Real Analysis MAA 6616 Lecture 29 Abstract Measures Measurable and Integrable Functions Signed Measures

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Abstract Measure

Let *X* be a set *A* be a σ -algebra of subsets of *X*. That is *A* satisfies:

- $\blacktriangleright X \in \mathcal{A};$
- If $A \in A$, then its complement $A^c = X \setminus A$ is also in A (A closed under complement); and

• if
$$A_1, A_2, \cdots$$
 are in \mathcal{A} , then $\bigcup_{i=1}^{\infty} A_i \in \mathcal{A}$ (\mathcal{A} closed under countable union).

These conditions imply that $\emptyset \in \mathcal{A}$, $\bigcap_{i=1}^{\infty} A_i \in \mathcal{A}$, $\limsup A_i = \bigcap_{i=1}^{\infty} \bigcup_{i=n}^{\infty} A_i$ and

$$\limsup A_i = \bigcup_{n=1} \bigcap_{i=n} A_i \text{ are in } \mathcal{A}, \text{ and } A \setminus B \in \mathcal{A} \text{ for } A, B \in \mathcal{A}.$$

A measure on (X, \mathcal{A}) is a function $\mu : \mathcal{A} \longrightarrow [0, \infty]$ such that

•
$$\mu(\emptyset) = 0$$
; and

 $\infty \infty$

• when
$$\{A_j\}_{j=1}^{\infty} \in \mathcal{A}$$
 is a collection of disjoint sets, then $\mu\left(\bigcup_{j=1}^{\infty} A_j\right) = \sum_{j=1}^{\infty} \mu(A_j)$.

The triplet (X, \mathcal{A}, μ) is called a measure space and the element of \mathcal{A} are measurable sets.

Examples

Let X be any set, $\mathcal{A} = 2^X$ (the set of all subsets of X), and for $A \in \mathcal{A}$, $\mu(A)$ the number of elements of A, if A finite, otherwise $\mu(A) = \infty$: μ is the counting measure. Let $X = \mathbb{R}^n$, \mathcal{A} the σ -algebra of Lebesgue measurable sets, and $\mu = m$ is the Lebesgue measure. Let $x_0 \in X$, \mathcal{A} any σ -algebra, and the Dirac measure at x_0 given by $\delta_{x_0} : \mathcal{A} \longrightarrow \mathbb{R}$ given by $\delta_{x_0}(A) = 1$ if $x_0 \in A$ and $\delta_{x_0}(A) = 0$ if $x_0 \notin A$. $(X, \mathcal{A}, \delta_{x_0})$ is the Dirac measure space. The arguments used for the Lebesgue measure can be used to prove the following results. The details are left as exercises.

Proposition (1)

A measure μ satisfies the following;

- 1. If $A, B \in \mathcal{A}$ with $A \subset B$, then $\mu(A) \leq \mu(B)$.
- 2. If $\{A_i\}_i \subset A$, then $\mu\left(\bigcup_i A_i\right) \leq \sum_i \mu(A_i)$.
- 3. If $\{A_i\}_i \subset A$ is an ascending sequence, then $\mu(\bigcup_i A_i) = \lim_{i \to \infty} \mu(A_i)$.
- 4. If $\{A_i\}_i \subset A$ is an descending sequence and one of the A_i 's has finite measure, then $\mu(\bigcap_i A_i) = \lim_{i \to \infty} \mu(A_i)$.

Note that in (4), if none of the sets has finite measure, then the conclusion might not hold as the following example shows: Let $X = \mathbb{N}$ and μ be the counting measure. Let $A_j = \{x \in \mathbb{N} : x \ge i\}$. Then $A_i \searrow, \mu(A_i) = \infty$ for all *i*, and we have $\bigcap_i A_i = \emptyset$ and so $0 = \mu(\bigcap_i A_i) \neq \lim_{i \to \infty} \mu(A_i)$ Let (X, \mathcal{A}, μ) be a measure space. If $\mu(X) < \infty$, μ is said to be a finite measure and (X, \mathcal{A}, μ) a finite measure space. If $\mu(X) = \infty$ and if there exists $\{A_j\}_j \subset \mathcal{A}$ such that $X = \bigcup_j A_j$ and $\mu(A_j) < \infty$ for all *j*, the μ is said to a σ -finite measure and (X, \mathcal{A}, μ) a σ -finite measure space. A set $N \subset X$ (not necessarily in \mathcal{A}) is said to be a null set if there exists $Z \in \mathcal{A}$ such that $N \subset Z$ and $\mu(Z) = 0$. The measure space (X, \mathcal{A}, μ) is said to be complete if every null set is contained in \mathcal{A} . Given a measure space (X, \mathcal{A}, μ) , there exists a smallest σ -algebra $\overline{\mathcal{A}}$ containing \mathcal{A} and all null sets and a measure $\overline{\mu} : \overline{\mathcal{A}} \longrightarrow [0, \infty]$ such that $(X, \overline{\mathcal{A}}, \overline{\mu})$ is complete. It is the completion of (X, \mathcal{A}, μ) .

Measurable Functions

Let (X, \mathcal{A}, μ) be a measure space, $E \in \mathcal{A}$ and $f : E \longrightarrow \mathbb{R}$. f is said to be \mathcal{A} -measurable or simply measurable if for every $a \in \mathbb{R}$ the set $\{f > a\} = \{x \in E : f(x) > a\}$ is \mathcal{A} -measurable (i.e. $\{f > a\} \in \mathcal{A}$).

A property (\mathcal{P}) is said to hold almost everywhere in a set $E \in \mathcal{A}$ if there exists a set $Z \subset E$ such that $\mu(Z) = 0$ and (\mathcal{P}) holds in $E \setminus Z$.

Let $E \subset X$. The characteristic function of E is: $\chi_E : X \longrightarrow \mathbb{R}$ given by $\chi_E(x) = 1$ if $x \in E$ and $\chi_E(x) = 0$ if $x \notin E$. A simple function ϕ on X is a finite linear combination of characteristic function: $\phi = \sum_{j=1}^n a_j \chi_{E_j}$ for some disjoint sets $E_1, \dots, E_n \in X$ and $a_1, \dots, a_n \in \mathbb{R}$.

Proposition (2)

Let $f : E \longrightarrow \overline{\mathbb{R}}$. The following conditions are equivalent:

- $\{f > a\} \in \mathcal{A} \text{ for all } a \in \mathbb{R};$
- $\{f \ge a\} \in \mathcal{A} \text{ for all } a \in \mathbb{R};$
- $\{f < a\} \in \mathcal{A} \text{ for all } a \in \mathbb{R};$
- $\{f \leq a\} \in \mathcal{A} \text{ for all } a \in \mathbb{R}.$

In addition if any of the above conditions hold, then $\{f = a\} \in A$ for all $a \in A$

Proposition (3)

If X is a metric space and A contains all open sets of X, then a continuous function $f : E \longrightarrow \mathbb{R}$ is measurable.

Theorem (1)

- 1. If $f, g : E \longrightarrow \mathbb{R}$ be measurable, then so are the functions f + g, cf (with c a real number), fg, $\max(f, g)$, $\min(f, g)$, 1/f (provided $f \neq 0$ on E).
- If ψ : ℝ → ℝ is continuous and f measurable over E, then ψ ∘ f is measurable. In particular, the functions, f⁺ = max(f, 0), f⁻ = max(-f, 0), and |f|^p with p > 0 are measurable.
- 3. A simple function $\phi = \sum_{j=1}^{n} a_j \chi_{E_j}$ is measurable if and only if each set E_j is measurable.
- 4. If $\{f_j\}_{j=1}^{\infty}$ is a sequence of measurable functions on a set E, then so are the functions $\sup_j f_j$, $\inf_j f_j$, $\limsup_{j \to \infty} f_j$, $\lim_{j \to \infty} \inf_j f_j$, and $\lim_{j \to \infty} f_j$ if it exists.
- If f: E → R
 is nonnegative and measurable, then there exists a sequence of measurable, nonnegative, simple functions {φ_j} such that φ_j ≯ f.

We have an analogue version of Egorov's Theorem

Theorem (2)

Let (X, \mathcal{A}, μ) be a measure space and $E \in \mathcal{A}$ with $\mu(E) < \infty$. Let $\{f_j\}_j$ be a sequence of measurable functions on E such that f_j is finite a.e. and f_j converges a.e. to a function f that is finite a.e. Then for any given $\epsilon > 0$, there exists a set $A \in \mathcal{A}$ with $A \subset E$ and $\mu(E \setminus A) < \epsilon$, such that $\{f_j\}_j$ converges uniformly to f on the set A.

μ -Integrable Functions

If $\phi = \sum_{j} a_j \chi_{E_j}$ is a nonnegative simple function on $E \in \mathcal{A}$, we define the Lebesgue μ -integral or simple the integral of ϕ as $\int_E \phi d\mu = \sum_j a_j \mu(E_j)$. Where we use the convention that if $a_j = 0$ and $\mu(E_j) = \infty$, then $a_j \mu(E_j) = 0$. Note that the integral of ϕ as defined could be ∞ . Let $f : E \longrightarrow \mathbb{R}$ be a nonnegative measurable function. Set $\int_E f d\mu = \sup \left\{ \int_E \phi d\mu : 0 \le \phi \le f, \phi \text{ simple function} \right\}$ The function f is said to be integrable if $\int_f f d\mu < \infty$.

Given a measurable function $f: E \longrightarrow \overline{\mathbb{R}}$, if |f| is integrable over *E*, then so are f^+ and f^- . In this case the function *f* is said to be integrable over *E* and define its integral over *E* as

$$\int_{E} fd\mu = \int_{E} f^{+}d\mu - \int_{E} f^{-}d\mu$$

It follows from the triangle inequality that

$$\left| \int_{E} f d\mu \right| \leq \int_{E} |f| d\mu$$

For $E \in A$, denote by $\mathcal{L}(E, d\mu)$ the space of functions that are μ -integrable over E. It can be shown that $\mathcal{L}(E, d\mu)$ is a linear space.

Some properties of μ -integrable functions

ſ

▶ If
$$f \ge 0$$
 and $\int_E fd\mu = 0$, then $f = 0$ a.e.
▶ If $f \in \mathcal{L}(E, d\mu)$ and $\int_A fd\mu = 0$ for every $A \in \mathcal{A}$ with $A \subset E$, then $f = 0$ a.e.

Fatou's Lemma: For
$$\{f_n\}_n \subset \mathcal{L}(E, d\mu)$$
 and $f_n \ge 0$, then

$$\int_{E} \liminf_{n \to \infty} f_n d\mu \le \liminf_{n \to \infty} \int_{E} f_n d\mu$$

▶ Monotone Convergence Theorem: Suppose $\{f_n\}_n \subset \mathcal{L}(E, d\mu), f_n \ge 0$, and $f_n \nearrow f$ a.e., then

$$\int_E f \, d\mu = \lim_{n \to \infty} \int_E f_n \, d\mu$$

▶ Dominated Convergence Theorem: Let $\{f_n\}_n$ is a sequence of μ -measurable functions over $E \in \mathcal{A}$ and $f_n \to f$ pointwise a.e. Suppose that there exists $g \in \mathcal{L}(E, d\mu)$ such that $|f_n| \leq g$ for all *n*, then

$$\lim_{n \to \infty} \int_E f_n \, d\mu = \int_E f \, d\mu.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Signed Measures

A signed measure over X is a function $\mu : \mathcal{A} \longrightarrow (-\infty, \infty]$ defined over a σ -algebra \mathcal{A} over X such that $\mu(\emptyset) = 0$ and μ is countably additive in the sense that if $\{A_j\}_{j=1}^{\infty} \subset \mathcal{A}$ is disjoint, then $\mu(\bigcup_j A_j) = \sum_j \mu(A_j)$, where the series $\sum_j \mu(A_j)$ is absolutely convergent $(\sum_j |\mu(A_j)| < \infty)$ whenever $\mu(\bigcup_j A_j) < \infty$. The measure μ is said to be positive if it does not take negative values.

A set $P \in \mathcal{A}$ (resp. $N \in \mathcal{A}$) is said to be μ -positive (resp. μ -negative) if $\mu(E) \ge 0$ (resp. $\mu(E) \le 0$) whenever $E \in \mathcal{A}$ with $E \subset P$ (resp. $E \subset N$). A set $S \in \mathcal{A}$ is said to be a μ -null if $\mu(E) = 0$ for every $E \in \mathcal{A}$ with $E \subset S$.

Example

Let $f \in \mathcal{L}(\mathbb{R}^n, dm)$ (*m* is the Lebesgue measure) and let M be the σ -algebra of Lebesgue measurable sets in \mathbb{R}^n . Define a signed measure μ on \mathcal{M} by

$$\mu(E) = \int_E f dm$$

Note that if $\{E_j\}_j \subset \mathcal{M}$ is disjoint then f (and so |f|) is integrable over $\bigcup_j E_j$. We have $\mu(\bigcup_j E_j) = \int_{\bigcup_j E_j} f dm < \infty$.

Also

$$\sum_{j} |\mu(E_{j})| = \sum_{j} \left| \int_{E_{j}} f dm \right| \leq \sum_{j} \int_{E_{j}} |f| dm = \int_{\bigcup_{j} E_{j}} |f| dm < \infty.$$

The series $\sum_{i} \mu(E_{j})$ converges absolutely and $\mu(\bigcup_{i} E_{j}) = \sum_{i} \mu(E_{j}).$

Let $P = \{x \in \mathbb{R}^n : f(x) \ge 0\}$. If $E \subset P$ is measurable, then $f \ge 0$ on E and $\mu(E) = \int_E f dm \ge 0$. Hence P is a positive set for μ . Similarly the set $N = \{x \in \mathbb{R}^n : f(x) < 0\}$ is a negative set for μ .

Proposition (2)

Let $\mu : \mathcal{A} \longrightarrow (-\infty, \infty]$ be a signed measure. If $A \in \mathcal{A}$ is such that $\mu(A) < 0$, then there exists a negative set $N \subset A$ with $\mu(N) < 0$.

Proof.

If *A* is a negative set, take N = A, and we are done. If *A* is not a negative set, then it has a subset with positive measure. Let n_1 be the smallest positive integer such that there exists a set $E_1 \subset A$ with $\mu(E_1) > 1/n_1$. Let $B_1 = A \setminus E_1$. Then $B_1 \subset A$ with $\mu(B_1) = \mu(A) - \mu(E_1) < \mu(A) < 0$. If B_1 is a negative set, take $N = B_1$ and we are done. If not, then B_1 contains a subset with a positive measure. Let $n_2 > n_1$ be the smallest integer such that there exist a set $E_2 \subset B_1$ with $\mu(E_2) > 1/n_2$. Then $E_1 \cap E_2 = \emptyset$. Let $B_2 = B_1 \setminus E_2 = A \setminus (E_1 \cup E_2)$. We have $\mu(B_2) = \mu(A) - (\mu(E_1) + \mu(E_2)) < 0$. If B_2 is a negative set, we are done. Other repeat the construction by induction. At the *j*-th step, we will have increasing sequence of integers $n_1 < n_2 < \cdots < n_j$, disjoint sets $E_1, \cdots, E_j \in A$ with $E_k \subset A$ and $\mu(E_k) > 1/n_k$ for $k = 1, \cdots, j$. Let $B_j = B_{j-1} \setminus E_j = A \setminus (\bigcup_{k=1}^j E_k)$. We have $\mu(B_j) < \mu(A) < 0$. If B_j is a negative set, we are done. If not we obtain an infinite sequence. In this case define $N = \bigcap_{j=1}^\infty B_j = A \setminus \bigcup_{j=1}^\infty E_j$. Then $N \subset A$ and $\mu(N) = \mu(A) - \sum_j \mu(E_j) < \mu(A) < 0$. It remains to verify that N is a negative set. By contradiction, suppose that there exists a set $F \subset N$ with $\mu(F) > 0$. Then there would be a positive integer r such that $\mu(F) > 1/r$. This would mean that $F \subset E_i$ for $n_i > r > n$ and $F \notin B_i$ which is a contradiction.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <