
Real Analysis MAA 6616
Lecture 28

Weak Sequential Compactness



Examples of the previous lecture show that there exist bounded sequences in Lp that fail to have
any strongly convergent subsequence in Lp. However, we will see in this lecture that the
situation is different for weak convergence. First we need the following theorem.

Theorem (1)
Let (X, ‖·‖) be a separable normed spaces and let {Tn}n be a bounded sequence in the dual
space X∗: That is, there exists M > 0 such that |Tnf | ≤ M ‖f‖ for all f ∈ X and n ∈ N. Then
there is a subsequence {Tnj}j of {Tn}n that converges to T ∈ X∗: lim

j→∞
Tnj f = Tf for all f ∈ X.

Proof.
Since X is separable, it has a dense countable subset {fn}n . Since |Tnf1| ≤ M ‖f1‖ for all n, then the sequence of real
numbers {Tnf1} has convergent subsequence: There is an increasing sequence of integers µ1,j and α1 ∈ R such that

lim
j→∞

Tµ1,j f1 = α1 .

Repeat this argument with {Tµ1,j}j replacing {Tn}n and f2 replacing f1 . We obtain then an increasing subsequence µ2,j of
µ1,j and α2 ∈ R such that lim

j→∞
Tµ2,j fi = αi for i = 1, 2. Continue this process inductively to obtain an increasing

sequence µr,j of µr−1,j and a real number αr ∈ R such that lim
j→∞

Tµr,j fk = αk for k = 1, · · · , r.

Now for m ∈ N, let σm = µm,m . Consider the subsequence {Tσm}m ⊂ {Tn}n . For any k ∈ N, we have

lim
m→∞

Tσm fk = αk . Next we prove that {Tσm f}m is Cauchy (in R) for every f ∈ X. Let f ∈ X and ε > 0. Since {fk}k is

dense in X, let fk such that ‖f − fk‖ <
ε

4M
. The sequence {Tσm fk}m is Cauchy and so there exists N such that for every

n,m > N we have
∣∣Tσm fk − Tσn fk

∣∣ < ε

2
. We have∣∣Tσm f − Tσn f

∣∣ ≤
∣∣Tσm f − Tσm fk

∣∣ + ∣∣Tσm fk − Tσn fk
∣∣ + ∣∣Tσn fk − Tσn f

∣∣
≤ M ‖f − fk‖ +

ε

2
+ M ‖f − fk‖ ≤ ε



Theorem (2)
Let E ⊂ Rn be measurable and 1 < p <∞. Then every bounded sequence in Lp(E) has a
subsequence that converges weakly in Lp(E).

Proof.
Let {fn}∞n=1 ⊂ Lp(E) be a bounded sequence. Hence there is M > 0 such that ‖fn‖p ≤ M for all n. Let q be the conjugate

of p ( p−1 + q−1 = 1). For every n consider the functional Tn ∈ Lq(E)∗ ∼= Lp(E) be defined by

Tn(g) =

∫
E

fngdx for all g ∈ Lq
(E).

Then |Tng| ≤ ‖fn‖p ‖g‖q ≤ M ‖g‖q . Hence the sequence {Tn}n is bounded in Lq(E)∗ . Theorem 1 implies there is a

subsequence {Tnj}j and T ∈ Lq(E)∗ such that lim
j→∞

Tnj g = Tg for all g ∈ Lq(E). The Riesz Representation Theorem

implies that there exists a unique f ∈ Lp(E) such that Tg =

∫
E

fgdx for all g ∈ Lq(E). This means

lim
j→∞

∫
E

fnj gdx =

∫
E

fgdx for all g ∈ Lq
(E).

This is equivalent to fnj ⇀ f in Lp(E).

Remark (1)
The above theorem does not extend to the case p = 1 as the following example shows.
In L1[0, 1] consider the sequence {fn}n given by fn = nχ

[0, 1/n]
. This sequence is bounded in L1[0, 1] since

‖fn‖1 =

∫ 1

0
nχ

[0, 1/n]
= 1. Now we show by contradiction that {fn} has no subsequence that converges weakly in

L1[0, 1]. Suppose that {fnj}j converges weakly to f ∈ L1[0, 1]. Then for 0 < c < d ≤ 1, we would have∫ 1

0
fχ

[c, d]
dx = lim

j→∞

∫ 1

0
fnjχ[c, d]

dx = 0.

Since c, d are arbitrary in (0, 1], then f = 0 a.e. in [0, 1]. This implies

0 =

∫ 1

0
fdx = lim

j→∞

∫ 1

0
fnj dx = 1

A contradiction.



Let (X, ‖·‖) be a normed space. A subset K ⊂ X is said to be weakly sequentially compact if
every sequence {fn}n ⊂ K has a subsequence that converges weakly to an element in K.

Theorem (3)
Let E ⊂ Rn be measurable and 1 < p <∞. Then the closed unit ball in Lp(E) is weakly
sequentially compact. The closed unit ball in Lp(E) is the set

Bp(E) = {f ∈ Lp(E) : ‖f‖p ≤ 1}.

Proof.
Let {fn}n ⊂ Bp(E). Then ‖fn‖p ≤ 1 for all n, and it follows from Theorem 2 that there exists f ∈ Lp(E) and a

subsequence {fnj}j such that fnj ⇀ f . It remains to very that f ∈ Bp(E). This follows from

‖f‖p ≤ lim inf
j→∞

∥∥∥fnj

∥∥∥
p
≤ 1.



Banach-Saks Theorem

Theorem (4)
Let E ⊂ Rn be measurable and 1 < p <∞. Suppose that {fn}n ⊂ Lp(E) converges weakly to
f ∈ Lp(E). Then there exists a subsequence {fnj}j such that its sequence of arithmetic means
converges strongly to f . That is if

gm =
fn1 + fn2 + · · ·+ fnm

m
then gm → f in Lp(E)

Proof.
Case p = 2. We can assume f = 0 (after replacing fn by fn − f ). The weak converhgence of {fn} implies that the sequence is
bounded. Let M > 0 be such that ‖fn‖2

2 ≤ M for all n.

Let n1 = 1. Since fn ⇀ 0 in L2 and fn1 ∈ L2(E) ∼= L2(E)∗ , then there exists n2 > n1 such that
∣∣∣∣∫

E
fn1 fn2 dx < 1

∣∣∣∣.
Suppose that we have n1 < n2 < · · · < nk and functions fn1 , · · · , fnk such that

∫
E
(fn1 , · · · , fnj )

2dx ≤ (2 + M)j for

j = 1, · · · , k. Then since fn ⇀ 0 in L2 and fn1 + · · · + fnk ∈ L2(E), then there exists nk+1 > nk such that∫
E
(fn1 + · · · + fnk )fnk+1 dx ≤ 1. It follows that∫

E
(fn1 + · · · + fnk+1 )

2dx =

∫
E
(fn1 + · · · + fnk )

2dx + 2
∫

E
(fn1 + · · · + fnk )fnk+1 dx +

∫
E

f 2
nk+1

dx

≤ (2 + M)k + 2 + M = (2 + M)(k + 1)
Let {gm}m be the arithmetic mean of the constructed subsequence {fnj}j . Then

‖gm‖2
2 =

∫
E

( fn1 + · · · + fnm

m

)2
dx ≤

2 + M

m
−→ 0



A set C ⊂ X is said to be convex if for every f , g ∈ C and λ ∈ [0, 1], λf + (1− λ)g ∈ C. The
set C is said to be closed if for every sequence {fn}n ⊂ C such that fn −→ f in X, then f ∈ C.

A mapping T : C ⊂ X −→ R is said to be continuous on C if for every sequence {fn}n ⊂ C
such that fn → f ∈ C, we have Tfn → Tf ∈ R. Note that when T is linear, the continuity of T is
equivalent to T bounded.
When C is convex, the operator T is said to be convex if for every f , g ∈ C and λ ∈ [0, 1] we
have T(λf + (1− λ)g) ≤ λTf + (1− λ)Tg.

Examples
1. Let E ⊂ Rn be measurable, 1 ≤ p <∞, and g ∈ Lp(E) with g nonnegative. The set

C = {f measurable on E : |f | ≤ g a.e.} is a closed and convex subset of Lp(E). Indeed, C ⊂ Lp(E) follows from
|f | < g =⇒ ‖f‖p ≤ ‖g‖p . For f , h ∈ C and λ ∈ [0, 1] we have
|λf + (1− λ)h| ≤ λ|f | + (1− λ)|h| ≤ g. If {fn} ⊂ C is such that fn → f ∈ Lp(E), then there exists a

subsequence {fnk}k such that fnk → f pointwise a.e. Moreover
∣∣∣fnk

∣∣∣ ≤ g for all k implies |f | ≤ g and so f ∈ C.

2. Let E ⊂ Rn be measurable and 1 ≤ p <∞. The ball B{f ∈ Lp(E) : ‖f‖p ≤ 1} is closed and convex in Lp(E).
That B is closed follows rom the triangle inequality. Indeed if {fn}n ⊂ C converges to f ∈ Lp(E). Then
‖fn − f‖p → 0 and

‖f‖p ≤ ‖fn‖p + ‖fn − f‖p ≤ 1 + ‖fn − f‖p =⇒ ‖f‖p ≤ 1

3. Let E ⊂ Rn be measurable with finite measure, 1 ≤ p <∞, and let φ : R −→ R be continuous, convex, and such
that there exist a, b ≥ 0 such that |φ(t)| ≤ a + b|t|p for all t ∈ R.

Consider the operator T : Lp(E) −→ R given by T(f ) =

∫
E
φ ◦ f dx. Then T is continuous and convex (the

continuity will be shown later). The convexity follows from that of φ



Lemma (1)
Let E ⊂ Rn, 1 < p <∞, and C ⊂ Lp(E) be closed, bounded, and convex. Let T : C −→ R be
continuous and convex. If {fn}n ⊂ C and fn ⇀ f in Lp, then f ∈ C and T(f ) ≤ lim inf

n→∞
T(fn).

Proof.
It follows from Banach-Saks Theorem that there exists a subsequence {fnj}j such that the sequence {µ(fnj )}j of arithmetic

means converges to f in Lp . Since {µ(fnj )}j ⊂ C and C closed, then f ∈ C.

Let α = lim inf
n→∞

T(fn). There exists a subsequence {fnk}k such that α = lim
k→∞

T(fnk ). We can assume that the arithmetic

mean of {fnk}k converges to f in Lp . Note that if a sequence of real numbers xn converges to l, then its sequence of arithmetic

means µ(xn) also converges to l. It follows from the continuity of T and its convexity T(µ(gj)) ≤ µ(T(gj)) that

T(f ) = lim
k→∞

T(µ(fnk )) ≤ lim
k→∞

µT(fnk ) = lim
k→∞

T(fnk ) = α = lim inf
n→∞

T(fn)

Theorem (5)
Let E ⊂ Rn, 1 < p <∞, and C ⊂ Lp(E) be closed, bounded, and convex. Let T : C −→ R be
continuous and convex. Then T attains a minimum value in C. That is there exists f0 ∈ C such
that

T(f0) ≤ T(f ) for all f ∈ C.



Proof.
First we prove that T(C) is bounded below (i.e. there exists A ∈ R such that T(f ) ≥ A for all f ∈ C). By contradiction, if
T(C) were not bounded below, then there would be a sequence {fn} ⊂ C such that T(fn)→ −∞. Since C ⊂ Lp(E) is
bounded, then so is the sequence. We can therefore (by taking a a subsequence if necessary) assume that fn ⇀ f in Lp . Lemma
1 implies that f ∈ C and T(f ) ≤ lim inf

n→∞
T(fn) = −∞. A contradiction and so T(C) is bounded below.

Let m = inf{T(f ) : f ∈ C}. There exists a sequence {fn}n ⊂ C such that T(fn)→ c. We can assume that fn ⇀ f0 in Lp .

Lemma 1 implies that f0 ∈ C and T(f0) ≤ lim inf
n→∞

T(fn) = m. Therefore T(f0) = m.

Corollary (1)
Let E ⊂ Rn with m(E) <∞, 1 < p <∞, and let φ : R −→ R be continuous, convex, and
such that there exist a, b ≥ 0 such that

|φ(t)| ≤ a + b|t|p for all t ∈ R.
Then there exists f0 ∈ Lp(E) with ‖f0‖p ≤ 1 such that∫

E
φ ◦ f0dx = min{

∫
E
φ ◦ f dx : f ∈ Lp(E), ‖f‖p ≤ 1}.


