Real Analysis MAA 6616 Lecture 3 Sequences of Real Numbers A sequence in \mathbb{R} is a function $f : \mathbb{N} \longrightarrow \mathbb{R}$. Usually f(j) is denoted a_j and the sequence denoted $\{a_j\}$. The number a_j corresponding to the index j is called the j-th term of the sequence. The sequence is said to be bounded if there exists $M \ge 0$ such that $|a_j| \le M$ for all j. A sequence $\{a_j\}$ is increasing (resp. decreasing) if $a_j \le a_{j+1}$ (resp. $a_j \ge a_{j+1}$) for all j. The sequence is monotone if it is either increasing or decreasing. A sequence $\{a_j\}$ is said to converge to a number c (called the limit) if for every $\epsilon > 0$ there exists $N \in \mathbb{N}$ such that

$$|a_j - c| \le \epsilon \quad \forall j \ge N$$
.

In this case we use the notation $c = \lim_{j \to \infty} a_j$ or $a_j \longrightarrow c$.

Proposition

Suppose that the sequence $\{a_i\}$ converges to *c*.

- 1. The limit c is unique;
- 2. The sequence is bounded;
- 3. If $a_j \leq M$ for all j, then $|c| \leq M$

Proof.

1. If *c* and *c'* are limits of the sequence $\{a_j\}$, then given $\epsilon > 0$, there are *N* and *N'* in \mathbb{N} such that $|c - a_j| \le \epsilon$ for all $j \ge N$ and $|c' - a_j| \le \epsilon$ for all $j \ge N'$. Let $j > \max(N, N')$, we have

$$|\mathbf{c} - \mathbf{c}'| = |\mathbf{c} - \mathbf{a}_j + \mathbf{a}_j - \mathbf{c}'| \le |\mathbf{c} - \mathbf{a}_j| + |\mathbf{a}_j - \mathbf{c}'| \le 2\epsilon$$

Since $\epsilon > 0$ is arbitrary, then c = c'.

2. Let $\epsilon = 1$. There exists $N \in \mathbb{N}$ such that $|c - a_j| \le 1$ for all j > N. Hence for j > N we have

$$|a_j| = |a_j - c + c| \le |a_j - c| + |c| \le 1 + |c|$$
.

Let $M = \max(|a_1|, \cdots, |a_N|, 1+|c|)$. Then $|a_j| \leq M$ for all j.

Left as an exercise

Theorem

A monotone sequence is convergent if and only if it is bounded.

Proof.

We know from the previous proposition that a convergent sequence is bounded. To prove the theorem we need only show that a bounded monotone sequence is convergent. Suppose that $\{a_j\}$ is decreasing and bounded. Let $c = \inf_{j \in \mathbb{N}} \{a_j\}$. Let $\epsilon > 0$ be arbitrary. Since $c + \epsilon$ is not a lower bound of the sequence, then there exists $N \in \mathbb{N}$ such that $c \le a_N < c + \epsilon$. Since the sequence is decreasing, then $a_j \le a_N$ for all $j \ge N$. We have therefore $c \le a_j \le a_N < c + \epsilon$ for all $j \ge N$. That is $|a_j - c| < \epsilon$ for all $j \ge N$. Hence $a_j \longrightarrow c$.

Let $\{a_n\}_n$ be a sequence in \mathbb{R} and let $\{n_k\}_k$ be a a strictly increasing sequence in \mathbb{N} . The sequence $\{a_{n_k}\}_k$ is called a subsequence of $\{a_n\}$. The *j*-th term of $\{a_{n_k}\}_k$ is a_{n_i} .

Theorem

A bounded sequence in \mathbb{R} has a convergent subsequence.

Proof.

Let $\{a_n\}$ be a bounded sequence in \mathbb{R} and let $M \ge 0$ such that $|a_n| \le M$ for all n. For each $j \in \mathbb{N}$, consider closed set $E_j = \overline{\{a_k : k > j\}}$. Then $E_j \subset [-M, M]$ and $E_{j+1} \subset E_j$ for all j. It follows from the Nested Set Theorem that $\bigcap_{j=1}^{\infty} E_j \neq \emptyset$. Let $c \in \bigcap_{j=1}^{\infty} E_j$. Since $c \in E_1 = \overline{\{a_k : k > 1\}}$, then we can find $k_1 \in \mathbb{N}$ such that $|c - a_{k_1}| < 1$. Similarly $c \in E_{k_1} = \overline{\{a_k : k > k_1\}}$, then there exists $k_2 > k_1$ such that $|c - a_{k_2}| < 1/2$. By induction, suppose that we have a $k_1 < k_2 < \cdots < k_j$ such that $|c - a_{k_j}| < 1/j$. Using the fact that $c \in E_{k_j} = \overline{\{a_k : k > k_j\}}$, we can find $k_{j+1} > k_j$ such that $|c - a_{k_{j+1}}| < 1/(j+1)$. Therefore the subsequence $\{a_{k_j}\}$ converges to c. **Cauchy Sequences**

A sequence $\{a_j\}$ in \mathbb{R} is said to be Cauchy if for every $\epsilon > 0$ there exists $N \in \mathbb{N}$ such that $|a_n - a_m| < \epsilon$ for all n, m > N.

Theorem

A sequence of real numbers converges if and only if it is a Cauchy sequence.

Proof.

Let $\{a_n\}$ be a sequence in \mathbb{R} .

" \implies " Suppose that $\{a_n\}$ converges to c. Let $\epsilon > 0$. Then there exists $N \in \mathbb{N}$ such that $|a_n - c| < \epsilon/2$ for all n > N. For m, n > N, we have

$$|a_m-a_n|=|a_m-c+c-a_n|\leq |a_m-c|+|c-a_n|<\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon$$

This shows that $\{a_n\}$ is Cauchy.

" \leftarrow " Suppose that $\{a_n\}$ is Cauchy. First we prove that the sequence is bounded. Let $\epsilon = 1$, then there exists $N_1 \in \mathbb{N}$ such that $|a_n - a_m| < 1$ whenever $n, m \ge N_1$. Let $M = 1 + \max(|a_1|, \cdots, |a_{N_1}|)$. Then for $j \le N_1$, $|a_j| < M$ and for $j > N_1$, we have

$$\left|a_{j}\right| = \left|a_{j} - a_{N_{1}} + a_{N_{1}}\right| \leq \left|a_{j} - a_{N_{1}}\right| + \left|a_{N_{1}}\right| < 1 + \left|a_{N_{1}}\right| \leq M$$

Hence the sequence is bounded. It follows then from the Bolzano-Weierstrass Theorem that $\{a_n\}$ has a convergent subsequence $\{a_{n_j}\}$. Let $c = \lim a_{n_j}$. We claim that the original sequence also converges to c. Indeed, let $\epsilon > 0$. Using the hypothesis that $\{a_n\}$ is Cauchy and that the subsequence converges, there is $N \in \mathbb{N}$ and $J \in \mathbb{N}$ such that $|a_n - a_m| < \epsilon/2$ for n, m > N and $|a_{n_j} - c| < \epsilon/2$ for j > J. For n > N, let $m = n_j > N$ with j > J. Then

$$|a_n - c| = \left|a_n - a_{n_j} + a_{n_j} - c\right| \le \left|a_n - a_{n_j}\right| + \left|a_{n_j} - c\right| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$$

The proofs of the following properties of convergent sequences are left as exercises. Let $\{a_n\}$ and $\{b_n\}$ be convergent sequences.

For
$$\lambda, \mu \in \mathbb{R}$$
, we have $\lim_{n \to \infty} (\lambda a_n + \mu b_n) = \lambda \lim_{n \to \infty} a_n + \mu \lim_{n \to \infty} b_n$.

▶ If there exists $p \in \mathbb{N}$ such that $a_n \leq b_n$ for all $n \geq p$, then $\lim_{n \to \infty} a_n \leq \lim_{n \to \infty} b_n$.

A sequence $\{a_n\}$ is said to converge to infinity and write $\lim_{n\to\infty} a_n = \infty$ if for every A > 0, there exists $N \in \mathbb{N}$ such that $a_n > A$ for all n > N. A sequence $\{a_n\}$ is said to converge to minus infinity and write $\lim_{n\to\infty} a_n = -\infty$ if for every B < 0, there exists $N \in \mathbb{N}$ such that $a_n < B$ for all n > N.

The limit superior and limit inferior of a sequence $\{a_n\}$ are defined by

$$\limsup a_n = \lim_{n \to \infty} [\sup\{a_k : k \ge n\}] \text{ and } \liminf a_n = \lim_{n \to \infty} [\inf\{a_k : k \ge n\}]$$

Proposition

- lim sup a_n = s if and only if for every ε > 0 there exists N ∈ N such that a_n < s + ε for all n > N and for every k ∈ N there exists n_k > k such that s - ε < a_{nk} (there are only finitely many a_n's that are > s + ε and infinitely many that are > s - ε)
- 2. lim sup $a_n = \infty$ if and only if $\{a_n\}$ is not bounded above.
- 3. $\limsup a_n = -\lim \inf(-a_n)$.
- 4. $\{a_n\}$ converges in $\overline{\mathbb{R}} = \mathbb{R} \cup \{-\infty, \infty\}$ if and only if $\limsup a_n = \liminf a_n$.

Proof.

- 1. " \Longrightarrow " Suppose Im sup $a_n = s$. Let $\epsilon > 0$, there exists $N \in \mathbb{N}$ such that $|\sup\{a_k : k \ge n\} s| < \epsilon$ for all n > N. Hence $a_k < s + \epsilon$ for all k > N. Since $s \epsilon < \sup\{a_k : k \ge n\}$, then for every n > N, there exists $k_n > n$ such that $s \epsilon < a_{k_n}$. " \Leftarrow " Suppose that for any $\epsilon > 0$, there exists $N \in \mathbb{N}$ such that $a_n < s + \epsilon$ for all n > N and for every n > N, there exists $k_n \ge n$ such that $s - \epsilon < a_{k_n}$. Then $\sup\{a_k : k \ge N\} < s + \epsilon$. Therefore $\sup\{a_k : k \ge n\} \le \sup\{a_k : k \ge n\} < s + \epsilon$. Therefore $\sup\{a_k : k \ge n\} \le \sup\{a_k : k \ge n\} < s + \epsilon$ for all n > N. Furthermore $s - \epsilon < \sup\{a_k : k \ge n\}$ since $s - \epsilon < a_{k_n}$. This means $|\sup\{a_k : k \ge n\} - s| < \epsilon$ for all n > N.
- 2. " \leftarrow " Suppose $\{a_n\}$ is unbounded above. Then for any given $n, m \in \mathbb{N}$, $a_n < \sup\{a_k : k \ge m\}$. This implies that for any A > 0,

$$A < \sup\{a_k : k \ge n\} \le \sup\{a_k : k \ge n+1\}$$

Therefore, $\limsup a_n = \infty$ " \Longrightarrow " Suppose $\limsup a_n = \infty$. Then for any A > 0, there exists $N \in \mathbb{N}$ such that $\sup\{a_k : k \ge n\} > A$ for all n > N. Therefore there exists $k_n \ge n$ such that $a_{k_n} > A$ and the sequence $\{a_n\}$ is unbounded above.

- Left as an exercise
- "⇒>" Suppose lim_{n→∞} a_n = s with s ∈ ℝ (the case s = ±∞ is left as an exercise). Let ε > 0, there exists N ∈ ℝ such that |a_n − s| < ε for all n > N. Therefore

 $s - \epsilon \leq \inf\{a_k : k \geq n\} \leq a_n \leq \sup\{a_k : k \geq n\} \leq s + \epsilon \quad \forall n > N.$

This means $\limsup a_n = \liminf a_n = s$. " \Leftarrow " Left as an exrecise. To a sequence of real numbers $\{a_n\}$ we associate the sequence of partial sums $\{s_n\}$ defined by $s_n = \sum_{j=1}^n a_j$. The series $\sum_{j=1}^{\infty} a_j$ converges to *s* if the sequence $\{s_n\}$ converges to *s* and we write $s = \sum_{j=1}^{\infty} a_j$.

Proposition

Let $\{a_n\}$ be a sequence of real numbers.

1. $\sum_{j=1}^{\infty} a_j$ converges if and only if for every $\epsilon > 0$, there exists $N \in \mathbb{N}$ such that

$$\left|\sum_{j=n}^{n+m} a_j\right| < \epsilon \quad \text{for } n \ge N \text{ and } m \in \mathbb{N} \,. \tag{*}$$

Proof.

1. Suppose $\sum a_j$ converges. Then the sequence of partial sums $\{s_n\}$ is Cauchy. Therefore for $\epsilon > 0$, there exists $N \in \mathbb{N}$ for any $q \ge p > N$ we have $|s_q - s_p| < \epsilon$. Set n = p - 1 and q = n + m with $n \ge N$ and $m \in \mathbb{N}$. We have

$$|s_q - s_p| = \left|\sum_{j=1}^{n+m} a_j - \sum_{j=1}^{n-1} a_j\right| = \left|\sum_{j=n}^{n+m} a_j\right| < \epsilon$$

Conversely, suppose that $\sum a_j$ satisfies condition (*). Then the sequence $\{s_n\}$ is Cauchy and so converges.

2. Suppose $\sum |a_j|$ converges, then by part (1) for any $\epsilon > 0$ there exist $N \in \mathbb{N}$ such that for all n > N and $m \in \mathbb{N}$ we have $\sum_{j=n}^{n+m} |a_j| < \epsilon$. This implies |n+m| = n+m

$$\left|\sum_{j=n}^{n+m} a_j\right| \leq \sum_{j=n}^{n+m} |a_j| < \epsilon. \text{ Hence } \sum a_j \text{ converges by part (1).}$$

3. If $a_j \ge 0$ for all *j*, the sequence of partial sums $\{s_n\}$ is increasing. Therefore $\{s_n\}$ converges if and only if it is bounded.