Real Analysis MAA 6616
Lecture 27
Weak Convergence: Some Consequences



Proposition (1)

Let E C R" be measurable, 1 < p < oo and let q be the conjugate of p. If {fu }n is a weakly
convergent sequence to [ in LP (E) and {gn }n is a strongly convergent sequence to g in LI(E)
(i.efu = finLP and gn — gin L9), then

lim /fng,,dm = /fgdm.
E E
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Proof.

Lete > 0. Since f, — f, then {f, } is bounded. Let M > 0 such that ||f;,[|,, < M for all n. It follows from the weak

convergence of f;, that hm /gf,l / gf and therefore there exists Ny > 0 such that

Jesn = oo

€
The sequence {g, } converges strongly to g in L (E) implies that there exists N, > 0 such that ||g, — g||q < b for all
n > N;.

Let N = max(Ny, N;). Forn > N, we have

‘ / fugn — [ fgdm’ ‘ / Fauln — g)dm + é — f)gdm
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< — forall n > Nj.
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Let X be a linear space. A subset Y C X is said to be the linear span of a subset 7 C X if Y is
generated by finite linear combination of elements in F. That is, for every y € Y, there exists
fiso o fn € Fanday,--- ,a, € R such that

n
y=2_df
=1
In this case we write ¥ = linspan(F).



Proposition (2)

Let E C R" measurable, 1 < p < oo, and q be the conjugate of p. Let F C L1(E) be such that
linspan(F) is dense in L1(E). A bounded sequence {f,}n C L’ (E) converges weakly to f if and
only if

lim /f,,gdm: /fgdm forallg € F
n—oo E E

Proof.

"<=" This implication is clear since the condition in proposition holds for all g € L?(E) and linspan(F) C LI(E).

"==" We need to show that lifn /(f}l — f)hdm = Oforallh € L(E). Provided that the limit holds for all
n—oo [p

g € linspan(F).

Leth € LY(E) and € > 0. Let M be an upper bound for {||f, Hp}n Since linspan(F) is dense in LY (E), then there is
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/(fn 7f)gdm‘ < %foralln > N.
It tf)llows that forn > N we have
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g € linspan(F) such that ||g — hl| . For such g € linspan(F) there exists N € N such that

€

€
S — + —
2+ 7)) 2

IN



As an application we have the following characterization of weak convergence.

Theorem (1)

Let E C R" be measurable and 1 < p < oo. A bounded sequence {fy}, C L’ (E) converges
weakly to f € LP(E) if and only if for every measurable set A C E we have
lim /f,,dm* /fdm
n—00
Moreover, when p > 1 it is enough to consider only the subsets A with finite measure.

Proof.
Let M (E) be the collection of measurable subsets in E and let S(E) be the collection characteristic functions on subsets in
M(E):
S(E) = {x, : A€ M(B)}

Then linspan(S (E)) is the space of simple functions and we know that it is dense in L7 (E). Hence it follows from the previous
proposition that a bounded sequence {f, }, C L’ (E) converges weakly to f € L” (E) if and only for every A € M (E) we
have

”grrolo /Ef,,XA dm = /EfXA dm <— ngrr;o /Afn dm = /Afdm.
When p > 1, the space of simple functions with finite support is dense in L” (E). O

(@, witha <c<b
generates (through linear combinations) the space of simple functions on [a, b]. Then as a

consequence of the above theorem we have.

Consider an interval [a, b] C R. The collection of step functions x

Corollary (1)
Let 1 < p < co. A bounded sequence {f,}n C LP|a, D] converges weakly to f € LP[a, b] if and
only if
C C
lim [ fudx :/ fdx forallc € [a, b]
n—00 a 0



Example

(Riemann-Lebesgue Lemma) Consider the sequence of functions f, (x) = sin nx on the interval / = [—7, w]. We
have |f,| < 1 forall n. Hence {f; }, is a bounded sequence in the space L” (I). For ¢ € I, we have
c — cosnx]¢ (—1)" — cosnc 2
A e e i B R
J—x —x n n

1t follows from Corollary 1 that sin(nx) — 0in LP (I).
Now we prove that no subsequence of {sin(nx)}, converge to 0 in L” (I). We use trigonometric identities to get

. T P o P 2 pnmo P
Hsm(nx)“ﬁ = / [sin(nx)|” dx = 2/0 sin(nx)|" dx = ;/0 |sin t|” dt
™

p—1

. /2 /2
:2/ sint”dt:4/ sint"dt:4/ sint(l 7coszt) dr

0 0 0

! PN ( z)”%' © 1)
:4/ 1—v ds=4(1—71 - for some 7 € (0, 1

(=)

1 p—1
Hence ||sin(nx) HI’ =4r (l — 7_2) 2 for all n. It follows that no subsequence can converge to 0.

The next two examples show that a given sequence can converge pointwise but does not
converge weakly in L!. However the sequence converge weakly in I for p > 1.

Example
Let {fu}a C L'[0, 1] be givenbyfy = nxy |

f = 0. However, f;, does not converge weakly to f since if we take g = x

. We have ||f,||; = 1 for all n. Moreover, f;, converges pointwise to

o1 € L0, 11* = L®2[0, 1], we have

1 1
/f,lg dx = 1 for all n and does not converge to /fg dx =0
0 0



Example
Consider the function  defined in R by ~(x) = {
Ju(x) = v(x —n)

1—|x|  if|x

1
0 if x| > 1

I E Define the sequence {f;, } by

)&A

2 \!/r
We have f, — 0 pointwise on R, f;, € L”(R) with ||f;, I, = (?) .
P
LetA C R be any measurable set with m(A) < oo. Let e > 0. There exists N € N such that
m(AN{x: |x] > N}) < e. Thenforn > N we have

0< / fuds = ldx < e
A AN{x: [x| >N}

This implies lim /fndx = Oandsof, — 0inLP(R) forp > 1.
n— oo A
However, {f, } does not converge weakly to 0 in L' (R). Indeed, for the functiong = 1 € L™ (R) = L' (R)*, we have
/ fugdx = 1 for allnand/ Ogdx = 0.
R R



Theorem (2)

Let E C R" be measurable and 1 < p < oo. If {f,} C LP(E) is a bounded and converges
pointwise to f a.e. on E, then f,, — f in LP(E).

Proof.
We first show that f € L (E). Let M > 0 be such that lfull, < M forall n. Since [ful? € L'(E), then it follows from
Fatou’s lemma that
P imi P P I3
E[f| dm < lzlrgloréf‘/b_[fd dm < M" andso f € LV (E).
To check that f;, — f, it is enough to verify that (Theorem 1) for every A C E with m(E) < oo, we have
i [ b — [ o

We know (Lecture 26) that since the sequence {f, } is bounded in L” (E), then it is uniformly integrable. As a consequence, the

Vitali Convergence Theorem implies lim /f,,dm = /fdm O
n— oo A A

Theorem (3)

Let E C R" be measurable, 1 < p < oo, and {f,} C LP(E) . Suppose theat f,, — f in LP, then
fa — f in LP(E) if and only if lim |[f,1Hp = Hf”p
n oo

Proof.

"=—>" We already know that if a sequence converges strongly in a Banach space, then it converges weakly and the sequence of
the norms converge to the norm of the limit.

"<—" Suppose that f, — f in L’ and E}m [/ Hp = Hler We are going to give the proof when p > 2 and use the
n—oo
following inequality (to be proved in Lemma 2))
Je > Osuchthate|r]” < |1 4¢P —1 —pr Vi€R.

L and muliiply by f1” 0 get clfy — fIP < Usl? — U7 = psen()IFIP~" G — 1)

Use this inequality with r = fr

Notice that for g = sgn(f) |[f|P~ ! after integration and passage to the limit we get

ellf =71 < IWllZ — W71, —p/Fg(fn —f)dm — 0



Lemma (2)

Let p > 2 then there exists ¢ > 0 such that c|t]P < |l +t|P — 1 — pt forallt € R.

Proof. "
t
Consider the function f(t) defined for t # 0by f(t) = 77 with a(t) = |1 4+ t|P — | — pt. Then lin(llf(r) = oo and
t —
| ‘lim f(t) = 1. Since a(0) = 0 and fort > 0 we have o’ (r) = p((1 + t)p71 — 1) > 0, then &x(r) > 0and
t|— o0

f(t) > 0. Therefore, f has a positive minimum value ¢; on ¢ > 0. A similar argument shows that f has a positive minimum ¢,

for t < 0. The estimate of the lemma follows for ¢ = min(cy, ¢3) O

A consequence of the previous theorem and Fatou’s Lemma is the following.

Corollary (2)
Let E C R" be measurable, 1 < p < oo, and {f,} C LP(E) . Suppose theat f,, — f in LP, then
{fu} has a subsequence that converges strongly to f if and only if |If |, = liminfu— oo [Ifall,-

Theorem 3 does not extend to the case p = 1 as the following example shows.

Example
Let f, (x) = 1 + sin(nx). It follows from the previous example that f, — f = 1 in L [—m, m]. However, f,, does not
converge strongly to f (see previous example). But since each f;, is nonnegative, then (as a consequence of the weak

convergence in L) we also have [If1ly = ngr& [fnll -



