Real Analysis MAA 6616
Lecture 30
Hahn and Jordan Decompositions
Radon-Nikodym Theorem



Hahn Decomposition

Theorem (1)

Let (X, A, ) be a signed measure space. Then there exists positive and negative sets P,N € A
such that PN = () and PUN = X. If 1 takes negative values, then u(N) < 0 and if —p takes
negative values p(P) > 0. Moreover we have uniqueness of the such a pair in the sense that if
P’ N’ is any other such pair, then the symmetric difference sets P/AP’ and NAN' are null sets.

Proof.

If there are no p-negative sets, then there is nothing to prove. Suppose then that there are negative sets. Let
r = inf{p(A) : A negative set} and {A,’ }/‘7:1 be a sequence of negative sets such that ,u(Aj) — r. Define N = | J,, A, and
P = X\N. Then N and P are disjoint, X = P U N. We need to verify that N is negative and P positive.
Let By = Ay, B = Ap\By, in general let B = A\ (B| U - - - U By_). Note that since A, is a negative set and
By C Ay, then p1(By) < 0; the By’s are disjoint; and |, By = U,, Ay = N.LetE C N, then EN B, C Ay and
w(ENB,) <0.Wehave E = |J,(E N By) and p(l:) > ,u(l: M B,) < 0. This means that N is a negative set.
Moreover, we can write N = A, U (N\A,,) to get u(N) < /,L(An) + 1(N\A,) < u(A,). By letting n — oo we get
p(N) < r. Therefore u(N) = rand r > —oo.
Now we need to verify that P = X\ is a positive set. By contradiction, if it were not, then there would exist C C P such that
1(C) < 0. By Proposition 2 (Lecture 29) there exists a negative set Ny C N. Let N = N U Nj. Then N is a negative set and
w(N) = p(N) + p(Ny) < rwhich is impossible. Therefore P is a positive set.
Now suppose that g is not a positive measure, we need to verify that (N) < 0. If u(N) = 0. Let E € A, then
E = (ENN) U (EN P) and we have

u(E) = p(ENN) + n(ENP) >0+ pn(ENP) >0.
This means g is a positive measure (a contradiction). Similar argument can be used to verify that if — 4 is not a positive
measure, then p£(P) > 0.

To verify uniqueness of the pair N, P. Suppose N’ , P’ is another such pair. Note that N\N’ =r \P so that if

S C N\N’ = P'\Pthen 12(S) < 0as asubset of a negative set and 1(S) > 0 as a subset of a positive set. Therefore

w1(S) = 0. Any setA C NAN' can be writtenas A = S U T with S C N\N’ and T C N’\N. Therefore

n(A) = p(S) + pu(T) = 0. d



Example

Letf € L(R", dm) (m is the Lebesgue measure) and let M be the o-algebra of Lebesgue measurable sets in R”. Defined a
signed measure p on M by u(E) = /_fdm. LetP = {x € R": f(x) > 0}and N = {x € R" : f(x) < 0}. The pair
P, N satisfies Proposition 1. £

Two measures p and v defined on the same sigma algebra A are said to be mutually singular
and denoted i L v if there exist disjoint sets A, B € A such that X = A U B, u(A) = 0 and
v(B)=0

Example

This example will establish that the Lebesgue measure and the Lebesgue-Stieltjes measure generated by the Cantor-Lebesgue
function are mutually singular.
First define the Lebesgue-Stieltjes measure. Let o : R — R be an increasing function that is continuous from the right (i.e.

1im+ a(x) = a(c) forallc € R). Fora < bdefine v((a, b]) = a(b) — a(a). The v extends as a measure
X—>C
v : M — [0, oo], where M is the o-algebra of Lebesgue measurable sets in R. The measure v is called the
Lebesgue-Stieltjes measure generated by the function av.
Now consider the function c given by av(x) = 0ifx < 0, a(x) = l'ifx > 1, and a(x) = ¢(x),if 0 < x < 1, where
¢ : [0, 1] — [0, 1] is the Cantor-Lebesgue function. Let v be the Lebesgue-Stieltjes measure generated by this function.
Note that since « is constant on (—oo, 0] and on [1, co), then v(E) = 0 if E is contained in R\ [0, 1].
If m is the Lebesgue measure on R, thenm L v. Indeed let A = C, where C C [0, 1] is the Cantor set, and let B = R\ C.
‘We already now that m(C) = 0, we are left to verify that v (R\C) = 0. The set R\ C is a union of disjoint intervals:

oo

R\C = (=00, 0) U [ J ;U (1, 00)
j=1
where J; are the open middle third intervals removed from [0, 1] in the construction of the Cantor set. Since ¢ is constant on
each interval /j, then v (;) = 0. We already noted that v (—o0, 0) = Oand v (1, co) = 0. Therefore v(R\C) = 0 and
the two measures are mutually singular.



The Jordan Decomposition Theorem

Theorem (2)

Let p: A — (—o0, o0 be a signed measure on a space X. Then there exist positive
measures ut, p~ : A — [0, oo, with u™ L p~ and such that p = p+ — p—.
Furthermore, this decomposition is unique.

Proof.
Let P, N € A be such that P is a positive set, N is a negative set for 4, P M N = () and X = P U N (Hahn Decomposition
Theorem). Define p T as follows. ForA € A set pt(A) = p(ANP)and p~ (A) = —p(A N N). Then both 7t and
™ are positive measures and o = pt — 1. Moreover, we have (N) = p(PNN) = 0and
pn=(P)=pn(PNN) = Osothat pt L p~.
Now suppose that 1 = vt — v~ is another such decomposition with vt L v~ Letst ,87 € .Abe the associated pair
in the Hahn decomposition: stns— = 0, X= stu N 1/:t (S¥) = 0. It follows from the uniqueness of the Hahn
decomposition that PAST and NAS™ are p-null sets.
LetA € A. We have

vy =vtunsh =vtunst) —v=@nst) = p@anst) = u@anpr) = put ).
This shows that ;fr = vt A similar argument can be used to prove u~ = v . O

The measure |u| : A — [0, oo] given by || = uT 4 p~ is called the variation measure of
and |u|(A) = pt(A) + p~ (A) the total variation of A.



Absolute continuous measures

Let i1, v be two measures defined in a o-algebra over a set X. The measure v is said to be

absolutely continuous with respect to p, if every p-null set is also a v-null set. That is
VAe A u(A) =0 = v(A) =0.

In this case we write v < p.

Proposition (1)

Let pv and v be measures defined in A over X and such that v is finite (v(X) < oo). Then
v K w if and only if for every € > 0 there exists § > 0 such that for every A € A with
1(A) < 6, we have v(A) < e.

Proof.

"4<="LetA € A such that (A) = 0, we need to show that v(A) = 0. Lete > 0and § > 0 such that satisfies the
condition of the proposition. Since ;1(A) = 0 < §, then v(A) < e. Since € > 0 is arbitrary, then v(A) = 0.

"==>" Suppose that v < p. By contradiction, suppose that there exists €y > 0 such that for every n € N, there exists a set
Ap € Asuch that 1(A,;) < 27" and v(A,) > €. LetA = limsup, Ay = (,> Ug>, Ax- Then
oo s
u(a) = lim g <U Ak) < dim ST p4) < lim oS 7= =0
k>n k=n k=n
This means (£(A) = 0and v(A) > €y > 0 which is a contradiction. O

Proposition (2)
Let  and v be finite positive measures defined in A over X. Then either ju L v or else there
exists € > 0 and a set P € A such that (P) > 0 and P is a positive set for the measure v — €.



Proof.

1
Letn € N and consider the signed measure v — — p. It follows from the Hahn decomposition that there exists a pair sets Py,

n
(positive) and N,, (negative) such that P, N N, = @, P, U N, = X for this measure.
LetN = (1, Ny and P = |J, Py. We have X\N = (,(X\N,) = U, Pn = P. For each n we have N C N, and
1 1
0 < v(N) < v(Np) < —p(Np) < —p(X).
Since p1(X) < oo, then v(N) = 0. Now we have two possibilities. Either ;4(P) = Oand then v L porelse u(P) > 0.In

this case there exists ng such that 1(Pny) > 0. Let € = 1/ng. Then from the definition of Py, we have
’/(Pno)*el/«(Pno)>0 O

Remark (1)

We know from earlier examples that if f is a nonnegative p-integrable function over X, then the
set function v : A — Rt given by v(A) = / fdp is a measure. The Radon-Nikodym gives a
A

sufficient condition under which v has the above form. The function f is called the derivative

d
(or density) of v with respect to 1 and is denoted f = d—y ordv = fdu
i



Radon-Nikodym Theorem

Theorem (3)

Let i : A — [0, oo] be a o-finite positive measure on X and let v : A — [0, 00) be a finite
measure on X such that v is absolutely continuous with respect to . ( v < p). Then there
exists a pi-integrable nonnegative functionf € L(X, ) such that

v(A) = /fdu forall A € A.
A
Moreover if g € L(X, ) is any other such function, then g = f a.e. in X.

Proof.

Uniqueness. If f, ¢ € L£(X, p) are two such functions, thenh = f — ¢ € L(X, p) and for every A € A we have
Ahdu:/A(ffg)du:/Afduf.Agdu:V(A) —v(a) =0
Hence h = Oae. in X.
To prove the existence of the function f we consider two cases.
P Case 1: p is a finite measure ((X) < o0). Consider the family of functions
F=<he L(X,p): h>0and /hdu < v(A)forallA € .A}
Note that F # @ since 0 € F andif oo, 8 € F then max(c, ﬁ? € F. Indeed, consider the sets

C={x: a(x) > Bx)} and D = {x: a(x) < B(x)} =X\C
sothat CND = Pand CUD = X. LetA € A. Then

/max(oz7 B)dp = / adp + / Bdp < v(ANC)+v(AND) =v(A)
A ANC AND
This implies max(«, 8) € F.



Proof.

CONTINUED
LetM = sup {/ hdp = h € ]—'}. Note that since/ hdp < v(X) < oo, thenM < oo. Let {h,}, C F
X X

oo,

such that gm / hydp = M. Foreachn € N, letf, = max(hy, -+ ,hy). Thenf, € F and {f, }, isan
n
X
increasing sequence. Let f = lim — oof;,. It follows from the Monotone Convergence Theorem that for every
n
A € A we have

./Afd‘u = A, ./Afndﬂ < v(4).

/deu:ngn;o/xfndu2ngngo/thdu:M.

Hence f € F. Moreover

Therefore / fdp = M.
X
We are left to verify that /fd,u = v/(A). For this we define a positive measure A : A — [0, co) by
JA
AA) = v(4) — /Afdu.

We claim that A L . By contradiction, if A were not mutually singular to g, then (Proposition 2) there exists € > 0
and P € A such that £(P) > 0 and P is a positive set for the measure A — ep. Let A € A. We have

V(A — /fdu ZAA) > AUNP) > en(An P) = / expdis.
A A
Then v (A) > /(f + exp)du. This means h = f + exp € F. But,
A

/hd,u:/fdy+e/xpdu:M+eu(P)>M.
X JX JX

This is a contradiction and so A L p.



Proof.

CONTINUED
Since A L p, then there exists Z € A such that ©(Z) = 0and A(X\Z) = 0. It follows from v < p that
v(Z) = 0. Therefore A\(Z) = v(Z) — /fdu = 0. We have then A(X) = A(Z) + A(X\Z) = 0. So that
z

A = 0. Therefore v(A) = /_fdp, forA € .A. This completes the proof when p is finite.
A

P Case 2: pu is o-finite. In this case there exists a sequence {X;}; C A such that X; * X and p1(X;) < oo for all j.
Forj € N, Let p1; and v; be the restrictions of y1 and v to Xj: pu(A) = (A N X;) and v;(A) = v(A N X;) for
A € A. Then p; is a finite measure and v; < p;. Indeed, if p1;(E) = 0, then u(E N X;) = 0 and so
0 =v(ENX;) = y(E).
It follows from the first case that there exists fj € L£(X, p;) such that dpj = fidp;. It follows from the uniqueness of
the density that f; = f; a.e. in X if i < j. Definef € L(X, ) by f(x) = f;(x) ifx € X;.
LetA € A, we have

v(A) = lim v(ANX) = lm v;(A) = lim /fjd,u/- = lim / fdp = /fdu.
J—oo J—oo J—0o0 JA J—oo AﬂXj A

This completes the proof.

Theorem (4)

Let v and v be respectively o-finite and finite positive measures defined over a o-algebra A of
a space X. Then there exist unique positive measures A and p such that v = \ + p, with p < p
and A L p.

Remark (2)

This theorem is known as the Lebesgue Decomposition Theorem. Its proof is analogous to that
of the Radon-Nikodym Theorem. What is missing here is v < p. Once F, M, and f are
defined exactly as in the proof of the Radon-Nikodym Theorem, we can define p by

p(A):/Afduand)\:pr.



