Real Analysis MAA 6616 Lecture 26 Bounded Linear Functionals on *L^p* Weak Convergence

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Bounded Linear Functionals

Let $(X, \|\cdot\|)$ be a normed space. A linear functional on X is a map $T: X \longrightarrow \mathbb{R}$ such that $T(\alpha f + \beta g) = \alpha T(f) + \beta T(g)$ for all $f, g \in X$ and $\alpha, \beta \in \mathbb{R}$.

Note that if T and S are two linear functional on X, and $a, b \in \mathbb{R}$, the aT + bS defined on X by (aT + bS)(f) = aT(f) + bS(f) is again a linear functional on X. Thus the set of all linear functionals on X is a linear space.

The linear functional T is said to be bounded if there exists M > 0 such that $|T(f)| \le M ||f||$ for all $f \in X$. Denote by X^{*} the space of all bounded linear functionals on X. the space X^{*} is called the dual of X.

For linear functional $T \in X^*$, define $||T||_*$ by $||T||_* = \inf \{M : |Tf| \le M ||f|| \text{ for all } f \in X.\} = \sup \{|Tf| : f \in X \text{ with } ||f|| \le 1.\}$

Theorem (1)

 $(X^*, \|\cdot\|_*)$ is a normed space. Moreover, if X is a Banach space, then so is X^* .

Proof.

The verification that $\|\cdot\|_{\infty}$ is a norm is left as an exercise. Next we very that X^* is Banach when X is Banach. Let $\{T_n\}$ be a Cauchy sequence in X^* . Thus for any given $\epsilon > 0$, there exists $N \in \mathbb{N}$ such that $||T_n - T_m||_* < \epsilon$ for all n, m > N. Hence for any given $f \in X$, we have $|T_n f - T_m f| < \epsilon ||f||$. This implies that $\{T_n f\}$ is a Cauchy sequence in \mathbb{R} . Therefore $T_n f \to T(f)$ for some $T(f) \in \mathbb{R}$. It follows from the linearity of T_n that $T_n(\alpha f + \beta g) \to \alpha T(f) + \beta T(g)$ so that $T = \lim_{n \to \infty} T_n$ is a linear operator on X. Next we need to verify that T is bounded and $||T - T_n||_* \to 0$. Since the sequence $\{T_n\}$ is Cauchy, then it is uniformly bounded (by M). It follows that for $f \in X$, we have $|Tf| \leq \lim_{n \to \infty} [|Tf - T_nf| + |T_nf|] \leq \lim_{n \to \infty} [|Tf - T_nf| + M ||f||] \leq M ||f||$. Hence $T \in X^*$. Finally, for $\epsilon > 0$ there exists $f \in X$ with $||f|| \leq 1$, such that $||T - T_n||_* \leq |Tf - T_nf| + \epsilon$. Since $|Tf - T_nf| \to 0$, then $||T - T_n|| \to 0.$

Bounded Functional on $L^p(E)$

Let $E \subset \mathbb{R}^n$ measurable. For $1 \leq p < \infty$, the dual space of $L^p(E)$ is the space $L^p(E)^* = \{T : L^p(E) \longrightarrow \mathbb{R} : T \text{ linear and bounded } \}$

with norm

 $\|T\|_{*} = \inf \left\{ M : |Tf| \le M \|f\|_{p} \text{ for all } f \in L^{p}(E). \right\} = \sup \left\{ |Tf| : f \in L^{p}(E) \text{ with } \|f\| \le 1. \right\}$

Theorem (2)

Let $1 \leq p < \infty$. Then $L^p(E)^* \cong L^q(E)$, where q is the conjugate of p.

The theorem says that the dual of $L^p(E)$ can be identified through an isometry with the space $L^q(E)$ where 1/p + 1/q = 1. This is an important theorem in analysis whose proof will be postponed until we develop the necessary tools of abstract measure theory and prove another result: Radon-Nikodym Theorem. For now we take a closer look at bounded functionals on L^p .

For a real number a define sgn(a) = 1 if a > 0, sgn(a) = 0 if a = 0, and sgn(a) = -1 if a < 0.

Lemma (1)

Let $1 \le q < \infty$ and $g \in L^{q}(E)$ with $g \ne 0$, then the function $g^{*} = ||g||_{q}^{1-q} \operatorname{sgn}(g) ||g|^{q-1}$ is in $L^{p}(E)$ with $p^{-1} + q^{-1} = 1$ and $||g^{*}||_{p} = 1$.

Proof.

Use the relation p(q - 1) = q to get

$$\left\|s^*\right\|_p^p = \|s\|_q^{p(1-q)} \int_E |s|^{p(q-1)} = \|s\|_q^{p(1-q)} \ \|s\|_q^{p(q-1)} = 1$$

Theorem (3)

Let $1 and <math>1 \le q < \infty$ with $p^{-1} + q^{-1} = 1$. Let $g \in L^q(E)$. Consider the map $T : L^p(E) \longrightarrow \mathbb{R}$ given by

$$If = \int_E fgdm$$

Then $T \in L^{p}(E)^{*}$ *and* $||T||_{*} = ||g||_{q}$.

Proof.

The linearity of T follows from the linearity of the integral. The boundedness of T follows from Hölder inequality:

$$|Tf| = \left| \int_E fgdm \right| \le \int_E |f| |g| dm \le ||g||_q ||f||_p.$$

So $T \in L^p(E)^*$ and $||T||_* \le ||g||_q$. It remains to show that $||g||_q \le ||T||_*$. For this, we first consider the case $p = \infty$ so that q = 1. Let $f = \operatorname{sgn}(g) (||f||_{\infty} = 1)$. Then $T(f) = \int_E |g| \, dm = ||g||_1 \, ||f||_{\infty}$. This means that $||g||_1 \le ||T||_*$ and the theorem is proved in this case. When $p < \infty$. Let $f = g^*$, where g^* is the function given in Lemma 1. Then $f \in L^p(E)$ and $||f||_p = 1$. We have

$$|Tf| = \left| \int_{E} g^{*} g dm \right| = \int_{E} ||g||_{q}^{1-q} ||g||_{q}^{q} = ||g||_{q}^{1-q} ||g||_{q}^{q} = ||g||_{q} ||f||_{I}$$

Therefore $\|g\|_q \leq \|T\|_*$.

The next step is to show that if $T \in L^p(E)^*$, then there exists a unique element $g \in L^q(E)$ such that T is given by

$$Tf = \int_E fg \, dm \text{ for all } f \in L^p(E) \, .$$

This is known as the Riesz representation.

Recall that the Bolzano Weierstrass Theorem states if $\{x_j\}$ is a bounded sequence in \mathbb{R}^n , then it has a convergent subsequence. This result does not extend to infinite dimensional Banach spaces. In particular there exist bounded sequences in L^p spaces that do not have convergent subsequences.

Example

Consider the sequence $\{f_n\}$ defined in [0, 1] by $f_n(x) = (-1)^j$ for $\frac{j}{2^n} \le x < \frac{j+1}{2^n}$ with $j = 0, 1, \cdots, 2^n - 1$

For $1 \le p \le \infty$, each function f_n is in $L^p([0, 1])$ and moreover, $||f_n||_p = 1$ for all n (since $|f_n(x)| = 1$ for all x. Therefore $\{f_n\}$ is a bounded sequence in $L^p([0, 1])$. Now consider two positive integers n > m. Write n = m + r with r > 0. Let $j \in \{0, \dots, 2^m - 1\}$. The function f_m is constant on the interval $I_j = \left[\frac{j}{2^m}, \frac{j+1}{2^m}\right)(f_m = (-1)^{j})$. In the interval I_j , there are 2^r intervals $J_{j,k} = \left[\frac{j+k}{2^{m+r}}, \frac{j+k+1}{2^{m+r}}\right)$ in each of which f_{m+r} is constant $f_{m+r} = (-1)^{j+k}$ on $J_{j,k}$. Therefore $|f_m - f_{m+r}| = 2$ on the union of 2^{r-1} such intervals with total measure $\frac{2^r-1}{2^{m+r}} = 2^{-(m+1)}$. Since there are 2^m such intervals I_j , this means that $|f_m - f_{m+r}| = 2$ on a union of intervals with total length 2^{-1} . Consequently, $||f_n - f_m||_p = 2^{1-\frac{1}{p}}$. This implies that the sequence does not have any Cauchy subsequence in $L^p([0, 1])$.

Weak Convergence

Let $(X, \|\cdot\|)$ be a normed space. A sequence $\{f_n\} \subset X$ is said to converge weakly to f in X if for every $T \in X^*$ the sequence $\{Tf_n\} \subset \mathbb{R}$ converges to Tf ($\lim_{n\to\infty} Tf_n = Tf$). In this case we write $f_n \to f$ in X.

This mode of convergence is different from the strong convergence $f_n \to f$ in X which means $\lim_{n\to\infty} ||f - f_n|| = 0$.

Note that

$$[f_n \to f \text{ in } X] \implies [f_n \to f \text{ in } X]$$

Indeed, suppose $f_n \to f$ in X. Let $T \in X^*$, then
$$|Tf_n - Tf| = |T(f_n - f)| \le ||T||_* ||f_n - f|| \to 0.$$

Therefore $f_n \to f$. The converse is not true.

Therefore $f_n \rightarrow f$. The converse is not true.

Since for for a measurable set *E* and $1 \le p < \infty$ the dual space of $L^p(E)$ is identified with $L^q(E)$ where *q* is the conjugate of *p* (i.e. $L^p(E)^* \cong L^q(E)$ to be established), then we have

Proposition (1)

Let $\{f_n\} \subset L^p(E)$. Then $f_n \to f$ in $L^p(E)$ if and only if for every $g \in L^q(E)$ (where $p^{-1} + q^{-1} = 1$) we have

$$\lim_{n \to \infty} \int_E gf_n \, dm = \int_E gf \, dm$$

Proposition (2)

A sequence $\{f_n\} \subset L^p(E)$ can converges weakly to at most one limit $f \in L^p(E)$.

Proof.

Suppose that $\{f_n\} \subset L^p(E)$ is such that $f_n \to f^1$ and $f_n \to f^2$, we need to show $f^1 = f^2$. Let $g = (f^1 - f^2)^* = \left\|f^1 - f^2\right\|_p^{1-p} \operatorname{sign}(f^1 - f^2) \left|f^1 - f^2\right|^{p-1}$ (considered in Lemma 1). Then $g \in L^q(E)$ and $\|g\|_q = 1$, where q is the conjugate of p. We have

 $\int_{E} gf^{1} dm = \lim_{n \to \infty} \int_{E} gf_{n} dm = \int_{E} gf^{2} dm .$ As a consequence we have $0 = \int_{E} g(f^{1} - f^{2}) dm = \int_{E} (f^{1} - f^{2})^{*} (f^{1} - f^{2}) dm = \left\| f^{1} - f^{2} \right\|_{p}$. Therefore $f^{1} = f^{2}$. \Box

Theorem (4)

If $\{f_n\} \subset L^p(E)$ converges weakly to f, then $\{f_n\}$ is bounded and $\|f\|_p \leq \liminf_{n \to \infty} \|f_n\|_p$.

Proof.

We start by proving the inequality. Let q be the conjugate of p and $f^* \in L^q$ be as in Lemma 1. Then $||f^*||_q = 1$ and it follows from Hölder's inequality that $\left| \int_E f^* f_n dm \right| \leq ||f^*||_q ||f_n||_p = ||f_n||_p$. It follows from this and the weak convergence of $\{f_n\}$ that

$$\|f\|_p = \int_E f^* f \, dm = \lim_{n \to \infty} \int_E f^* f_n dm \le \liminf_{n \to \infty} \|f_n\|_p \, .$$

The boundedness of the sequence will be proved by contradiction. Suppose that $\{||f_n||_p\}_n$ is unbounded. In this case we are going to show that we can assume without loss of generality that $||f_n||_p = n3^n$ for all *n*. This will be achieved by replacing (if necessary) the initially given sequence $\{f_n\}$ by subsequence.

Proof.

CONTINUED: Since our assumption is $\{\|f_n\|_p\}_n$ is unbounded, then there exists n_1 such that $\|f_{n_1}\|_p \ge 3$. Let n_2 be the first integer > n_1 such that $\|f_{n_2}\|_{L^2} \ge 2 \cdot 3^2$. By induction, suppose that we have $n_1 < n_2 < \cdots < n_j$ such that $\|f_{n_k}\|_{L^2} \ge k3^k$ for $k = 1, \dots, j$. Let n_{j+1} be the first integer $> n_j$ such that $\left\| f_{n_{j+1}} \right\|_n \ge (j+1)3^{j+1}$. Hence we can assume (after replacing $\{f_n\}_n$ by its subsequence $\{f_{n_i}\}_j$ that $||f_n||_p \ge n3^n$ for all n. Now let $r_n = \frac{f_n}{r_n}$ then $||r_n||_p \ge 1$ for all *n*. If $\{||r_n||_p\}_n$ is bounded, then we can find a subsequence $\{r_{n_j}\}_j$ such that $\|r_{n_j}\|_{\infty}$ converges to a limit $\alpha \ge 1$. If $\{\|r_n\|_p\}_n$ is unbounded, then we can find a subsequence $\{r_{n_j}\}_j$ that converges to ∞ . In both cases we have a subsequence $\{r_{n_j}\}_j$ such that $\|r_{n_j}\|_p \to \alpha$ with $\alpha \in [1, \infty]$. This means that we can assume that $\left\|\frac{J_n}{n^{3^n}}\right\|_n$ converges to $\alpha \in [1, \infty]$. Next, let $s_n = \frac{n3^n}{\||f_n\||_p} f_n$. Then $\|s_n\|_p = n3^n$. Moreover, for any $g \in L^q(E)$ we have $\int_E s_n g \, dm = \frac{n3^n}{\|f_n\|_n} \int_E f_n g \, dm \longrightarrow \frac{1}{\alpha} \int_{\varepsilon} fg \, dm$ This means $s_n \rightarrow f/\alpha$.

After this reduction, we are now in a situation where $\|f_n\|_p = n3^n \text{ and } f_n \to f$. For each $n \operatorname{let} f_n^* \in L^q(E)$ be the function defined in Lemma 1 so that $\|f_n^*\|_q = 1$. Define the sequence of real numbers $\{\beta_k\}$ as follows: $\beta_1 = \frac{1}{3}$; $\beta_2 = \frac{1}{3^2}$ if $\int_E f_1^* f_2 dm \ge 0$ and $\beta_2 = \frac{-1}{3^2}$ if $\int_E f_1^* f_2 dm < 0$. In general, suppose that β_1, \dots, β_n are defined, we define β_{n+1} as $\beta_{n+1} \begin{cases} \frac{1}{3^{n+1}} & \text{if } \int_E \left[\sum_{j=1}^n \beta_j f_j^*\right] f_{n+1} dm \ge 0; \\ \frac{-1}{3^{n+1}} & \text{if } \int_E \left[\sum_{j=1}^n \beta_j f_j^*\right] f_{n+1} dm < 0. \end{cases}$

Proof.

CONTINUED: Note that since $\int_E f_n^* f_n dm = \|f_n\|_p = n3^n$ and since β_n and $\int_E \left[\sum_{j=1}^{n-1} \beta_j f_j^*\right] f_n dm$ have the same sign, then $\left|\int_E \left[\sum_{j=1}^n \beta_j f_j^*\right] f_n dm\right| = \left|\int_E \left[\sum_{j=1}^{n-1} \beta_j f_j^*\right] f_n dm + \int_E \beta_n f_n^* f_n dm\right| \ge \frac{1}{3^n} \|f_n\|_p = n$

Consider the sequence in $L^{q}(E)$ given by $g_{n} = \sum_{j=1}^{n} \beta_{j} f_{j}^{*}$. We have $\left\| \beta_{j} f_{j}^{*} \right\|_{q} = 3^{-j}$. Hence for n = m + k > m, we have

$$\|g_n - g_m\|_q = \left\|\sum_{j=1}^k \beta_{m+j} f_{m+j}^*\right\|_q \le \sum_{j=1}^k \left\|\beta_{m+j} f_{m+j}^*\right\|_p = \sum_{j=1}^k \frac{1}{3^{m+j}} \le \frac{1}{3^n}$$

This means that the sequence $\{g_n\}$ is a Cauchy sequence in the Banach space $L^q(E)$. Hence

$$g_n = \sum_{j=1}^n \beta_j f_j^* \longrightarrow g = \sum_{j=1}^\infty \beta_j f_j^* \in L^q(E).$$

Next, we use the triangle inequality, Hölder inequality, together with $||f_n||_p = n3^n$ to obtain

$$\begin{aligned} \left| \int_{E} gf_{n} \, dm \right| &= \left| \int_{E} \left[\sum_{j=1}^{\infty} \beta_{j} f_{j}^{*} \right] f_{n} dm \right| \geq \left| \int_{E} \left[\sum_{j=1}^{n} \beta_{j} f_{j}^{*} \right] f_{n} dm \right| - \left| \int_{E} \left[\sum_{j=n+1}^{\infty} \beta_{j} f_{j}^{*} \right] f_{n} dm \right| \\ &\geq n - \left(\sum_{j=n+1}^{\infty} \frac{1}{3^{j}} \right) \| f_{n} \|_{p} = n - \frac{1}{3^{n+1}} \left(\sum_{k=0}^{\infty} \frac{1}{3^{k}} \right) n3^{n} \\ &\geq \frac{n}{2} \end{aligned}$$

lies that $\lim_{n \to \infty} \int_{E} gf_{n} dm \neq \int_{E} gf dm$ and this contradicts $f_{n} \to f$. Conclusion the sequence $\{f_{n}\}$ is bounded

This implies that $\lim_{n \to \infty} \int_E gf_n dm \neq \int_E gf dm$ and this contradicts $f_n \to f$. Conclusion the sequence $\{f_n\}$ is bounded in $L^p(E)$

(日)