Real Analysis MAA 6616 Lecture 27 Weak Convergence: Some Consequences

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

Proposition (1)

Let $E \subset \mathbb{R}^n$ be measurable, $1 \le p < \infty$ and let q be the conjugate of p. If $\{f_n\}_n$ is a weakly convergent sequence to f in $L^p(E)$ and $\{g_n\}_n$ is a strongly convergent sequence to g in $L^q(E)$ (i.e. $f_n \rightarrow f$ in L^p and $g_n \rightarrow g$ in L^q), then

$$\lim_{E\to\infty}\int_E f_n g_n dm = \int_E fg dm.$$

Proof.

Let $\epsilon > 0$. Since $f_n \to f$, then $\{f_n\}$ is bounded. Let M > 0 such that $||f_n||_p \leq M$ for all n. It follows from the weak convergence of f_n that $\lim_{n \to \infty} \int_E gf_n = \int_E gf$ and therefore there exists $N_1 > 0$ such that $\left| \int_E gf_n - \int_E gf \right| \leq \frac{\epsilon}{2}$ for all $n \geq N_1$.

n

The sequence $\{g_n\}$ converges strongly to g in $L^q(E)$ implies that there exists $N_2 > 0$ such that $||g_n - g||_q < \frac{\epsilon}{2M}$ for all $n \ge N_2$.

Let
$$N = \max(N_1, N_2)$$
. For $n > N$, we have
 $\left| \int_E f_n g_n dm - \int_E f_g dm \right| = \left| \int_E f_n (g_n - g) dm + \int_E (f_n - f) g dm \right| \le \left| \int_E f_n (g_n - g) dm \right| + \left| \int_E (f_n - f) g dm \right|$
 $\le \left\| f_n \right\|_p \left\| g_n - g \right\|_q + \frac{\epsilon}{2} \le M \frac{\epsilon}{2M} + \frac{\epsilon}{2} = \epsilon$

Let *X* be a linear space. A subset $Y \subset X$ is said to be the linear span of a subset $\mathcal{F} \subset X$ if *Y* is generated by finite linear combination of elements in \mathcal{F} . That is, for every $y \in Y$, there exists $f_1, \dots, f_n \in \mathcal{F}$ and $a_1, \dots, a_n \in \mathbb{R}$ such that

$$y = \sum_{j=1}^{n} a_j f_j$$

In this case we write $Y = \text{linspan}(\mathcal{F})$.

Proposition (2)

Let $E \subset \mathbb{R}^n$ measurable, $1 \leq p < \infty$, and q be the conjugate of p. Let $\mathcal{F} \subset L^q(E)$ be such that $\text{linspan}(\mathcal{F})$ is dense in $L^q(E)$. A bounded sequence $\{f_n\}_n \subset L^p(E)$ converges weakly to f if and only if

$$\lim_{n \to \infty} \int_E f_n g \, dm = \int_E fg \, dm \text{ for all } g \in \mathcal{F}$$

Proof.

"⇒ " This implication is clear since the condition in proposition holds for all $g \in L^q(E)$ and $\operatorname{linspan}(\mathcal{F}) \subset L^q(E)$. "⇒" We need to show that $\lim_{n \to \infty} \int_E (f_n - f)h \, dm = 0$ for all $h \in L^q(E)$. Provided that the limit holds for all $g \in \operatorname{linspan}(\mathcal{F})$. Let $h \in L^q(E)$ and $\epsilon > 0$. Let M be an upper bound for $\{||f_n||_p\}_n$. Since $\operatorname{linspan}(\mathcal{F})$ is dense in $L^q(E)$, then there is $g \in \operatorname{linspan}(\mathcal{F})$ such that $||g - h||_q \leq \frac{\epsilon}{2(M + ||f||_p)}$. For such $g \in \operatorname{linspan}(\mathcal{F})$ there exists $N \in \mathbb{N}$ such that $\left|\int_E (f_n - f)g \, dm\right| < \frac{\epsilon}{2}$ for all n > N. It follows that for n > N we have $\left|\int_E (f_n - f)h \, dm\right| \leq \left|\int_E (f_n - f)(h - g) \, dm\right| + \left|\int_E (f_n - f)g \, dm\right| \leq \left||f_n - f||_p \, ||h - g||_q + \frac{\epsilon}{2} \leq \left(||f_n||_p + ||f||_p\right) \frac{\epsilon}{2(M + ||f||_p)} + \frac{\epsilon}{2}$ $\leq \epsilon$

As an application we have the following characterization of weak convergence.

Theorem (1)

Let $E \subset \mathbb{R}^n$ be measurable and $1 \leq p < \infty$. A bounded sequence $\{f_n\}_n \subset L^p(E)$ converges weakly to $f \in L^p(E)$ if and only if for every measurable set $A \subset E$ we have

$$\lim_{n \to \infty} \int_A f_n \, dm = \int_A f \, dm.$$

Moreover, when p > 1 it is enough to consider only the subsets A with finite measure.

Proof.

Let $\mathcal{M}(E)$ be the collection of measurable subsets in *E* and let $\mathcal{S}(E)$ be the collection characteristic functions on subsets in $\mathcal{M}(E)$:

$$\mathcal{S}(E) = \left\{ \chi_A : A \in \mathcal{M}(E) \right\}.$$

Then linspan(S(E)) is the space of simple functions and we know that it is dense in $L^q(E)$. Hence it follows from the previous proposition that a bounded sequence $\{f_n\}_n \subset L^p(E)$ converges weakly to $f \in L^p(E)$ if and only for every $A \in \mathcal{M}(E)$ we have

$$\lim_{n \to \infty} \int_E f_n \chi_A \, dm = \int_E f \chi_A \, dm \iff \lim_{n \to \infty} \int_A f_n \, dm = \int_A f \, dm$$

When p > 1, the space of simple functions with finite support is dense in $L^{p}(E)$.

Consider an interval $[a, b] \subset \mathbb{R}$. The collection of step functions $\chi_{[a, c]}$ with $a \leq c \leq b$ generates (through linear combinations) the space of simple functions on [a, b]. Then as a consequence of the above theorem we have.

Corollary (1)

Let $1 . A bounded sequence <math>\{f_n\}_n \subset L^p[a, b]$ converges weakly to $f \in L^p[a, b]$ if and only if

$$\lim_{n \to \infty} \int_{a}^{c} f_{n} dx = \int_{0}^{c} f dx \text{ for all } c \in [a, b]$$

Example

(Riemann-Lebesgue Lemma) Consider the sequence of functions $f_n(x) = \sin nx$ on the interval $I = [-\pi, \pi]$. We have $|f_n| \le 1$ for all *n*. Hence $\{f_n\}_n$ is a bounded sequence in the space $L^p(I)$. For $c \in I$, we have

$$\left| \int_{-\pi}^{c} f_n(x) dx \right| = \left| \frac{-\cos nx}{n} \right|_{-\pi}^{c} = \left| \frac{(-1)^n - \cos nc}{n} \right| \le \frac{2}{n} \longrightarrow 0.$$

It follows from Corollary 1 that $\sin(nx) \rightarrow 0$ in $L^p(I)$.

Now we prove that **no** subsequence of $\{\sin(nx)\}_n$ converge to 0 in $L^p(I)$. We use trigonometric identities to get

$$\begin{aligned} \|\sin(nx)\|_{p}^{p} &= \int_{-\pi}^{\pi} |\sin(nx)|^{p} \, dx = 2 \int_{0}^{\pi} |\sin(nx)|^{p} \, dx = \frac{2}{n} \int_{0}^{n\pi} |\sin t|^{p} \, dt \\ &= 2 \int_{0}^{\pi} \sin t^{p} \, dt = 4 \int_{0}^{\pi/2} \sin t^{p} \, dt = 4 \int_{0}^{\pi/2} \sin t \left(1 - \cos^{2} t\right)^{\frac{p-1}{2}} \, dt \\ &= 4 \int_{0}^{1} \left(1 - s^{2}\right)^{\frac{p-1}{2}} \, ds = 4 \left(1 - \tau^{2}\right)^{\frac{p-1}{2}} \text{ for some } \tau \in (0, 1) \end{aligned}$$

Hence $\|\sin(nx)\|_p = 4^{\frac{1}{p}} (1-\tau^2)^{\frac{p-1}{2p}}$ for all *n*. It follows that no subsequence can converge to 0.

The next two examples show that a given sequence can converge pointwise but does not converge weakly in L^1 . However the sequence converge weakly in L^p for p > 1.

Example

Let $\{f_n\}_n \subset L^1[0, 1]$ be given by $f_n = n \chi_{[0, 1/n]}$. We have $\|f_n\|_1 = 1$ for all *n*. Moreover, f_n converges pointwise to f = 0. However, f_n does not converge weakly to f since if we take $g = \chi_{[0, 1]} \in L^1[0, 1]^* = L^{\infty}[0, 1]$, we have $\int_0^1 f_n g \, dx = 1$ for all *n* and does not converge to $\int_0^1 f_n g \, dx = 0$

Example

Consider the function γ defined in \mathbb{R} by $\gamma(x) = \begin{cases} 1 - |x| & \text{if } |x| \le 1 \\ 0 & \text{if } |x| > 1 \end{cases}$ Define the sequence $\{f_n\}$ by $f_n(x) = \gamma(x - n)$

We have $f_n \to 0$ pointwise on $\mathbb{R}, f_n \in L^p(\mathbb{R})$ with $||f_n||_p = \left(\frac{2}{p+1}\right)^{1/p}$. Let $A \subset \mathbb{R}$ be any many while set with $w(A) < \infty$. Let $s \geq 0$ then exist h

Let $A \subset \mathbb{R}$ be any measurable set with $m(A) < \infty$. Let $\epsilon > 0$. There exists $N \in \mathbb{N}$ such that $m(A \cap \{x : |x| \ge N\}) < \epsilon$. Then for n > N we have

$$0 \le \int_A f_n dx = \int_{A \cap \{x: |x| \ge N\}} 1 dx \le \epsilon$$

This implies $\lim_{n\to\infty} \int_A f_n dx = 0$ and so $f_n \to 0$ in $L^p(\mathbb{R})$ for p > 1. However, $\{f_n\}$ does not converge weakly to 0 in $L^1(\mathbb{R})$. Indeed, for the function $g \equiv 1 \in L^\infty(\mathbb{R}) = L^1(\mathbb{R})^*$, we have $\int_{\mathbb{R}} f_n g dx = 1$ for all n and $\int_{\mathbb{R}} 0 g dx = 0$.

Theorem (2)

Let $E \subset \mathbb{R}^n$ be measurable and $1 . If <math>\{f_n\} \subset L^p(E)$ is a bounded and converges pointwise to f a.e. on E, then $f_n \rightarrow f$ in $L^p(E)$.

Proof.

We first show that $f \in L^p(E)$. Let M > 0 be such that $||f_n||_p \le M$ for all n. Since $|f_n|^p \in L^1(E)$, then it follows from Fatou's lemma that

$$\int_{E} |f|^{p} dm \le \liminf_{n \to \infty} \int_{E} |f_{n}|^{p} dm \le M^{p} \text{ and so } f \in L^{p}(E).$$

To check that $f_n \rightharpoonup f$, it is enough to verify that (Theorem 1) for every $A \subset E$ with $m(E) < \infty$, we have $\lim_{n \to \infty} \int_A f_n dm = \int_A f dm.$ We know (Lecture 26) that since the sequence $\{f_n\}$ is bounded in $L^p(E)$, then it is uniformly integrable. As a consequence, the Vitali Convergence Theorem implies $\lim_{n \to \infty} \int_A f_n dm = \int_A f dm.$

Theorem (3)

Let $E \subset \mathbb{R}^n$ be measurable, $1 , and <math>\{f_n\} \subset L^p(E)$. Suppose theat $f_n \to f$ in L^p , then $f_n \to f$ in $L^p(E)$ if and only if $\lim_{n \to \infty} ||f_n||_p = ||f||_p$.

Proof.

"
 We already know that if a sequence converges strongly in a Banach space, then it converges weakly and the sequence of the norms converge to the norm of the limit.

" \Leftarrow " Suppose that $f_n \rightharpoonup f$ in L^p and $\lim_{n \to \infty} ||f_n||_p = ||f||_p$. We are going to give the proof when $p \ge 2$ and use the following inequality (to be proved in Lemma 2))

 $\exists c > 0 \text{ such that } c|t|^p \le |1 + t|^p - 1 - pt \quad \forall t \in \mathbb{R}.$ Use this inequality with $t = \frac{f_n - f}{f}$ and multiply by $|f|^p$ to get $c|f_n - f|^p \le |f_n|^p - |f|^p - p \operatorname{sgn}(f)|f|^{p-1}(f_n - f).$ Notice that for $g = \operatorname{sgn}(f)|f|^{p-1}$, after integration and passage to the limit we get $c ||f_n - f||_p^p \le ||f_n||_p^p - ||f||_p^p - p \int_E g(f_n - f)dm \longrightarrow 0$

Lemma (2)

Let $p \ge 2$ then there exists c > 0 such that $c|t|^p \le |1+t|^p - 1 - pt$ for all $t \in \mathbb{R}$.

Proof.

Consider the function f(t) defined for $t \neq 0$ by $f(t) = \frac{\alpha(t)}{|t|^p}$ with $\alpha(t) = |1 + t|^p - 1 - pt$. Then $\lim_{t \to 0} f(t) = \infty$ and $\lim_{|t| \to \infty} f(t) = 1$. Since $\alpha(0) = 0$ and for t > 0 we have $\alpha'(t) = p((1 + t)^{p-1} - 1) > 0$, then $\alpha(t) > 0$ and f(t) > 0. Therefore, f has a positive minimum value c_1 on t > 0. A similar argument shows that f has a positive minimum c_2 for t < 0. The estimate of the lemma follows for $c = \min(c_1, c_2)$

A consequence of the previous theorem and Fatou's Lemma is the following.

Corollary (2)

Let $E \subset \mathbb{R}^n$ be measurable, $1 , and <math>\{f_n\} \subset L^p(E)$. Suppose theat $f_n \rightharpoonup f$ in L^p , then $\{f_n\}$ has a subsequence that converges strongly to f if and only if $||f||_p = \liminf_{n \to \infty} ||f_n||_p$.

Theorem 3 does not extend to the case p = 1 as the following example shows.

Example

Let $f_n(x) = 1 + \sin(nx)$. It follows from the previous example that $f_n \to f = 1$ in $L^1[-\pi, \pi]$. However, f_n does not converge strongly to f (see previous example). But since each f_n is nonnegative, then (as a consequence of the weak convergence in L^1) we also have $||f||_1 = \lim_{n \to \infty} ||f_n||_1$.