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Weak Convergence: Some Consequences



Proposition (1)
Let E ⊂ Rn be measurable, 1 ≤ p < ∞ and let q be the conjugate of p. If {fn}n is a weakly
convergent sequence to f in Lp(E) and {gn}n is a strongly convergent sequence to g in Lq(E)
(i.e fn ⇀ f in Lp and gn → g in Lq), then

lim
n→∞

∫
E

fngndm =

∫
E

fgdm.

Proof.
Let ϵ > 0. Since fn ⇀ f , then {fn} is bounded. Let M > 0 such that ∥fn∥p ≤ M for all n. It follows from the weak

convergence of fn that lim
n→∞

∫
E

gfn =

∫
E

gf and therefore there exists N1 > 0 such that∣∣∣∣∫
E

gfn −
∫

E
gf
∣∣∣∣ ≤

ϵ

2
for all n ≥ N1.

The sequence {gn} converges strongly to g in Lq(E) implies that there exists N2 > 0 such that ∥gn − g∥q <
ϵ

2M
for all

n ≥ N2 .

Let N = max(N1, N2). For n > N, we have∣∣∣∣∫
E

fngndm −
∫

E
fgdm

∣∣∣∣ =

∣∣∣∣∫
E

fn(gn − g)dm +

∫
E
(fn − f )gdm

∣∣∣∣ ≤
∣∣∣∣∫

E
fn(gn − g)dm

∣∣∣∣ + ∣∣∣∣∫
E
(fn − f )gdm

∣∣∣∣
≤ ∥fn∥p ∥gn − g∥q +

ϵ

2
≤ M

ϵ

2M
+

ϵ

2
= ϵ

Let X be a linear space. A subset Y ⊂ X is said to be the linear span of a subset F ⊂ X if Y is
generated by finite linear combination of elements in F . That is, for every y ∈ Y , there exists
f1, · · · , fn ∈ F and a1, · · · , an ∈ R such that

y =
n∑

j=1

ajfj

In this case we write Y = linspan(F).



Proposition (2)
Let E ⊂ Rn measurable, 1 ≤ p < ∞, and q be the conjugate of p. Let F ⊂ Lq(E) be such that
linspan(F) is dense in Lq(E). A bounded sequence {fn}n ⊂ Lp(E) converges weakly to f if and
only if

lim
n→∞

∫
E

fng dm =

∫
E

fg dm for all g ∈ F

Proof.
"⇐⇒" This implication is clear since the condition in proposition holds for all g ∈ Lq(E) and linspan(F) ⊂ Lq(E).

"=⇒" We need to show that lim
n→∞

∫
E
(fn − f )h dm = 0 for all h ∈ Lq(E). Provided that the limit holds for all

g ∈ linspan(F).
Let h ∈ Lq(E) and ϵ > 0. Let M be an upper bound for {∥fn∥p}n . Since linspan(F) is dense in Lq(E), then there is

g ∈ linspan(F) such that ∥g − h∥q ≤
ϵ

2(M + ∥f∥p)
. For such g ∈ linspan(F) there exists N ∈ N such that∣∣∣∣∫

E
(fn − f )g dm

∣∣∣∣ <
ϵ

2
for all n > N.

It follows that for n > N we have∣∣∣∣∫
E
(fn − f )h dm

∣∣∣∣ ≤
∣∣∣∣∫

E
(fn − f )(h − g) dm

∣∣∣∣ + ∣∣∣∣∫
E
(fn − f )g dm

∣∣∣∣
≤ ∥fn − f∥p ∥h − g∥q +

ϵ

2
≤ (∥fn∥p + ∥f∥p)

ϵ

2(M + ∥f∥p)
+

ϵ

2
≤ ϵ



As an application we have the following characterization of weak convergence.

Theorem (1)
Let E ⊂ Rn be measurable and 1 ≤ p < ∞. A bounded sequence {fn}n ⊂ Lp(E) converges
weakly to f ∈ Lp(E) if and only if for every measurable set A ⊂ E we have

lim
n→∞

∫
A

fn dm =

∫
A

f dm.

Moreover, when p > 1 it is enough to consider only the subsets A with finite measure.

Proof.
Let M(E) be the collection of measurable subsets in E and let S(E) be the collection characteristic functions on subsets in

M(E):

S(E) =
{
χA : A ∈ M(E)

}
.

Then linspan(S(E)) is the space of simple functions and we know that it is dense in Lq(E). Hence it follows from the previous

proposition that a bounded sequence {fn}n ⊂ Lp(E) converges weakly to f ∈ Lp(E) if and only for every A ∈ M(E) we

have

lim
n→∞

∫
E

fnχA dm =

∫
E

fχA dm ⇐⇒ lim
n→∞

∫
A

fn dm =

∫
A

f dm.

When p > 1, the space of simple functions with finite support is dense in Lp(E).

Consider an interval [a, b] ⊂ R. The collection of step functions χ
[a, c] with a ≤ c ≤ b

generates (through linear combinations) the space of simple functions on [a, b]. Then as a
consequence of the above theorem we have.

Corollary (1)
Let 1 < p < ∞. A bounded sequence {fn}n ⊂ Lp[a, b] converges weakly to f ∈ Lp[a, b] if and
only if

lim
n→∞

∫ c

a
fndx =

∫ c

0
fdx for all c ∈ [a, b]



Example
(Riemann-Lebesgue Lemma) Consider the sequence of functions fn(x) = sin nx on the interval I = [−π, π]. We
have |fn| ≤ 1 for all n. Hence {fn}n is a bounded sequence in the space Lp(I). For c ∈ I, we have∣∣∣∣∣

∫ c

−π
fn(x)dx

∣∣∣∣∣ =

∣∣∣∣∣ − cos nx

n

]c

−π

∣∣∣∣∣ =

∣∣∣∣∣ (−1)n − cos nc

n

∣∣∣∣∣ ≤
2

n
−→ 0.

It follows from Corollary 1 that sin(nx) ⇀ 0 in Lp(I).
Now we prove that no subsequence of {sin(nx)}n converge to 0 in Lp(I). We use trigonometric identities to get

∥sin(nx)∥p
p =

∫ π

−π
|sin(nx)|p dx = 2

∫ π

0
|sin(nx)|p dx =

2

n

∫ nπ

0
|sin t|p dt

= 2
∫ π

0
sin tpdt = 4

∫ π/2

0
sin tpdt = 4

∫ π/2

0
sin t

(
1 − cos

2 t
) p−1

2 dt

= 4
∫ 1

0

(
1 − s2

) p−1
2 ds = 4

(
1 − τ

2
) p−1

2 for some τ ∈ (0, 1)

Hence ∥sin(nx)∥p = 4
1
p
(

1 − τ2
) p−1

2p for all n. It follows that no subsequence can converge to 0.

The next two examples show that a given sequence can converge pointwise but does not
converge weakly in L1. However the sequence converge weakly in Lp for p > 1.

Example
Let {fn}n ⊂ L1[0, 1] be given by fn = n χ

[0, 1/n]
. We have ∥fn∥1 = 1 for all n. Moreover, fn converges pointwise to

f = 0. However, fn does not converge weakly to f since if we take g = χ
[0, 1]

∈ L1[0, 1]∗ = L∞[0, 1], we have∫ 1

0
fng dx = 1 for all n and does not converge to

∫ 1

0
fg dx = 0



Example
Consider the function γ defined in R by γ(x) =

{
1 − |x| if |x| ≤ 1
0 if |x| > 1 Define the sequence {fn} by

fn(x) = γ(x − n)

We have fn → 0 pointwise on R, fn ∈ Lp(R) with ∥fn∥p =

( 2

p + 1

)1/p
.

Let A ⊂ R be any measurable set with m(A) < ∞. Let ϵ > 0. There exists N ∈ N such that
m (A ∩ {x : |x| ≥ N}) < ϵ. Then for n > N we have

0 ≤
∫

A
fndx =

∫
A∩{x: |x|≥N}

1dx ≤ ϵ.

This implies lim
n→∞

∫
A

fndx = 0 and so fn ⇀ 0 in Lp(R) for p > 1.

However, {fn} does not converge weakly to 0 in L1(R). Indeed, for the function g ≡ 1 ∈ L∞(R) = L1(R)∗ , we have∫
R

fngdx = 1 for all n and
∫
R

0gdx = 0.



Theorem (2)
Let E ⊂ Rn be measurable and 1 < p < ∞. If {fn} ⊂ Lp(E) is a bounded and converges
pointwise to f a.e. on E, then fn ⇀ f in Lp(E).

Proof.
We first show that f ∈ Lp(E). Let M > 0 be such that ∥fn∥p ≤ M for all n. Since |fn|p ∈ L1(E), then it follows from
Fatou’s lemma that ∫

E
|f |p dm ≤ lim inf

n→∞

∫
E
|fn|p dm ≤ Mp and so f ∈ Lp

(E).

To check that fn ⇀ f , it is enough to verify that (Theorem 1) for every A ⊂ E with m(E) < ∞, we have

lim
n→∞

∫
A

fndm =

∫
A

fdm.

We know (Lecture 26) that since the sequence {fn} is bounded in Lp(E), then it is uniformly integrable. As a consequence, the

Vitali Convergence Theorem implies lim
n→∞

∫
A

fndm =

∫
A

fdm.

Theorem (3)
Let E ⊂ Rn be measurable, 1 < p < ∞, and {fn} ⊂ Lp(E) . Suppose theat fn ⇀ f in Lp, then

fn → f in Lp(E) if and only if lim
n→∞

∥fn∥p = ∥f∥p .

Proof.
"=⇒" We already know that if a sequence converges strongly in a Banach space, then it converges weakly and the sequence of
the norms converge to the norm of the limit.

"⇐=" Suppose that fn ⇀ f in Lp and lim
n→∞

∥fn∥p = ∥f∥p . We are going to give the proof when p ≥ 2 and use the

following inequality (to be proved in Lemma 2))

∃c > 0 such that c|t|p ≤ |1 + t|p − 1 − pt ∀t ∈ R.

Use this inequality with t =
fn − f

f
and multiply by |f |p to get c|fn − f |p ≤ |fn|p − |f |p − p sgn(f )|f |p−1(fn − f ).

Notice that for g = sgn(f )|f |p−1 , after integration and passage to the limit we get

c ∥fn − f∥p
p ≤ ∥fn∥p

p − ∥f∥p
p − p

∫
E

g(fn − f )dm −→ 0



Lemma (2)
Let p ≥ 2 then there exists c > 0 such that c|t|p ≤ |1 + t|p − 1 − pt for all t ∈ R.

Proof.
Consider the function f (t) defined for t ̸= 0 by f (t) =

α(t)

|t|p
with α(t) = |1 + t|p − 1 − pt. Then lim

t→0
f (t) = ∞ and

lim
|t|→∞

f (t) = 1. Since α(0) = 0 and for t > 0 we have α′(t) = p((1 + t)p−1 − 1) > 0, then α(t) > 0 and

f (t) > 0. Therefore, f has a positive minimum value c1 on t > 0. A similar argument shows that f has a positive minimum c2

for t < 0. The estimate of the lemma follows for c = min(c1, c2)

A consequence of the previous theorem and Fatou’s Lemma is the following.

Corollary (2)
Let E ⊂ Rn be measurable, 1 < p < ∞, and {fn} ⊂ Lp(E) . Suppose theat fn ⇀ f in Lp, then
{fn} has a subsequence that converges strongly to f if and only if ∥f∥p = lim infn→∞ ∥fn∥p.

Theorem 3 does not extend to the case p = 1 as the following example shows.

Example
Let fn(x) = 1 + sin(nx). It follows from the previous example that fn ⇀ f = 1 in L1[−π, π]. However, fn does not
converge strongly to f (see previous example). But since each fn is nonnegative, then (as a consequence of the weak
convergence in L1) we also have ∥f∥1 = lim

n→∞
∥fn∥1 .


