Real Analysis MAA 6616
Lecture 3
Sequences of Real Numbers

A sequence in \mathbb{R} is a function $f: \mathbb{N} \longrightarrow \mathbb{R}$. Usually $f(j)$ is denoted a_{j} and the sequence denoted $\left\{a_{j}\right\}$. The number a_{j} corresponding to the index j is called the j-th term of the sequence. The sequence is said to be bounded if there exists $M \geq 0$ such that $\left|a_{j}\right| \leq M$ for all j. A sequence $\left\{a_{j}\right\}$ is increasing (resp. decreasing) if $a_{j} \leq a_{j+1}$ (resp. $\left.a_{j} \geq a_{j+1}\right)$ for all j. The sequence is monotone if it is either increasing or decreasing.
A sequence $\left\{a_{j}\right\}$ is said to converge to a number c (called the limit) if for every $\epsilon>0$ there exists $N \in \mathbb{N}$ such that

$$
\left|a_{j}-c\right| \leq \epsilon \quad \forall j \geq N
$$

In this case we use the notation $c=\lim _{j \rightarrow \infty} a_{j}$ or $a_{j} \longrightarrow c$.

Proposition

Suppose that the sequence $\left\{a_{j}\right\}$ converges to c.

1. The limit c is unique;
2. The sequence is bounded;
3. If $a_{j} \leq M$ for all j, then $|c| \leq M$

Proof.

1. If c and c^{\prime} are limits of the sequence $\left\{a_{j}\right\}$, then given $\epsilon>0$, there are N and N^{\prime} in \mathbb{N} such that $\left|c-a_{j}\right| \leq \epsilon$ for all $j \geq N$ and $\left|c^{\prime}-a_{j}\right| \leq \epsilon$ for all $j \geq N^{\prime}$. Let $j>\max \left(N, N^{\prime}\right)$, we have

$$
\left|c-c^{\prime}\right|=\left|c-a_{j}+a_{j}-c^{\prime}\right| \leq\left|c-a_{j}\right|+\left|a_{j}-c^{\prime}\right| \leq 2 \epsilon
$$

Since $\epsilon>0$ is arbitrary, then $c=c^{\prime}$.
2. Let $\epsilon=1$. There exists $N \in \mathbb{N}$ such that $\left|c-a_{j}\right| \leq 1$ for all $j>N$. Hence for $j>N$ we have

$$
\left|a_{j}\right|=\left|a_{j}-c+c\right| \leq\left|a_{j}-c\right|+|c| \leq 1+|c| .
$$

Let $M=\max \left(\left|a_{1}\right|, \cdots,\left|a_{N}\right|, 1+|c|\right)$. Then $\left|a_{j}\right| \leq M$ for all j.
3. Left as an exercise

Theorem

A monotone sequence is convergent if and only if it is bounded.

Proof.

We know from the previous proposition that a convergent sequence is bounded. To prove the theorem we need only show that a bounded monotone sequence is convergent. Suppose that $\left\{a_{j}\right\}$ is decreasing and bounded. Let $c=\inf _{j \in \mathbb{N}}\left\{a_{j}\right\}$. Let $\epsilon>0$ be arbitrary. Since $c+\epsilon$ is not a lower bound of the sequence, then there exists $N \in \mathbb{N}$ such that $c \leq a_{N}<c+\epsilon$. Since the sequence is decreasing, then $a_{j} \leq a_{N}$ for all $j \geq N$. We have therefore $c \leq a_{j} \leq a_{N}<c+\epsilon$ for all $j \geq N$. That is $\left|a_{j}-c\right|<\epsilon$ for all $j \geq N$. Hence $a_{j} \longrightarrow c$.

Let $\left\{a_{n}\right\}_{n}$ be a sequence in \mathbb{R} and let $\left\{n_{k}\right\}_{k}$ be a a strictly increasing sequence in \mathbb{N}. The sequence $\left\{a_{n_{k}}\right\}_{k}$ is called a subsequence of $\left\{a_{n}\right\}$. The j-th term of $\left\{a_{n_{k}}\right\}_{k}$ is $a_{n_{j}}$.

Theorem

A bounded sequence in \mathbb{R} has a convergent subsequence.

Proof.

Let $\left\{a_{n}\right\}$ be a bounded sequence in \mathbb{R} and let $M \geq 0$ such that $\left|a_{n}\right| \leq M$ for all n. For each $j \in \mathbb{N}$, consider closed set $E_{j}=\overline{\left\{a_{k}: k>j\right\}}$. Then $E_{j} \subset[-M, M]$ and $E_{j+1} \subset E_{j}$ for all j. It follows from the Nested Set Theorem that $\bigcap_{j=1}^{\infty} E_{j} \neq \emptyset$. Let $c \in \bigcap_{j=1}^{\infty} E_{j}$.
Since $c \in E_{1}=\overline{\left\{a_{k}: k>1\right\}}$, then we can find $k_{1} \in \mathbb{N}$ such that $\left|c-a_{k_{1}}\right|<1$. Similarly $c \in E_{k_{1}}=\overline{\left\{a_{k}: k>k_{1}\right\}}$, then there exists $k_{2}>k_{1}$ such that $\left|c-a_{k_{2}}\right|<1 / 2$. By induction, suppose that we have a $k_{1}<k_{2}<\cdots<k_{j}$ such that $\left|c-a_{k_{j}}\right|<1 / j$. Using the fact that $c \in E_{k_{j}}=\overline{\left\{a_{k}: k>k_{j}\right\}}$, we can find $k_{j+1}>k_{j}$ such that $\left|c-a_{k_{j+1}}\right|<1 /(j+1)$. Therefore the subsequence $\left\{a_{k_{j}}\right\}$ converges to c.

Cauchy Sequences

A sequence $\left\{a_{j}\right\}$ in \mathbb{R} is said to be Cauchy if for every $\epsilon>0$ there exists $N \in \mathbb{N}$ such that $\left|a_{n}-a_{m}\right|<\epsilon$ for all $n, m>N$.

Theorem

A sequence of real numbers converges if and only if it is a Cauchy sequence.

Proof.

Let $\left\{a_{n}\right\}$ be a sequence in \mathbb{R}.
$" \Longrightarrow$ " Suppose that $\left\{a_{n}\right\}$ converges to c. Let $\epsilon>0$. Then there exists $N \in \mathbb{N}$ such that $\left|a_{n}-c\right|<\epsilon / 2$ for all $n>N$. For $m, n>N$, we have

$$
\left|a_{m}-a_{n}\right|=\left|a_{m}-c+c-a_{n}\right| \leq\left|a_{m}-c\right|+\left|c-a_{n}\right|<\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon
$$

This shows that $\left\{a_{n}\right\}$ is Cauchy.
" $\Longleftarrow "$ Suppose that $\left\{a_{n}\right\}$ is Cauchy. First we prove that the sequence is bounded. Let $\epsilon=1$, then there exists $N_{1} \in \mathbb{N}$ such that $\left|a_{n}-a_{m}\right|<1$ whenever $n, m \geq N_{1}$. Let $M=1+\max \left(\left|a_{1}\right|, \cdots,\left|a_{N_{1}}\right|\right)$. Then for $j \leq N_{1}$, $\left|a_{j}\right|<M$ and for $j>N_{1}$, we have

$$
\left|a_{j}\right|=\left|a_{j}-a_{N_{1}}+a_{N_{1}}\right| \leq\left|a_{j}-a_{N_{1}}\right|+\left|a_{N_{1}}\right|<1+\left|a_{N_{1}}\right| \leq M
$$

Hence the sequence is bounded. It follows then from the Bolzano-Weierstrass Theorem that $\left\{a_{n}\right\}$ has a convergent subsequence $\left\{a_{n_{j}}\right\}$. Let $c=\lim a_{n_{j}}$. We claim that the original sequence also converges to c. Indeed, let $\epsilon>0$. Using the hypothesis that $\left\{a_{n}\right\}$ is Cauchy and that the subsequence converges, there is $N \in \mathbb{N}$ and $J \in \mathbb{N}$ such that $\left|a_{n}-a_{m}\right|<\epsilon / 2$ for $n, m>N$ and $\left|a_{n_{j}}-c\right|<\epsilon / 2$ for $j>J$. For $n>N$, let $m=n_{j}>N$ with $j>J$. Then

$$
\left|a_{n}-c\right|=\left|a_{n}-a_{n_{j}}+a_{n_{j}}-c\right| \leq\left|a_{n}-a_{n_{j}}\right|+\left|a_{n_{j}}-c\right|<\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon
$$

The proofs of the following properties of convergent sequences are left as exercises. Let $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ be convergent sequences.

- For $\lambda, \mu \in \mathbb{R}$, we have $\lim _{n \rightarrow \infty}\left(\lambda a_{n}+\mu b_{n}\right)=\lambda \lim _{n \rightarrow \infty} a_{n}+\mu \lim _{n \rightarrow \infty} b_{n}$.
- If there exists $p \in \mathbb{N}$ such that $a_{n} \leq b_{n}$ for all $n \geq p$, then $\lim _{n \rightarrow \infty} a_{n} \leq \lim _{n \rightarrow \infty} b_{n}$.

A sequence $\left\{a_{n}\right\}$ is said to converge to infinity and write $\lim _{n \rightarrow \infty} a_{n}=\infty$ if for every $A>0$, there exists $N \in \mathbb{N}$ such that $a_{n}>A$ for all $n>N$. A sequence $\left\{a_{n}\right\}$ is said to converge to minus infinity and write $\lim _{n \rightarrow \infty} a_{n}=-\infty$ if for every $B<0$, there exists $N \in \mathbb{N}$ such that $a_{n}<B$ for all $n>N$.
The limit superior and limit inferior of a sequence $\left\{a_{n}\right\}$ are defined by

$$
\limsup a_{n}=\lim _{n \rightarrow \infty}\left[\sup \left\{a_{k}: k \geq n\right\}\right] \text { and } \liminf a_{n}=\lim _{n \rightarrow \infty}\left[\inf \left\{a_{k}: k \geq n\right\}\right]
$$

Proposition

1. $\lim \sup a_{n}=s$ if and only if for every $\epsilon>0$ there exists $N \in \mathbb{N}$ such that $a_{n}<s+\epsilon$ for all $n>N$ and for every $k \in \mathbb{N}$ there exists $n_{k}>k$ such that $s-\epsilon<a_{n_{k}}$ (there are only finitely many a_{n} 's that are $>s+\epsilon$ and infinitely many that are $>s-\epsilon$)
2. lim sup $a_{n}=\infty$ if and only if $\left\{a_{n}\right\}$ is not bounded above.
3. $\lim \sup a_{n}=-\liminf \left(-a_{n}\right)$.
4. $\left\{a_{n}\right\}$ converges in $\overline{\mathbb{R}}=\mathbb{R} \cup\{-\infty, \infty\}$ if and only if $\lim \sup a_{n}=\lim \inf a_{n}$.

Proof.

1. " \Longrightarrow " Suppose \lim sup $a_{n}=s$. Let $\epsilon>0$, there exists $N \in \mathbb{N}$ such that $\left|\sup \left\{a_{k}: k \geq n\right\}-s\right|<\epsilon$ for all $n>N$. Hence $a_{k}<s+\epsilon$ for all $k>N$. Since $s-\epsilon<\sup \left\{a_{k}: k \geq n\right\}$, then for every $n>N$, there exists $k_{n}>n$ such that $s-\epsilon<a_{k_{n}}$.
" \Longleftarrow " Suppose that for any $\epsilon>0$, there exists $N \in \mathbb{N}$ such that $a_{n}\langle s+\epsilon$ for all $n>N$ and for every $n>N$ there exists $k_{n} \geq n$ such that $s-\epsilon<a_{k_{n}}$. Then $\sup \left\{a_{k}: k \geq N\right\}<s+\epsilon$. Therefore $\sup \left\{a_{k}: k \geq n\right\} \leq \sup \left\{a_{k}: k \geq N\right\}<s+\epsilon$ for all $n>N$. Furthermore $s-\epsilon<\sup \left\{a_{k}: k \geq n\right\}$ since $s-\epsilon<a_{k_{n}}$. This means $\left|\sup \left\{a_{k}: k \geq n\right\}-s\right|<\epsilon$ for all $n>N$.
2. " $\Longleftarrow " ~ S u p p o s e ~\left\{a_{n}\right\}$ is unbounded above. Then for any given $n, m \in \mathbb{N}, a_{n}<\sup \left\{a_{k}: k \geq m\right\}$. This implies that for any $A>0$,

$$
A<\sup \left\{a_{k}: k \geq n\right\} \leq \sup \left\{a_{k}: k \geq n+1\right\}
$$

Therefore, $\lim \sup a_{n}=\infty$
$" \Longrightarrow$ " Suppose $\lim \sup a_{n}=\infty$. Then for any $A>0$, there exists $N \in \mathbb{N}$ such that $\sup \left\{a_{k}: k \geq n\right\}>A$ for all $n>N$. Therefore there exists $k_{n} \geq n$ such that $a_{k_{n}}>A$ and the sequence $\left\{a_{n}\right\}$ is unbounded above.
3. Left as an exercise
4. " \Longrightarrow " Suppose $\lim _{n \rightarrow \infty} a_{n}=s$ with $s \in \mathbb{R}$ (the case $s= \pm \infty$ is left as an exercise). Let $\epsilon>0$, there exists $N \in \mathbb{N}$ such that $\left|a_{n}-s\right|<\epsilon$ for all $n>N$. Therefore

$$
s-\epsilon \leq \inf \left\{a_{k}: k \geq n\right\} \leq a_{n} \leq \sup \left\{a_{k}: k \geq n\right\} \leq s+\epsilon \quad \forall n>N
$$

This means $\lim \sup a_{n}=\lim \inf a_{n}=s$.
" $\Longleftarrow "$ Left as an exrecise.

To a sequence of real numbers $\left\{a_{n}\right\}$ we associate the sequence of partial sums $\left\{s_{n}\right\}$ defined by $s_{n}=\sum_{j=1}^{n} a_{j}$. The series $\sum_{j=1}^{\infty} a_{j}$ converges to s if the sequence $\left\{s_{n}\right\}$ converges to s and we write $s=\sum_{j=1}^{\infty} a_{j}$.

Proposition

Let $\left\{a_{n}\right\}$ be a sequence of real numbers.

1. $\sum_{j=1}^{\infty} a_{j}$ converges if and only if for every $\epsilon>0$, there exists $N \in \mathbb{N}$ such that

$$
\begin{equation*}
\left|\sum_{j=n}^{n+m} a_{j}\right|<\epsilon \quad \text { for } n \geq N \text { and } m \in \mathbb{N} \tag{*}
\end{equation*}
$$

2. If $\sum_{j=1}^{\infty}\left|a_{j}\right|$ converges then so does $\sum_{j=1}^{\infty} a_{j}$.
3. If $a_{j} \geq 0$ for all $j \in \mathbb{N}$, then $\sum_{j=1}^{\infty} a_{j}$ converges if and only the sequence of partial sums is bounded

Proof.

1. Suppose $\sum a_{j}$ converges. Then the sequence of partial sums $\left\{s_{n}\right\}$ is Cauchy. Therefore for $\epsilon>0$, there exists $N \in \mathbb{N}$ for any $q \geq p>N$ we have $\left|s_{q}-s_{p}\right|<\epsilon$. Set $n=p-1$ and $q=n+m$ with $n \geq N$ and $m \in \mathbb{N}$. We have

$$
\left|s_{q}-s_{p}\right|=\left|\sum_{j=1}^{n+m} a_{j}-\sum_{j=1}^{n-1} a_{j}\right|=\left|\sum_{j=n}^{n+m} a_{j}\right|<\epsilon .
$$

Conversely, suppose that $\sum a_{j}$ satisfies condition (*). Then the sequence $\left\{s_{n}\right\}$ is Cauchy and so converges.
2. Suppose $\sum\left|a_{j}\right|$ converges, then by part (1) for any $\epsilon>0$ there exist $N \in \mathbb{N}$ such that for all $n>N$ and $m \in \mathbb{N}$ we have $\sum_{j=n}^{n+m}\left|a_{j}\right|<\epsilon$. This implies $\left|\sum_{j=n}^{n+m} a_{j}\right| \leq \sum_{j=n}^{n+m}\left|a_{j}\right|<\epsilon$. Hence $\sum a_{j}$ converges by part (1).
3. If $a_{j} \geq 0$ for all j, the sequence of partial sums $\left\{s_{n}\right\}$ is increasing. Therefore $\left\{s_{n}\right\}$ converges if and only if it is bounded.

