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Abstract Measures
Measurable and Integrable Functions

Signed Measures



Abstract Measure
Let X be a setA be a σ-algebra of subsets of X. That isA satisfies:

I X ∈ A;
I If A ∈ A, then its complement Ac = X\A is also inA (A closed under complement);

and

I if A1,A2, · · · are inA, then
∞⋃
i=1

Ai ∈ A (A closed under countable union).

These conditions imply that ∅ ∈ A,
∞⋂
i=1

Ai ∈ A, lim sup Ai =
∞⋂

n=1

∞⋃
i=n

Ai and

lim sup Ai =
∞⋃

n=1

∞⋂
i=n

Ai are inA, and A\B ∈ A for A,B ∈ A.

A measure on (X,A) is a function µ : A −→ [0, ∞] such that
I µ(∅) = 0; and

I when {Aj}∞j=1 ∈ A is a collection of disjoint sets, then µ

∞⋃
j=1

Aj

 =
∞∑
j=1

µ(Aj).

The triplet (X,A, µ) is called a measure space and the element ofA are measurable sets.

Examples
Let X be any set,A = 2X (the set of all subsets of X), and for A ∈ A, µ(A) the number of elements of A, if A finite,
otherwise µ(A) =∞: µ is the counting measure.
Let X = Rn ,A the σ-algebra of Lebesgue measurable sets, and µ = m is the Lebesgue measure.
Let x0 ∈ X, A any σ-algebra, and the Dirac measure at x0 given by δx0 : A −→ R given by δx0 (A) = 1 if x0 ∈ A and
δx0 (A) = 0 if x0 /∈ A. (X,A, δx0 ) is the Dirac measure space.



The arguments used for the Lebesgue measure can be used to prove the following results. The
details are left as exercises.

Proposition (1)
A measure µ satisfies the following;

1. If A,B ∈ A with A ⊂ B, then µ(A) ≤ µ(B).
2. If {Ai}i ⊂ A, then µ

(⋃
i Ai
)
≤
∑

i µ(Ai).

3. If {Ai}i ⊂ A is an ascending sequence, then µ
(⋃

i Ai
)
= limi→∞ µ(Ai).

4. If {Ai}i ⊂ A is an descending sequence and one of the Ai’s has finite measure, then
µ
(⋂

i Ai
)
= limi→∞ µ(Ai).

Note that in (4), if none of the sets has finite measure, then the conclusion might not hold as the
following example shows: Let X = N and µ be the counting measure. Let
Aj = {x ∈ N : x ≥ i}. Then Ai ↘, µ(Ai) =∞ for all i, and we have

⋂
i Ai = ∅ and so

0 = µ(
⋂

i Ai) 6= limi→∞ µ(Ai)
Let (X,A, µ) be a measure space. If µ(X) <∞, µ is said to be a finite measure and (X,A, µ)
a finite measure space. If µ(X) =∞ and if there exists {Aj}j ⊂ A such that X =

⋃
j Aj and

µ(Aj) <∞ for all j, the µ is said to a σ-finite measure and (X,A, µ) a σ-finite measure space.
A set N ⊂ X (not necessarily inA) is said to be a null set if there exists Z ∈ A such that N ⊂ Z
and µ(Z) = 0. The measure space (X,A, µ) is said to be complete if every null set is contained
inA. Given a measure space (X,A, µ), there exists a smallest σ-algebraA containingA and
all null sets and a measure µ : A −→ [0, ∞] such that (X,A, µ) is complete. It is the
completion of (X,A, µ).



Measurable Functions

Let (X,A, µ) be a measure space, E ∈ A and f : E −→ R. f is said to beA-measurable or
simply measurable if for every a ∈ R the set {f > a} = {x ∈ E : f (x) > a} isA-measurable
(i.e. {f > a} ∈ A).

A property (P) is said to hold almost everywhere in a set E ∈ A if there exists a set Z ⊂ E such
that µ(Z) = 0 and (P) holds in E\Z.

Let E ⊂ X. The characteristic function of E is: χE : X −→ R given by χE (x) = 1 if x ∈ E and
χE (x) = 0 if x /∈ E. A simple function φ on X is a finite linear combination of characteristic

function: φ =
n∑

j=1

ajχEj
for some disjoint sets E1, · · · ,En ∈ X and a1, · · · , an ∈ R.

Proposition (2)
Let f : E −→ R. The following conditions are equivalent:

I {f > a} ∈ A for all a ∈ R;
I {f ≥ a} ∈ A for all a ∈ R;
I {f < a} ∈ A for all a ∈ R;
I {f ≤ a} ∈ A for all a ∈ R.

In addition if any of the above conditions hold, then {f = a} ∈ A for all a ∈ A

Proposition (3)
If X is a metric space andA contains all open sets of X, then a continuous function f : E −→ R
is measurable.



Theorem (1)
1. If f , g : E −→ R be measurable, then so are the functions f + g, cf (with c a real

number), fg, max(f , g), min(f , g), 1/f (provided f 6= 0 on E).

2. If ψ : R −→ R is continuous and f measurable over E, then ψ ◦ f is measurable. In
particular, the functions, f+ = max(f , 0), f− = max(−f , 0), and |f |p with p > 0 are
measurable.

3. A simple function φ =
n∑

j=1

ajχEj
is measurable if and only if each set Ej is measurable.

4. If {fj}∞j=1 is a sequence of measurable functions on a set E, then so are the functions
supj fj, infj fj, lim sup

j→∞
fj, lim inf

j→∞
fj, and lim

j→∞
fj if it exists.

5. If f : E −→ R is nonnegative and measurable, then there exists a sequence of
measurable, nonnegative, simple functions {φj}j such that φj ↗ f .

We have an analogue version of Egorov’s Theorem

Theorem (2)
Let (X,A, µ) be a measure space and E ∈ A with µ(E) <∞. Let {fj}j be a sequence of
measurable functions on E such that fj is finite a.e. and fj converges a.e. to a function f that is
finite a.e. Then for any given ε > 0, there exists a set A ∈ A with A ⊂ E and µ(E\A) < ε, such
that {fj}j converges uniformly to f on the set A.



µ-Integrable Functions

If φ =
∑

j ajχEj
is a nonnegative simple function on E ∈ A, we define the Lebesgue µ-integral

or simple the integral of φ as
∫

E
φdµ =

∑
j

ajµ(Ej). Where we use the convention that if

aj = 0 and µ(Ej) =∞, then ajµ(Ej) = 0. Note that the integral of φ as defined could be∞.

Let f : E −→ R be a nonnegative measurable function. Set∫
E

fdµ = sup
{∫

E
φdµ : 0 ≤ φ ≤ f , φ simple function

}
The function f is said to be integrable if

∫
E

fdµ <∞.

Given a measurable function f : E −→ R, if |f | is integrable over E, then so are f+ and f−. In
this case the function f is said to be integrable over E and define its integral over E as∫

E
fdµ =

∫
E

f+dµ−
∫

E
f−dµ

It follows from the triangle inequality that∣∣∣∣∫
E

fdµ
∣∣∣∣ ≤ ∫

E
|f |dµ

For E ∈ A, denote by L(E, dµ) the space of functions that are µ-integrable over E. It can be
shown that L(E, dµ) is a linear space.



Some properties of µ-integrable functions

I If f ≥ 0 and
∫

E
fdµ = 0, then f = 0 a.e.

I If f ∈ L(E, dµ) and
∫

A
fdµ = 0 for every A ∈ A with A ⊂ E, then f = 0 a.e.

I Fatou’s Lemma: For {fn}n ⊂ L(E, dµ) and fn ≥ 0, then∫
E

lim inf
n→∞

fn dµ ≤ lim inf
n→∞

∫
E

fn dµ

I Monotone Convergence Theorem: Suppose {fn}n ⊂ L(E, dµ), fn ≥ 0, and fn ↗ f a.e.,
then ∫

E
f dµ = lim

n→∞

∫
E

fn dµ

I Dominated Convergence Theorem: Let {fn}n is a sequence of µ-measurable functions
over E ∈ A and fn → f pointwise a.e. Suppose that there exists g ∈ L(E, dµ) such that
|fn| ≤ g for all n, then

lim
n→∞

∫
E

fn dµ =

∫
E

f dµ.



Signed Measures

A signed measure over X is a function µ : A −→ (−∞, ∞] defined over a σ-algebraA over
X such that µ(∅) = 0 and µ is countably additive in the sense that if {Aj}∞j=1 ⊂ A is disjoint,
then µ(

⋃
j Aj) =

∑
j µ(Aj), where the series

∑
j µ(Aj) is absolutely convergent

(
∑

j |µ(Aj)| <∞) whenever µ(
⋃

j Aj) <∞. The measure µ is said to be positive if it does not
take negative values.

A set P ∈ A (resp. N ∈ A) is said to be µ-positive (resp. µ-negative) if µ(E) ≥ 0 (resp.
µ(E) ≤ 0) whenever E ∈ A with E ⊂ P (resp. E ⊂ N). A set S ∈ A is said to be a µ-null if
µ(E) = 0 for every E ∈ A with E ⊂ S.

Example
Let f ∈ L(Rn, dm) (m is the Lebesgue measure) and let M be the σ-algebra of Lebesgue measurable sets in Rn . Define a
signed measure µ onM by

µ(E) =

∫
E

fdm .

Note that if {Ej}j ⊂M is disjoint then f (and so |f |) is integrable over
⋃

j Ej . We have µ(
⋃

j

Ej) =

∫
⋃

j Ej
fdm <∞.

Also ∑
j

∣∣µ(Ej)
∣∣ = ∑

j

∣∣∣∣∣
∫

Ej
fdm

∣∣∣∣∣ ≤∑
j

∫
Ej
|f |dm =

∫
⋃

j Ej
|f |dm <∞.

The series
∑

j µ(Ej) converges absolutely and µ(
⋃

j Ej) =
∑

j µ(Ej).

Let P = {x ∈ Rn : f (x) ≥ 0}. If E ⊂ P is measurable, then f ≥ 0 on E and µ(E) =

∫
E

fdm ≥ 0. Hence P is a positive

set for µ. Similarly the set N = {x ∈ Rn : f (x) < 0} is a negative set for µ.



Proposition (2)
Let µ : A −→ (−∞, ∞] be a signed measure. If A ∈ A is such that µ(A) < 0, then there
exists a negative set N ⊂ A with µ(N) < 0.

Proof.
If A is a negative set, take N = A, and we are done. If A is not a negative set, then it has a subset with positive measure. Let n1

be the smallest positive integer such that there exists a set E1 ⊂ A with µ(E1) > 1/n1 . Let B1 = A\E1 . Then B1 ⊂ A with

µ(B1) = µ(A)− µ(E1) < µ(A) < 0. If B1 is a negative set, take N = B1 and we are done. If not, then B1 contains a

subset with a positive measure. Let n2 > n1 be the smallest integer such that there exist a set E2 ⊂ B1 with µ(E2) > 1/n2 .

Then E1 ∩ E2 = ∅. Let B2 = B1\E2 = A\(E1 ∪ E2). We have µ(B2) = µ(A)− (µ(E1) + µ(E2)) < 0. If B2 is a

negative set, we are done. Other repeat the construction by induction. At the j-th step, we will have increasing sequence of

integers n1 < n2 < · · · < nj , disjoint sets E1, · · · , Ej ∈ A with Ek ⊂ A and µ(Ek) > 1/nk for k = 1, · · · , j. Let

Bj = Bj−1\Ej = A\(
⋃j

k=1 Ek). We have µ(Bj) < µ(A) < 0. If Bj is a negative set, we are done. If not we obtain an

infinite sequence. In this case define N =
⋂∞

j=1 Bj = A\
⋃∞

j=1 Ej . Then N ⊂ A and

µ(N) = µ(A)−
∑

j µ(Ej) < µ(A) < 0. It remains to verify that N is a negative set. By contradiction, suppose that there

exists a set F ⊂ N with µ(F) > 0. Then there would be a positive integer r such that µ(F) > 1/r. This would mean that

F ⊂ Ej for nj > r and F * Bj which is a contradiction.


