Real Analysis MAA 6616
Lecture 3
Sequences of Real Numbers



A sequence in R is a function f : N — R. Usually f()) is denoted a; and the sequence
denoted {a;}. The number a; corresponding to the index j is called the j-th term of the
sequence. The sequence is said to be bounded if there exists M > 0 such that

|a,-| < Mfor all j. A sequence {&;} is increasing (resp. decreasing) if a; < aj.1 (resp.
a; > aj,4) for all j. The sequence is monotone if it is either increasing or decreasing.

A sequence {a;} is said to converge to a number c (called the limit) if for every ¢ > 0
there exists N € N such that

laj—c| <e Vj>N.

In this case we use the notation ¢ = lim a; or a; — c.

J— oo

Proposition

Suppose that the sequence {a;} converges to c.
1. The limit ¢ is unique;
2. The sequence is bounded;
3. Ifa; < M forallj, then|c| <M



Proof.

1. If cand ¢’ are limits of the sequence {a;}, then given ¢ > 0, there are N and N’
inNsuchthat |c — gj| < eforallj > Nand |¢/ — gj| < eforallj > N'. Let
j > max(N, N’), we have

[c—c|=|c—a+a—c|<|c—a|+]a—c|<2e
Since € > 0 is arbitrary, then ¢ = ¢'.
2. Lete = 1. There exists N € N such that |¢ — g;| < 1 for all j > N. Hence for
j > N we have

|lgj| = & —c+c| <|a—c|+]c| <1+]c|.

Let M = max(|as|,--- ,|an|, 1+ [c]). Then |a;| < M for all j.
3. Left as an exercise

O



Theorem
A monotone sequence is convergent if and only if it is bounded.

Proof.

We know from the previous proposition that a convergent sequence is bounded. To
prove the theorem we need only show that a bounded monotone sequence is
convergent. Suppose that {a;} is decreasing and bounded. Let ¢ = infjcn{a;}. Let

e > 0 be arbitrary. Since ¢ + ¢ is not a lower bound of the sequence, then there exists
N € Nsuch that ¢ < ay < ¢ + ¢. Since the sequence is decreasing, then a; < ay for
allj > N. We have therefore ¢ < g < ay < ¢+ eforallj > N. Thatis |a; — ¢| < e for
all j > N. Hence a; — c.

Let {an}n be a sequence in R and let {ng }x be a a strictly increasing sequence in N.
The sequence {an, } is called a subsequence of {an}. The j-th term of {an, }« is an;.



Bolzano-Weierstrass Theorem

Theorem
A bounded sequence in R has a convergent subsequence.

Proof.
Let {an} be a bounded sequence in R and let M > 0 such that |an| < M for all n. For
each j € N, consider closed set E; = {ax : k > j}. Then E; C [-M, M]and E; .4 C E;

for all j. It follows from the Nested Set Theorem that ﬂ Ej#0.Letce ﬂ E;.
j=1 j=1
Since ¢ € Ey = {ax : k> 1}, then we can find k; € N such that |¢ — ay, | < 1.
Similarly ¢ € Ey, = {ak : k > kq}, then there exists ko > kq such that
|c — ak,| < 1/2. By induction, suppose that we have a ky < k» < --- < k; such that
‘c - akj’ < 1/j. Using the fact that c € Ekj = {ak : k> kj}, we canfind ki1 > k; such

< 1/(j 4+ 1). Therefore the subsequence {a; } converges to c. O

that )c — ak,,




Cauchy Sequences
A sequence {g;} in R is said to be Cauchy if for every ¢ > 0 there exists N € N such
that |an — am| < eforalln,m > N.

Theorem
A sequence of real numbers converges if and only if it is a Cauchy sequence.

Proof.

Let {an} be a sequence in R.
"=>" Suppose that {a,} converges to c. Let e > 0. Then there exists N € N such that |a, — ¢| < e/2for all
n > N.Form,n > N, we have

€ €
\am—an\:|am—c+c—an\§\am—c\+|c—an|<5+5:e

This shows that {ap} is Cauchy.
"<="Suppose that {an} is Cauchy. First we prove that the sequence is bounded. Let ¢ = 1, then there exists

Ny € Nsuchthat |ap — am| < 1whenevern,m > Ny.LetM =1+ max(|ay|, -, |aN1 ‘).Then forj < Ny,

|aj‘ < Mandforj > Ny, we have
|a| = |a — an, +an, | < |a —an |+ |an, | < 1+ |an | <M

Hence the sequence is bounded. It follows then from the Bolzano-Weierstrass Theorem that {an } has a convergent
subsequence {an/}. Letc = lim an;- We claim that the original sequence also converges to c. Indeed, let e > 0.

Using the hypothesis that {a,} is Cauchy and that the subsequence converges, there is N € Nand J € N such
that |ap — am| < e/2forn,m > Nand |anj — c| < e/2forj > J.Forn> N,letm=n; > Nwithj > J.
Then

€ €
—¢| =|ap — an, - <( _ | )_‘ R,
|an — c| ‘an an; + an; c‘,an an;| + |an; — ¢ <2+2 €



The proofs of the following properties of convergent sequences are left as exercises.
Let {an} and {bn} be convergent sequences.

> For A, € R,wehave lim (Aan+ pbn) =X lim an+p lim bp.
n— oo n— oo n—oo

> If there exists p € N such that a, < b, for all n > p, then lim ap, < lim bp.
n—oo n—oo

A sequence {an} is said to converge to infinity and write nim an = oo if for every
oo

A > 0, there exists N € N such that a, > Aforalln > N.
A sequence {an} is said to converge to minus infinity and write nle an = —oo if for
oo

every B < 0, there exists N € N such that a, < Bforall n > N.
The limit superior and limit inferior of a sequence {an} are defined by

limsupanp = nll)rr;o [sup{ax : kK > n}] and liminfap = nimoo [inf{ax : k> n}].

Proposition

1. limsup anp = s if and only if for every e > 0 there exists N € N such that
an < s+ e foralln> N and for every k € N there exists ny > k such that
S — e < an, (there are only finitely many an’s that are > s + € and infinitely many
thatare > s — ¢)

2. limsup ap = oo ifand only if {an} is not bounded above.
3. limsupap = —liminf(—an).
4. {an} converges inR = R U {—o0, oo} if and only iflim sup ap = lim inf aj.



Proof.

1.

"=—>" Suppose limsup an = s. Let ¢ > 0, there exists N € N such that |sup{ax : k > n} — s| < e for
alln > N.Hence a; < s+ eforallk > N.Since s — ¢ < sup{ag : k > n}, then for every n > N, there
exists kn > nsuchthats — e < gy, .

"<«=" Suppose that for any ¢ > 0, tﬁere exists N € Nsuchthatap < s+ eforalln > N and for every

n > Nthere exists kn > nsuchthats — e < ak,. Thensup{a : k > N} < s+ e. Therefore

sup{ax : k > n} <sup{ax: k > N} < s+ eforalln> N.Furthermore s — ¢ < sup{ax : kK > n}
since s — e < a,. This means |sup{ay : k > n} —s| < eforalln > N.

"<«<=" Suppose {an} is unbounded above. Then for any given n, m € N, a, < sup{ax : k > m}. This
implies that for any A > 0,

A <sup{ax: k> n} <sup{ax: k>n+1}

Therefore, lim sup an = oo

"=" Suppose limsup ap = co. Thenforany A > 0, there exists N € N such that

sup{ay : k > n} > Aforalln > N. Therefore there exists k, > nsuch that a,, > Aand the sequence
{an} is unbounded above.

Left as an exercise
"=—>" Suppose limp_s 0 a@n = SWwith s € R (the case s = +cc is left as an exercise). Let e > 0, there

exists N € Nsuch that |a, — s| < eforalln > N. Therefore

s—e<inf{ag: k>n} <ap<sup{ax: k>n} <s+e Vn>N.

This means limsup ap = liminfa, = s.
"<="Left as an exrecise.



To a sequence of real numbers {a,,} we associate the sequence of partial sums {sn}

defined by s, = Z a;. The series Z a; converges to s if the sequence {sn}
=1 j=1

converges to s and we write s = Z a;.
j=1
Proposition
Let {an} be a sequence of real numbers.
oo

1. > a; converges if and only if for every ¢ > 0, there exists N € N such that
=

n+m
> a| <e forn>NandmeN. (%)

Jj=n

oo o0
2. If Y |aj| converges then so does » " a;.
j=1 j=
o0
3. Ifa; > 0forallj €N, then Z a; converges if and only the sequence of partial

j=1
sums is bounded



Proof.
1. Suppose Z a; converges. Then the sequence of partial sums {sp} is Cauchy.

Therefore for e > 0, there exists N € Nforany g > p > N we have |sq — sp| < e.
Setn=p—1and g=n+ mwithn> N and m € N. We have

n+m

n—1
a4
j=1 j=1

n+m

> g
Jj=n

|Sq — sp| = = <e€.

Conversely, suppose that Z g; satisfies condition (). Then the sequence {sn}
is Cauchy and so converges.

2. Suppose Z |a,| converges, then by part (1) for any € > 0 there exist N € N

n+m

such that for all n > N and m € N we have  _ |gj| < e. This implies
j=n
n+m n+m
> a| <> |aj| < e Hence 3 a; converges by part (1).
j=n j=n

3. If & > 0 for all j, the sequence of partial sums {sp} is increasing. Therefore {sn}
converges if and only if it is bounded.

O



