sum_{j=1}^{k} \frac{1}{3^{m+j}} \leq \frac{1}{3^{m}}
$$

This means that the sequence $\left\{g_{n}\right\}$ is a Cauchy sequence in the Banach space $L^{q}(E)$. Hence $g_{n}=\sum_{j=1}^{n} \beta_{j} f_{j}^{*} \longrightarrow g=\sum_{j=1}^{\infty} \beta_{j} f_{j}^{*} \in L^{q}(E)$.
Next, we use the triangle inequality, Hölder inequality, together with $\left\|f_{n}\right\|_{p}=n 3^{n}$ to obtain

$$
\begin{aligned}
\left|\int_{E} g f_{n} d m\right| & =\left|\int_{E}\left[\sum_{j=1}^{\infty} \beta_{j} f_{j}^{*}\right] f_{n} d m\right| \geq\left|\int_{E}\left[\sum_{j=1}^{n} \beta_{j} f_{j}^{*}\right] f_{n} d m\right|-\left|\int_{E}\left[\sum_{j=n+1}^{\infty} \beta_{j} f_{j}^{*}\right] f_{n} d m\right| \\
& \geq n-\left(\sum_{j=n+1}^{\infty} \frac{1}{3^{j}}\right)\left\|f_{n}\right\|_{p}=n-\frac{1}{3^{n+1}}\left(\sum_{k=0}^{\infty} \frac{1}{3^{k}}\right) n 3^{n} \\
& \geq \frac{n}{2}
\end{aligned}
$$

This implies that $\lim _{n \rightarrow \infty} \int_{E} g f_{n} d m \neq \int_{E} g f d m$ and this contradicts $f_{n} \rightharpoonup f$. Conclusion the sequence $\left\{f_{n}\right\}$ is bounded in $L^{p}(E)$

