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Hahn and Jordan Decompositions
Radon-Nikodym Theorem



Hahn Decomposition

Theorem (1)
Let (X,A, µ) be a signed measure space. Then there exists positive and negative sets P,N ∈ A
such that P∩N = ∅ and P∪N = X. If µ takes negative values, then µ(N) < 0 and if−µ takes
negative values µ(P) > 0. Moreover we have uniqueness of the such a pair in the sense that if
P′,N′ is any other such pair, then the symmetric difference sets P4P′ and N4N′ are null sets.

Proof.
If there are no µ-negative sets, then there is nothing to prove. Suppose then that there are negative sets. Let
r = inf{µ(A) : A negative set} and {Aj}∞j=1 be a sequence of negative sets such that µ(Aj)→ r. Define N =

⋃
n An and

P = X\N. Then N and P are disjoint, X = P ∪ N. We need to verify that N is negative and P positive.
Let B1 = A1 , B2 = A2\B1 , in general let Bk = Ak\(B1 ∪ · · · ∪ Bk−1). Note that since An is a negative set and
Bn ⊂ An , then µ(Bn) ≤ 0; the Bn’s are disjoint; and

⋃
n Bn =

⋃
n An = N. Let E ⊂ N, then E ∩ Bn ⊂ An and

µ(E ∩ Bn) ≤ 0. We have E =
⋃

n(E ∩ Bn) and µ(E) =
∑

n µ(E ∩ Bn) ≤ 0. This means that N is a negative set.
Moreover, we can write N = An ∪ (N\An) to get µ(N) ≤ µ(An) + µ(N\An) ≤ µ(An). By letting n→∞ we get
µ(N) ≤ r. Therefore µ(N) = r and r > −∞.
Now we need to verify that P = X\N is a positive set. By contradiction, if it were not, then there would exist C ⊂ P such that
µ(C) < 0. By Proposition 2 (Lecture 29) there exists a negative set N1 ⊂ N. Let Ñ = N ∪ N1 . Then Ñ is a negative set and
µ(Ñ) = µ(N) + µ(N1) < r which is impossible. Therefore P is a positive set.
Now suppose that µ is not a positive measure, we need to verify that µ(N) < 0. If µ(N) = 0. Let E ∈ A, then
E = (E ∩ N) ∪ (E ∩ P) and we have

µ(E) = µ(E ∩ N) + µ(E ∩ P) ≥ 0 + µ(E ∩ P) ≥ 0.
This means µ is a positive measure (a contradiction). Similar argument can be used to verify that if−µ is not a positive
measure, then µ(P) > 0.

To verify uniqueness of the pair N, P. Suppose N′, P′ is another such pair. Note that N\N′ = P′\P so that if

S ⊂ N\N′ = P′\P then µ(S) ≤ 0 as a subset of a negative set and µ(S) ≥ 0 as a subset of a positive set. Therefore

µ(S) = 0. Any set A ⊂ N4N′ can be written as A = S ∪ T with S ⊂ N\N′ and T ⊂ N′\N. Therefore

µ(A) = µ(S) + µ(T) = 0.



Example
Let f ∈ L(Rn, dm) (m is the Lebesgue measure) and letM be the σ-algebra of Lebesgue measurable sets in Rn . Defined a

signed measure µ onM by µ(E) =

∫
E

fdm. Let P = {x ∈ Rn : f (x) ≥ 0} and N = {x ∈ Rn : f (x) < 0}. The pair

P, N satisfies Proposition 1.

Two measures µ and ν defined on the same sigma algebraA are said to be mutually singular
and denoted µ ⊥ ν if there exist disjoint sets A,B ∈ A such that X = A ∪ B, µ(A) = 0 and
ν(B) = 0

Example
This example will establish that the Lebesgue measure and the Lebesgue-Stieltjes measure generated by the Cantor-Lebesgue
function are mutually singular.
First define the Lebesgue-Stieltjes measure. Let α : R −→ R be an increasing function that is continuous from the right (i.e.

lim
x→c+

α(x) = α(c) for all c ∈ R). For a < b define ν((a, b]) = α(b)− α(a). The ν extends as a measure

ν :M−→ [0, ∞], whereM is the σ-algebra of Lebesgue measurable sets in R. The measure ν is called the
Lebesgue-Stieltjes measure generated by the function α.
Now consider the function α given by α(x) = 0 if x ≤ 0, α(x) = 1 if x ≥ 1, and α(x) = φ(x), if 0 ≤ x ≤ 1, where
φ : [0, 1] −→ [0, 1] is the Cantor-Lebesgue function. Let ν be the Lebesgue-Stieltjes measure generated by this function.
Note that since α is constant on (−∞, 0] and on [1, ∞), then ν(E) = 0 if E is contained in R\[0, 1].
If m is the Lebesgue measure on R, then m ⊥ ν. Indeed let A = C, where C ⊂ [0, 1] is the Cantor set, and let B = R\C.
We already now that m(C) = 0, we are left to verify that ν(R\C) = 0. The set R\C is a union of disjoint intervals:

R\C = (−∞, 0) ∪
∞⋃
j=1

Ij ∪ (1, ∞)

where Ij are the open middle third intervals removed from [0, 1] in the construction of the Cantor set. Since φ is constant on
each interval Ij , then ν(Ij) = 0. We already noted that ν(−∞, 0) = 0 and ν(1, ∞) = 0. Therefore ν(R\C) = 0 and
the two measures are mutually singular.



The Jordan Decomposition Theorem

Theorem (2)
Let µ : A −→ (−∞, ∞] be a signed measure on a space X. Then there exist positive
measures µ+, µ− : A −→ [0, ∞], with µ+ ⊥ µ− and such that µ = µ+ − µ−.
Furthermore, this decomposition is unique.

Proof.
Let P, N ∈ A be such that P is a positive set, N is a negative set for µ, P ∩ N = ∅ and X = P ∪ N (Hahn Decomposition
Theorem). Define µ± as follows. For A ∈ A set µ+(A) = µ(A ∩ P) and µ−(A) = −µ(A ∩ N). Then both µ+ and
µ− are positive measures and µ = µ+ − µ− . Moreover, we have µ+(N) = µ(P ∩ N) = 0 and
µ−(P) = µ(P ∩ N) = 0 so that µ+ ⊥ µ− .
Now suppose that µ = ν+ − ν− is another such decomposition with ν+ ⊥ ν− . Let S+, S− ∈ A be the associated pair
in the Hahn decomposition: S+ ∩ S− = ∅, X = S+ ∪ S− , ν±(S∓) = 0. It follows from the uniqueness of the Hahn
decomposition that P4S+ and N4S− are µ-null sets.

Let A ∈ A. We have

ν
+
(A) = ν

+
(A ∩ S+) = ν

+
(A ∩ S+)− ν−(A ∩ S+) = µ(A ∩ S+) = µ(A ∩ P) = µ

+
(A).

This shows that µ+ = ν+ . A similar argument can be used to prove µ− = ν− .

The measure |µ| : A −→ [0, ∞] given by |µ| = µ+ + µ− is called the variation measure of µ
and |µ|(A) = µ+(A) + µ−(A) the total variation of A.



Absolute continuous measures

Let µ, ν be two measures defined in a σ-algebra over a set X. The measure ν is said to be
absolutely continuous with respect to µ, if every µ-null set is also a ν-null set. That is

∀A ∈ A µ(A) = 0 =⇒ ν(A) = 0.
In this case we write ν � µ.

Proposition (1)
Let µ and ν be measures defined inA over X and such that ν is finite (ν(X) <∞). Then
ν � µ if and only if for every ε > 0 there exists δ > 0 such that for every A ∈ A with
µ(A) < δ, we have ν(A) < ε.

Proof.
"⇐=" Let A ∈ A such that µ(A) = 0, we need to show that ν(A) = 0. Let ε > 0 and δ > 0 such that satisfies the
condition of the proposition. Since µ(A) = 0 < δ, then ν(A) < ε. Since ε > 0 is arbitrary, then ν(A) = 0.

"=⇒" Suppose that ν � µ. By contradiction, suppose that there exists ε0 > 0 such that for every n ∈ N, there exists a set

An ∈ A such that µ(An) < 2−n and ν(An) > ε0 . Let A = lim supn An =
⋂

n≥1
⋃

k≥n Ak . Then

µ(A) = lim
n→∞

µ

⋃
k≥n

Ak

 ≤ lim
n→∞

∞∑
k=n

µ(Ak) ≤ lim
n→∞

∞∑
k=n

1

2k
= 0.

This means µ(A) = 0 and ν(A) ≥ ε0 > 0 which is a contradiction.

Proposition (2)
Let µ and ν be finite positive measures defined inA over X. Then either µ ⊥ ν or else there
exists ε > 0 and a set P ∈ A such that µ(P) > 0 and P is a positive set for the measure ν − εµ.



Proof.
Let n ∈ N and consider the signed measure ν −

1

n
µ. It follows from the Hahn decomposition that there exists a pair sets Pn

(positive) and Nn (negative) such that Pn ∩ Nn = ∅, Pn ∪ Nn = X for this measure.

Let N =
⋂

n Nn and P =
⋃

n Pn . We have X\N =
⋂

n(X\Nn) =
⋃

n Pn = P. For each n we have N ⊂ Nn and

0 ≤ ν(N) ≤ ν(Nn) ≤
1

n
µ(Nn) ≤

1

n
µ(X).

Since µ(X) <∞, then ν(N) = 0. Now we have two possibilities. Either µ(P) = 0 and then ν ⊥ µ or else µ(P) > 0. In

this case there exists n0 such that µ(Pn0 ) > 0. Let ε = 1/n0 . Then from the definition of Pn0 we have

ν(Pn0 )− εµ(Pn0 ) > 0

Remark (1)
We know from earlier examples that if f is a nonnegative µ-integrable function over X, then the

set function ν : A −→ R+ given by ν(A) =
∫

A
fdµ is a measure. The Radon-Nikodym gives a

sufficient condition under which ν has the above form. The function f is called the derivative

(or density) of ν with respect to µ and is denoted f =
dν
dµ

or dν = fdµ



Radon-Nikodym Theorem

Theorem (3)
Let µ : A −→ [0, ∞] be a σ-finite positive measure on X and let ν : A −→ [0, ∞) be a finite
measure on X such that ν is absolutely continuous with respect to µ ( ν � µ). Then there
exists a µ-integrable nonnegative function f ∈ L(X, µ) such that

ν(A) =
∫

A
fdµ for all A ∈ A.

Moreover if g ∈ L(X, µ) is any other such function, then g = f a.e. in X.

Proof.
Uniqueness. If f , g ∈ L(X, µ) are two such functions, then h = f − g ∈ L(X, µ) and for every A ∈ A we have∫

A
hdµ =

∫
A
(f − g)dµ =

∫
A

fdµ−
∫

A
gdµ = ν(A)− ν(A) = 0

Hence h = 0 a.e. in X.

To prove the existence of the function f we consider two cases.
I Case 1: µ is a finite measure (µ(X) <∞). Consider the family of functions

F =

{
h ∈ L(X, µ) : h ≥ 0 and

∫
A

hdµ ≤ ν(A) for all A ∈ A
}

Note thatF 6= ∅ since 0 ∈ F and if α, β ∈ F then max(α, β) ∈ F . Indeed, consider the sets
C = {x : α(x) ≥ β(x)} and D = {x : α(x) < β(x)} = X\C

so that C ∩ D = ∅ and C ∪ D = X. Let A ∈ A. Then∫
A

max(α, β)dµ =

∫
A∩C

αdµ +

∫
A∩D

βdµ ≤ ν(A ∩ C) + ν(A ∩ D) = ν(A) .

This implies max(α, β) ∈ F .



Proof.
CONTINUED

Let M = sup
{∫

X
hdµ : h ∈ F

}
. Note that since

∫
X

hdµ ≤ ν(X) <∞, then M <∞. Let {hn}n ⊂ F

such that lim
n→∞

∫
X

hndµ = M. For each n ∈ N, let fn = max(h1, · · · , hn). Then fn ∈ F and {fn}n is an

increasing sequence. Let f = lim
n
→∞fn . It follows from the Monotone Convergence Theorem that for every

A ∈ A we have ∫
A

fdµ = lim
n→∞

∫
A

fndµ ≤ ν(A).

Hence f ∈ F . Moreover ∫
X

fdµ = lim
n→∞

∫
X

fndµ ≥ lim
n→∞

∫
X

hndµ = M.

Therefore
∫

X
fdµ = M.

We are left to verify that
∫

A
fdµ = ν(A). For this we define a positive measure λ : A −→ [0, ∞) by

λ(A) = ν(A)−
∫

A
fdµ.

We claim that λ ⊥ µ. By contradiction, if λ were not mutually singular to µ, then (Proposition 2) there exists ε > 0
and P ∈ A such that µ(P) > 0 and P is a positive set for the measure λ− εµ. Let A ∈ A. We have

ν(A)−
∫

A
fdµ = λ(A) ≥ λ(A ∩ P) ≥ εµ(A ∩ P) =

∫
A
εχP dµ.

Then ν(A) ≥
∫

A
(f + εχP )dµ. This means h = f + εχP ∈ F . But,∫

X
hdµ =

∫
X

fdµ + ε

∫
X
χP dµ = M + εµ(P) > M.

This is a contradiction and so λ ⊥ µ.



Proof.
CONTINUED

Since λ ⊥ µ, then there exists Z ∈ A such that µ(Z) = 0 and λ(X\Z) = 0. It follows from ν � µ that

ν(Z) = 0. Therefore λ(Z) = ν(Z)−
∫

Z
fdµ = 0. We have then λ(X) = λ(Z) + λ(X\Z) = 0. So that

λ = 0. Therefore ν(A) =

∫
A

fdµ for A ∈ A. This completes the proof when µ is finite.

I Case 2: µ is σ-finite. In this case there exists a sequence {Xj}j ⊂ A such that Xj ↗ X and µ(Xj) <∞ for all j.
For j ∈ N, Let µj and νj be the restrictions of µ and ν to Xj: µj(A) = µ(A ∩ Xj) and νj(A) = ν(A ∩ Xj) for
A ∈ A. Then µj is a finite measure and νj � µj . Indeed, if µj(E) = 0, then µ(E ∩ Xj) = 0 and so
0 = ν(E ∩ Xj) = νj(E).
It follows from the first case that there exists fj ∈ L(X, µj) such that dµj = fjdµj . It follows from the uniqueness of
the density that fi = fj a.e. in X if i ≤ j. Define f ∈ L(X, µ) by f (x) = fj(x) if x ∈ Xj .
Let A ∈ A, we have

ν(A) = lim
j→∞

ν(A ∩ Xj) = lim
j→∞

νj(A) = lim
j→∞

∫
A

fjdµj = lim
j→∞

∫
A∩Xj

fdµ =

∫
A

fdµ.

This completes the proof.

Theorem (4)
Let µ and ν be respectively σ-finite and finite positive measures defined over a σ-algebraA of
a space X. Then there exist unique positive measures λ and ρ such that ν = λ+ ρ, with ρ� µ
and λ ⊥ µ.

Remark (2)
This theorem is known as the Lebesgue Decomposition Theorem. Its proof is analogous to that
of the Radon-Nikodym Theorem. What is missing here is ν � µ. Once F , M, and f are
defined exactly as in the proof of the Radon-Nikodym Theorem, we can define ρ by

ρ(A) =
∫

A
fdµ and λ = ν − ρ.


