
Real Analysis MAA 6616
Lecture 3

Sequences of Real Numbers



A sequence in R is a function f : N −→ R. Usually f (j) is denoted aj and the sequence
denoted {aj}. The number aj corresponding to the index j is called the j-th term of the
sequence. The sequence is said to be bounded if there exists M ≥ 0 such that∣∣aj

∣∣ ≤ M for all j . A sequence {aj} is increasing (resp. decreasing) if aj ≤ aj+1 (resp.
aj ≥ aj+1) for all j . The sequence is monotone if it is either increasing or decreasing.

A sequence {aj} is said to converge to a number c (called the limit) if for every ϵ > 0
there exists N ∈ N such that ∣∣aj − c

∣∣ ≤ ϵ ∀j ≥ N .

In this case we use the notation c = lim
j→∞

aj or aj −→ c.

Proposition
Suppose that the sequence {aj} converges to c.

1. The limit c is unique;

2. The sequence is bounded;

3. If aj ≤ M for all j , then |c| ≤ M



Proof.
1. If c and c′ are limits of the sequence {aj}, then given ϵ > 0, there are N and N′

in N such that
∣∣c − aj

∣∣ ≤ ϵ for all j ≥ N and
∣∣c′ − aj

∣∣ ≤ ϵ for all j ≥ N′. Let
j > max(N,N′), we have∣∣c − c′∣∣ = ∣∣c − aj + aj − c′∣∣ ≤ ∣∣c − aj

∣∣+ ∣∣aj − c′∣∣ ≤ 2ϵ

Since ϵ > 0 is arbitrary, then c = c′.

2. Let ϵ = 1. There exists N ∈ N such that
∣∣c − aj

∣∣ ≤ 1 for all j > N. Hence for
j > N we have ∣∣aj

∣∣ = ∣∣aj − c + c
∣∣ ≤ ∣∣aj − c

∣∣+ |c| ≤ 1 + |c| .

Let M = max(|a1| , · · · , |aN | , 1 + |c|). Then
∣∣aj

∣∣ ≤ M for all j .

3. Left as an exercise



Theorem
A monotone sequence is convergent if and only if it is bounded.

Proof.
We know from the previous proposition that a convergent sequence is bounded. To
prove the theorem we need only show that a bounded monotone sequence is
convergent. Suppose that {aj} is decreasing and bounded. Let c = inf j∈N{aj}. Let
ϵ > 0 be arbitrary. Since c + ϵ is not a lower bound of the sequence, then there exists
N ∈ N such that c ≤ aN < c + ϵ. Since the sequence is decreasing, then aj ≤ aN for
all j ≥ N. We have therefore c ≤ aj ≤ aN < c + ϵ for all j ≥ N. That is

∣∣aj − c
∣∣ < ϵ for

all j ≥ N. Hence aj −→ c.

Let {an}n be a sequence in R and let {nk}k be a a strictly increasing sequence in N.
The sequence {ank }k is called a subsequence of {an}. The j-th term of {ank }k is anj .



Bolzano-Weierstrass Theorem

Theorem
A bounded sequence in R has a convergent subsequence.

Proof.
Let {an} be a bounded sequence in R and let M ≥ 0 such that |an| ≤ M for all n. For
each j ∈ N, consider closed set Ej = {ak : k > j}. Then Ej ⊂ [−M, M] and Ej+1 ⊂ Ej

for all j . It follows from the Nested Set Theorem that
∞⋂
j=1

Ej ̸= ∅. Let c ∈
∞⋂
j=1

Ej .

Since c ∈ E1 = {ak : k > 1}, then we can find k1 ∈ N such that
∣∣c − ak1

∣∣ < 1.
Similarly c ∈ Ek1 = {ak : k > k1}, then there exists k2 > k1 such that∣∣c − ak2

∣∣ < 1/2. By induction, suppose that we have a k1 < k2 < · · · < kj such that∣∣∣c − akj

∣∣∣ < 1/j . Using the fact that c ∈ Ekj = {ak : k > kj}, we can find kj+1 > kj such

that
∣∣∣c − akj+1

∣∣∣ < 1/(j + 1). Therefore the subsequence {akj } converges to c.



Cauchy Sequences
A sequence {aj} in R is said to be Cauchy if for every ϵ > 0 there exists N ∈ N such
that |an − am| < ϵ for all n,m > N.

Theorem
A sequence of real numbers converges if and only if it is a Cauchy sequence.

Proof.
Let {an} be a sequence in R.
"=⇒" Suppose that {an} converges to c. Let ϵ > 0. Then there exists N ∈ N such that |an − c| < ϵ/2 for all
n > N. For m, n > N, we have

|am − an| = |am − c + c − an| ≤ |am − c| + |c − an| <
ϵ

2
+

ϵ

2
= ϵ

This shows that {an} is Cauchy.
"⇐=" Suppose that {an} is Cauchy. First we prove that the sequence is bounded. Let ϵ = 1, then there exists

N1 ∈ N such that |an − am| < 1 whenever n, m ≥ N1. Let M = 1 + max(|a1| , · · · ,
∣∣∣aN1

∣∣∣). Then for j ≤ N1,∣∣∣aj

∣∣∣ < M and for j > N1, we have

∣∣∣aj

∣∣∣ =
∣∣∣aj − aN1

+ aN1

∣∣∣ ≤
∣∣∣aj − aN1

∣∣∣ + ∣∣∣aN1

∣∣∣ < 1 +
∣∣∣aN1

∣∣∣ ≤ M

Hence the sequence is bounded. It follows then from the Bolzano-Weierstrass Theorem that {an} has a convergent
subsequence {anj }. Let c = lim anj . We claim that the original sequence also converges to c. Indeed, let ϵ > 0.

Using the hypothesis that {an} is Cauchy and that the subsequence converges, there is N ∈ N and J ∈ N such

that |an − am| < ϵ/2 for n, m > N and
∣∣∣anj − c

∣∣∣ < ϵ/2 for j > J. For n > N, let m = nj > N with j > J.
Then

|an − c| =
∣∣∣an − anj + anj − c

∣∣∣ ≤
∣∣∣an − anj

∣∣∣ + ∣∣∣anj − c
∣∣∣ <

ϵ

2
+

ϵ

2
= ϵ

Therefore {an} converges.



The proofs of the following properties of convergent sequences are left as exercises.
Let {an} and {bn} be convergent sequences.

▶ For λ , µ ∈ R, we have lim
n→∞

(λan + µbn) = λ lim
n→∞

an + µ lim
n→∞

bn.

▶ If there exists p ∈ N such that an ≤ bn for all n ≥ p, then lim
n→∞

an ≤ lim
n→∞

bn.

A sequence {an} is said to converge to infinity and write lim
n→∞

an = ∞ if for every

A > 0, there exists N ∈ N such that an > A for all n > N.
A sequence {an} is said to converge to minus infinity and write lim

n→∞
an = −∞ if for

every B < 0, there exists N ∈ N such that an < B for all n > N.

The limit superior and limit inferior of a sequence {an} are defined by

lim sup an = lim
n→∞

[sup{ak : k ≥ n}] and lim inf an = lim
n→∞

[inf{ak : k ≥ n}] .

Proposition
1. lim sup an = s if and only if for every ϵ > 0 there exists N ∈ N such that

an < s + ϵ for all n > N and for every k ∈ N there exists nk > k such that
s − ϵ < ank (there are only finitely many an ’s that are > s + ϵ and infinitely many
that are > s − ϵ)

2. lim sup an = ∞ if and only if {an} is not bounded above.

3. lim sup an = − lim inf(−an).

4. {an} converges in R = R ∪ {−∞, ∞} if and only if lim sup an = lim inf an.



Proof.
1. "=⇒" Suppose lim sup an = s. Let ϵ > 0, there exists N ∈ N such that |sup{ak : k ≥ n} − s| < ϵ for

all n > N. Hence ak < s + ϵ for all k > N. Since s − ϵ < sup{ak : k ≥ n}, then for every n > N, there
exists kn > n such that s − ϵ < akn .
"⇐=" Suppose that for any ϵ > 0, there exists N ∈ N such that an < s + ϵ for all n > N and for every
n > N there exists kn ≥ n such that s − ϵ < akn . Then sup{ak : k ≥ N} < s + ϵ. Therefore
sup{ak : k ≥ n} ≤ sup{ak : k ≥ N} < s + ϵ for all n > N. Furthermore s − ϵ < sup{ak : k ≥ n}
since s − ϵ < akn . This means |sup{ak : k ≥ n} − s| < ϵ for all n > N.

2. "⇐=" Suppose {an} is unbounded above. Then for any given n, m ∈ N, an < sup{ak : k ≥ m}. This
implies that for any A > 0,

A < sup{ak : k ≥ n} ≤ sup{ak : k ≥ n + 1}

Therefore, lim sup an = ∞
"=⇒" Suppose lim sup an = ∞. Then for any A > 0, there exists N ∈ N such that
sup{ak : k ≥ n} > A for all n > N. Therefore there exists kn ≥ n such that akn > A and the sequence
{an} is unbounded above.

3. Left as an exercise

4. "=⇒" Suppose limn→∞ an = s with s ∈ R (the case s = ±∞ is left as an exercise). Let ϵ > 0, there
exists N ∈ N such that |an − s| < ϵ for all n > N. Therefore

s − ϵ ≤ inf{ak : k ≥ n} ≤ an ≤ sup{ak : k ≥ n} ≤ s + ϵ ∀n > N .

This means lim sup an = lim inf an = s.
"⇐=" Left as an exrecise.



To a sequence of real numbers {an} we associate the sequence of partial sums {sn}

defined by sn =
n∑

j=1

aj . The series
∞∑
j=1

aj converges to s if the sequence {sn}

converges to s and we write s =
∞∑
j=1

aj .

Proposition
Let {an} be a sequence of real numbers.

1.
∞∑
j=1

aj converges if and only if for every ϵ > 0, there exists N ∈ N such that

∣∣∣∣∣∣
n+m∑
j=n

aj

∣∣∣∣∣∣ < ϵ for n ≥ N and m ∈ N . (∗)

2. If
∞∑
j=1

∣∣aj
∣∣ converges then so does

∞∑
j=1

aj .

3. If aj ≥ 0 for all j ∈ N, then
∞∑
j=1

aj converges if and only the sequence of partial

sums is bounded



Proof.
1. Suppose

∑
aj converges. Then the sequence of partial sums {sn} is Cauchy.

Therefore for ϵ > 0, there exists N ∈ N for any q ≥ p > N we have |sq − sp| < ϵ.
Set n = p − 1 and q = n + m with n ≥ N and m ∈ N. We have

|sq − sp| =

∣∣∣∣∣∣
n+m∑
j=1

aj −
n−1∑
j=1

aj

∣∣∣∣∣∣ =
∣∣∣∣∣∣
n+m∑
j=n

aj

∣∣∣∣∣∣ < ϵ .

Conversely, suppose that
∑

aj satisfies condition (∗). Then the sequence {sn}
is Cauchy and so converges.

2. Suppose
∑∣∣aj

∣∣ converges, then by part (1) for any ϵ > 0 there exist N ∈ N

such that for all n > N and m ∈ N we have
n+m∑
j=n

∣∣aj
∣∣ < ϵ. This implies∣∣∣∣∣∣

n+m∑
j=n

aj

∣∣∣∣∣∣ ≤
n+m∑
j=n

∣∣aj
∣∣ < ϵ. Hence

∑
aj converges by part (1).

3. If aj ≥ 0 for all j , the sequence of partial sums {sn} is increasing. Therefore {sn}
converges if and only if it is bounded.


