Real Analysis MAA 6616 Lecture 28 Weak Sequential Compactness

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Examples of the previous lecture show that there exist bounded sequences in L^p that fail to have any strongly convergent subsequence in L^p . However, we will see in this lecture that the situation is different for weak convergence. First we need the following theorem.

Theorem (1)

Let $(X, \|\cdot\|)$ be a separable normed spaces and let $\{T_n\}_n$ be a bounded sequence in the dual space X^* : That is, there exists M > 0 such that $|T_n f| \le M \|f\|$ for all $f \in X$ and $n \in \mathbb{N}$. Then there is a subsequence $\{T_{n_j}\}_j$ of $\{T_n\}_n$ that converges to $T \in X^*$: $\lim_{j \to \infty} T_{n_j} f = Tf$ for all $f \in X$.

Proof.

Since X is separable, it has a dense countable subset $\{f_n\}_n$. Since $|T_nf_1| \leq M ||f_1||$ for all n, then the sequence of real numbers $\{T_nf_1\}$ has convergent subsequence: There is an increasing sequence of integers $\mu_{1,j}$ and $\alpha_1 \in \mathbb{R}$ such that $\lim_{j \to \infty} T_{\mu_{1,j}}f_1 = \alpha_1$. Repeat this argument with $\{T_{\mu_{1,j}}\}_j$ replacing $\{T_n\}_n$ and f_2 replacing f_1 . We obtain then an increasing subsequence $\mu_{2,j}$ of $\mu_{1,j}$ and $\alpha_2 \in \mathbb{R}$ such that $\lim_{j \to \infty} T_{\mu_{2,j}}f_i = \alpha_i$ for i = 1, 2. Continue this process inductively to obtain an increasing sequence $\mu_{r,j}$ of $\mu_{r-1,j}$ and a real number $\alpha_r \in \mathbb{R}$ such that $\lim_{j \to \infty} T_{\mu_r,j}f_k = \alpha_k$ for $k = 1, \cdots, r$. Now for $m \in \mathbb{N}$, let $\sigma_m = \mu_{m,m}$. Consider the subsequence $\{T_{\sigma_m}\}_m \subset \{T_n\}_n$. For any $k \in \mathbb{N}$, we have $\lim_{m \to \infty} T_{\sigma_m}f_k = \alpha_k$. Next we prove that $\{T_{\sigma_m}f\}_m$ is Cauchy (in \mathbb{R}) for every $f \in X$. Let $f \in X$ and $\epsilon > 0$. Since $\{f_k\}_k$ is dense in X, let f_k such that $||f - f_k|| < \frac{\epsilon}{2}$. We have $|T_{\sigma_m}f_k - T_{\sigma_n}f_k| < \frac{\epsilon}{2}$. We have $|T_{\sigma_m}f - T_{\sigma_m}f_k| < \frac{\epsilon}{2}$. We have $|T_{\sigma_m}f - T_{\sigma_m}f_k| < \frac{\epsilon}{2} + M ||f - f_k|| < \epsilon$

Theorem (2)

Let $E \subset \mathbb{R}^n$ be measurable and $1 . Then every bounded sequence in <math>L^p(E)$ has a subsequence that converges **weakly** in $L^p(E)$.

Proof.

Let $\{f_n\}_{n=1}^{\infty} \subset L^p(E)$ be a bounded sequence. Hence there is M > 0 such that $\|f_n\|_p \leq M$ for all n. Let q be the conjugate of $p(p^{-1} + q^{-1} = 1)$. For every n consider the functional $T_n \in L^q(E)^* \cong L^p(E)$ be defined by

$$T_n(g) = \int_E f_n g dx$$
 for all $g \in L^q(E)$.

Then $|T_ng| \le ||f_n||_p ||g||_q \le M ||g||_q$. Hence the sequence $\{T_n\}_n$ is bounded in $L^q(E)^*$. Theorem 1 implies there is a subsequence $\{T_n\}_j$ and $T \in L^q(E)^*$ such that $\lim_{j\to\infty} T_{n_j}g = Tg$ for all $g \in L^q(E)$. The Riesz Representation Theorem

implies that there exists a unique $f \in L^p(E)$ such that $Tg = \int_E fgdx$ for all $g \in L^q(E)$. This means

$$\lim_{j \to \infty} \int_E f_{n_j} g dx = \int_E f_g dx \text{ for all } g \in L^q(E).$$

This is equivalent to $f_{n_j} \rightarrow f$ in $L^p(E)$.

Remark (1)

The above theorem does not extend to the case p = 1 as the following example shows. In $L^1[0, 1]$ consider the sequence $\{f_n\}_n$ given by $f_n = n\chi_{[0, 1/n]}$. This sequence is bounded in $L^1[0, 1]$ since $\|f_n\|_1 = \int_0^1 n\chi_{[0, 1/n]} = 1$. Now we show by contradiction that $\{f_n\}$ has no subsequence that converges weakly in $L^1[0, 1]$. Suppose that $\{f_{n_i}\}_j$ converges weakly to $f \in L^1[0, 1]$. Then for $0 < c < d \le 1$, we would have

$$\int_{0}^{1} f\chi_{[c, d]} dx = \lim_{j \to \infty} \int_{0}^{1} f_{n_j} \chi_{[c, d]} dx = 0.$$

Since c, d are arbitrary in (0, 1], then f = 0 a.e. in [0, 1]. This implies

$$0 = \int_{0}^{1} f dx = \lim_{j \to \infty} \int_{0}^{1} f_{n_{j}} dx = 1$$

A contradiction.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Let $(X, \|\cdot\|)$ be a normed space. A subset $K \subset X$ is said to be weakly sequentially compact if every sequence $\{f_n\}_n \subset K$ has a subsequence that converges weakly to an element in K.

Theorem (3)

Let $E \subset \mathbb{R}^n$ be measurable and $1 . Then the closed unit ball in <math>L^p(E)$ is weakly sequentially compact. The closed unit ball in $L^p(E)$ is the set $\mathcal{B}^p(E) = \{f \in L^p(E) : ||f||_p \le 1\}.$

Proof.

Let $\{f_n\}_n \subset \mathcal{B}^p(E)$. Then $\|f_n\|_p \leq 1$ for all n, and it follows from Theorem 2 that there exists $f \in L^p(E)$ and a subsequence $\{f_{n_j}\}_j$ such that $f_{n_j} \rightarrow f$. It remains to very that $f \in \mathcal{B}^p(E)$. This follows from $\|f\|_p \leq \lim_{j \to \infty} \left\|f_{n_j}\right\|_p \leq 1$.

Banach-Saks Theorem

Theorem (4)

Let $E \subset \mathbb{R}^n$ be measurable and $1 . Suppose that <math>\{f_n\}_n \subset L^p(E)$ converges weakly to $f \in L^p(E)$. Then there exists a subsequence $\{f_{n_i}\}_i$ such that its sequence of arithmetic means converges strongly to f. That is if

$$g_m = \frac{f_{n_1} + f_{n_2} + \dots + f_{n_m}}{m}$$
 then $g_m \to f$ in $L^p(E)$

Proof.

Case p = 2. We can assume f = 0 (after replacing f_n by $f_n - f$). The weak conversion of $\{f_n\}$ implies that the sequence is bounded. Let M > 0 be such that $||f_n||_2^2 \le M$ for all n.

Let $n_1 = 1$. Since $f_n \rightarrow 0$ in L^2 and $f_{n_1} \in L^2(E) \cong L^2(E)^*$, then there exists $n_2 > n_1$ such that $\left| \int_{a} f_{n_1} f_{n_2} dx < 1 \right|$. Suppose that we have $n_1 < n_2 < \cdots < n_k$ and functions f_{n_1}, \cdots, f_{n_k} such that $\int_{-} (f_{n_1}, \cdots, f_{n_k})^2 dx \leq (2+M)j$ for $j = 1, \dots, k$. Then since $f_n \rightarrow 0$ in L^2 and $f_{n_1} + \dots + f_{n_k} \in L^2(E)$, then there exists $n_{k+1} > n_k$ such that $\int_{F} (f_{n_1} + \dots + f_{n_k}) f_{n_{k+1}} dx \leq 1.$ It follows that $\int_{r} (f_{n_1} + \dots + f_{n_{k+1}})^2 dx = \int_{r} (f_{n_1} + \dots + f_{n_k})^2 dx + 2 \int_{r} (f_{n_1} + \dots + f_{n_k}) f_{n_{k+1}} dx + \int_{r} f_{n_{k+1}}^2 dx$ $\leq (2 + M)k + 2 + M = (2 + M)(k + 1)$

Let $\{g_m\}_m$ be the arithmetic mean of the constructed subsequence $\{f_{n_i}\}_i$. Then

$$\|g_m\|_2^2 = \int_E \left(\frac{f_{n_1} + \dots + f_{n_m}}{m}\right)^2 dx \le \frac{2+M}{m} \longrightarrow 0$$

▲□▶▲□▶▲□▶▲□▶ □ のQで

A set $C \subset X$ is said to be convex if for every $f, g \in C$ and $\lambda \in [0, 1], \lambda f + (1 - \lambda)g \in C$. The set *C* is said to be closed if for every sequence $\{f_n\}_n \subset C$ such that $f_n \longrightarrow f$ in *X*, then $f \in C$.

A mapping $T : C \subset X \longrightarrow \mathbb{R}$ is said to be continuous on *C* if for every sequence $\{f_n\}_n \subset C$ such that $f_n \to f \in C$, we have $Tf_n \to Tf \in \mathbb{R}$. Note that when *T* is linear, the continuity of *T* is equivalent to *T* bounded.

When *C* is convex, the operator *T* is said to be convex if for every $f, g \in C$ and $\lambda \in [0, 1]$ we have $T(\lambda f + (1 - \lambda)g) \le \lambda T f + (1 - \lambda)T g$.

Examples

- 1. Let $E \subset \mathbb{R}^n$ be measurable, $1 \le p < \infty$, and $g \in U^p(E)$ with g nonnegative. The set $C = \{f \text{ measurable on } E : |f| \le g \text{ a.e.} \}$ is a closed and convex subset of $U^p(E)$. Indeed, $C \subset U^p(E)$ follows from $|f| < g \implies ||f||_p \ge ||g||_p$. For $f, h \in C$ and $\lambda \in [0, 1]$ we have $|\lambda f + (1 \lambda)h| \le \lambda|f| + (1 \lambda)|h| \le g$. If $\{f_n\} \subset C$ is such that $f_n \to f \in U^p(E)$, then there exists a subsequence $\{f_n_k\}_k$ such that $f_{n_k} \to f$ pointwise a.e. Moreover $|f_{n_k}| \le g$ for all k implies $|f| \le g$ and so $f \in C$.
- 2. Let $E \subset \mathbb{R}^n$ be measurable and $1 \le p < \infty$. The ball $B\{f \in L^p(E) : ||f||_p \le 1\}$ is closed and convex in $L^p(E)$. That *B* is closed follows rom the triangle inequality. Indeed if $\{f_n\}_n \subset C$ converges to $f \in L^p(E)$. Then $||f_n - f||_p \to 0$ and

$$||f||_p \le ||f_n||_p + ||f_n - f||_p \le 1 + ||f_n - f||_p \implies ||f||_p \le 1$$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

3. Let $E \subset \mathbb{R}^n$ be measurable with finite measure, $1 \le p < \infty$, and let $\phi : \mathbb{R} \longrightarrow \mathbb{R}$ be continuous, convex, and such that there exist $a, b \ge 0$ such that $|\phi(t)| \le a + b|t|^p$ for all $t \in \mathbb{R}$.

Consider the operator $T : L^p(E) \longrightarrow \mathbb{R}$ given by $T(f) = \int_E \phi \circ f \, dx$. Then T is continuous and convex (the continuity will be shown later). The convexity follows from that of ϕ

Lemma (1)

Let $E \subset \mathbb{R}^n$, $1 , and <math>C \subset L^p(E)$ be closed, bounded, and convex. Let $T : C \longrightarrow \mathbb{R}$ be continuous and convex. If $\{f_n\}_n \subset C$ and $f_n \rightharpoonup f$ in L^p , then $f \in C$ and $T(f) \leq \liminf_{n \to \infty} T(f_n)$.

Proof.

It follows from Banach-Saks Theorem that there exists a subsequence $\{f_{n_j}\}_j$ such that the sequence $\{\mu(f_{n_j})\}_j$ of arithmetic means converges to f in L^p . Since $\{\mu(f_{n_j})\}_j \subset C$ and C closed, then $f \in C$.

Let $\alpha = \liminf_{m \to \infty} T(f_n)$. There exists a subsequence $\{f_{n_k}\}_k$ such that $\alpha = \lim_{k \to \infty} T(f_{n_k})$. We can assume that the arithmetic mean of $\{f_{n_k}\}_k$ converges to *f* in L^p . Note that if a sequence of real numbers n_n converges to *l*, then its sequence of arithmetic means $\mu(x_n)$ also converges to *l*. It follows from the continuity of *T* and its convexity $T(\mu(g_j)) \leq \mu(T(g_j))$ that

$$T(f) = \lim_{k \to \infty} T(\mu(f_{n_k})) \le \lim_{k \to \infty} \mu T(f_{n_k}) = \lim_{k \to \infty} T(f_{n_k}) = \alpha = \liminf_{n \to \infty} T(f_n)$$

Theorem (5)

Let $E \subset \mathbb{R}^n$, $1 , and <math>C \subset L^p(E)$ be closed, bounded, and convex. Let $T : C \longrightarrow \mathbb{R}$ be continuous and convex. Then T attains a minimum value in C. That is there exists $f_0 \in C$ such that

 $T(f_0) \le T(f)$ for all $f \in C$.

Proof.

First we prove that T(C) is bounded below (i.e. there exists $A \in \mathbb{R}$ such that $T(f) \ge A$ for all $f \in C$). By contradiction, if T(C) were not bounded below, then there would be a sequence $\{f_n\} \subset C$ such that $T(f_n) \to -\infty$. Since $C \subset L^p(E)$ is bounded, then so is the sequence. We can therefore (by taking a a subsequence if necessary) assume that $f_n \to f$ in L^p . Lemma 1 implies that $f \in C$ and $T(f) \le \lim_{n \to \infty} \inf T(f_n) = -\infty$. A contradiction and so T(C) is bounded below. Let $m = \inf \{T(f) : f \in C\}$. There exists a sequence $\{f_n\}_n \subset C$ such that $T(f_n) \to c$. We can assume that $f_n \to f_0$ in L^p . Lemma 1 implies that $f_0 \in C$ and $T(f_0) \le \lim_{n \to \infty} \inf T(f_n) = m$.

Corollary (1)

Let $E \subset \mathbb{R}^n$ with $m(E) < \infty$, $1 , and let <math>\phi : \mathbb{R} \longrightarrow \mathbb{R}$ be continuous, convex, and such that there exist $a, b \ge 0$ such that

$$\begin{aligned} |\phi(t)| &\leq a+b|t|^p \text{ for all } t \in \mathbb{R}. \\ \text{Then there exists } f_0 \in L^p(E) \text{ with } \|f_0\|_p &\leq 1 \text{ such that} \\ \int_E \phi \circ f_0 dx &= \min\{\int_E \phi \circ f \, dx : f \in L^p(E), \, \|f\|_p \leq 1\} \end{aligned}$$