Real Analysis MAA 6616
Lecture 31
The Dual Space of L^{p}

Recall (from Lecture 26) that if $(X,\|\cdot\|)$ be a normed space. A linear functional on X is a map $T: X \longrightarrow \mathbb{R}$ such that $T(\alpha f+\beta g)=\alpha T(f)+\beta T(g)$ for all $f, g \in X$ and $\alpha, \beta \in \mathbb{R}$.

The linear functional T is said to be bounded if there exists $M>0$ such that $T(f) \leq M\|f\|$ for all $f \in X$. Denote by X^{*} the space of all bounded linear functionals on X. the space X^{*} is called the dual of X. For linear functional $T \in X^{*}$, define $\|T\|_{*}$ by

$$
\|T\|_{*}=\inf \{M:|T f| \leq M\|f\| \text { for all } f \in X .\}=\sup \{|T f|: f \in X \text { with }\|f\| \leq 1 .\}
$$

If $(X,\|\cdot\|)$ is Banach space, then so is $\left(X^{*},\|\cdot\|_{*}\right)$ (Theorem 1 of Lecture 26).
We are interested in characterizing the dual space of $L^{p}(X, \mu)$ for $1 \leq p<\infty$ and μ a σ-finite measure. This is given by the Riesz Representation Theorem that says that $L^{p}(X, \mu)^{*} \cong L^{q}(X, \mu)$ where $\frac{1}{q}+\frac{1}{q}=1$. First recall the following

Proposition (1)

Let $1 \leq p<\infty$, q the conjugate of p, E a μ-measurable set and $g \in L^{q}(E, \mu)$. Then the $T_{g}: L^{p}(E, \mu) \longrightarrow \mathbb{R}$ defined by $T_{g}(f)=\int_{E} f g d \mu$ is a bounded linear functional and $\left\|T_{g}\right\|_{*} \leq\|g\|_{q}$.
The proof is a direct consequence of the linearity of the integral and of the Hölder inequality.

Riesz Representation Theorem

Theorem (1)

Let (X, \mathcal{A}, μ) be a σ-finite measure space, $1 \leq p<\infty$, and q the conjugate of p. Then the map

$$
\Phi: L^{q}(X, \mu) \longrightarrow L^{p}(X, \mu)^{*}
$$

given by $\Phi(g)=T_{g}$ is an isometric isomorphism, where $T_{g}: L^{p}(X, \mu) \longrightarrow \mathbb{R}$,
$T_{g}(f)=\int_{E} f g d \mu$. Isometric isomorphism means that Φ is linear, bijective, and
$\|\Phi(g)\|_{*}=\|g\|_{q}$ for all $g \in L^{q}(X, d \mu)$.

Proof.

We already know from Proposition 1 that the map Φ is well defined and that $\|\Phi(g)\|_{*} \leq\|g\|_{q}$ for all $g \in L^{q}(X, d \mu)$. To continue, we need consider two cases on whether or not the measure μ is finite.

- Case $\mu(X)<\infty$. Let $T \in L^{p}(X, \mu)^{*}$. Define a set function

$$
\nu: \mathcal{A} \longrightarrow \mathbb{R} \text { by } \nu(A)=T\left(\chi_{A}\right) \text { for } A \in \mathcal{A}
$$

Note that this set function is well defined since $\mu(X)<\infty$ implies $\chi_{A} \in L^{p}(X, d \mu)$. Now we prove that ν is a countably additive signed measure. First we verify finite additivity. If $A_{1}, A_{2} \in \mathcal{A}$ and $A_{1} \cap A_{2}=\emptyset$, then

$$
\nu\left(A_{1} \cup A_{2}\right)=T\left(\chi_{A_{1} \cup A_{2}}\right)=T\left(\chi_{A_{1}}+\chi_{A_{2}}\right)=T\left(\chi_{A_{1}}\right)+T\left(\chi_{A_{2}}\right)=\nu\left(A_{1}\right)+\nu\left(A_{2}\right)
$$

To verify the countable additivity, let $\left\{A_{j}\right\}_{j=1}^{\infty} \subset \mathcal{A}$ be a disjoint collection. Let $A=\bigcup_{j} A_{j}$ and write $A=B_{n} \cup C_{n}$, where $B_{n}=\bigcup_{j=1}^{n} A_{j}$ and $C_{n}=\bigcup_{j=n+1}^{\infty} A_{j}$. Then $B_{n} \cap C_{n}=\emptyset$ and

$$
\nu(A)=\nu\left(B_{n} \cup C_{n}\right)=\nu\left(B_{n}\right)+\nu\left(C_{n}\right)=\sum_{j=1}^{n} \nu\left(A_{j}\right)+\nu\left(C_{n}\right)
$$

Since $\mu(A) \leq \mu(X)<\infty$ and μ is countably additive, then $\mu\left(C_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$. It follows from $\left|\nu\left(C_{n}\right)\right| \leq\|T\|_{*}\left\|\chi_{C_{n}}\right\|_{p}=\|T\|_{*} \mu\left(C_{n}\right)^{1 / p}$ that $\lim _{n \rightarrow \infty} \nu\left(C_{n}\right)=0$. Hence $\nu(A)=\sum_{j=1}^{\infty} \nu\left(A_{j}\right)$ This shows that ν is a signed measure defined on \mathcal{A}.
Note also that if follows from $\nu(A) \leq\|T\|_{*} \mu(A)^{1 / p}$ that $\nu(A)=0$ whenever $\mu(A)=0$. This means that $\nu \ll \mu$ (i.e. ν absolutely continuous with respect to μ).

Proof.

CONTINUED:

Now we can apply the Radon-Nikodym Theorem: There exists a unique $g \in L^{1}(X, d \mu)$ such that

$$
T\left(\chi_{A}\right)=\nu(A)=\int_{A} g d \mu=\int_{X} \chi_{A} g d \mu \quad \text { for all } \quad A \in \mathcal{A}
$$

Let ϕ be any μ-measurable simple function: $\phi=\sum_{j=1}^{n} c_{j} \chi_{A_{j}}$ for some $c_{1}, \cdots, c_{n} \in \mathbb{R}$ and disjoint sets $A_{1}, \cdots, A_{n} \in \mathcal{A}$. Then

$$
T(\phi)=\sum_{j=1}^{n} c_{j} T\left(\chi_{A_{j}}\right)=\sum_{j=1}^{n} c_{j} \int_{X} \chi_{A_{j}} g d \mu=\int_{X} \phi g d \mu
$$

Now we need to extend this formula and show that $T(f)=\int_{X} g g d \mu$ for all $f \in L^{p}(X, d \mu)$. Before this we establish that $g \in L^{q}(X, d \mu)$ and $\|g\|_{q}=\|T\|_{*}$. Note since $\|g\|_{q} \geq\|T\|_{*}$ (Hölder's inequality), it is enough to establish. $\|g\|_{q} \leq\|T\|_{*}$. If $g=0$, there is nothing to prove. Suppose $g \neq 0$.
Consider the case $p>1$. Since $|g|^{q} \in L^{1}(X, d \mu)$ there exists a sequence of simple functions $\left\{\phi_{k}\right\}_{k} \subset L^{1}(X, d \mu)$ such that $0 \leq \phi_{k}$ and $\phi_{k} \nearrow|g|^{q}$.
For each k, consider the simple function $\psi_{k}=\phi_{k}^{\frac{1}{p}} \operatorname{sgn}(g)$. Then $\psi_{k} \in L^{p}(X, d \mu)$ and $\left\|\psi_{k}\right\|_{p}=\left\|\phi_{k}\right\|_{1}^{\frac{1}{p}}$. We have

$$
T\left(\psi_{k}\right)=\int_{X} \psi_{k} g d \mu=\int_{X} \phi_{k}^{\frac{1}{p}}|g| d \mu \leq\|T\|_{*}\left\|\psi_{k}\right\|_{p}=\|T\|_{*}\left\|\phi_{k}\right\|_{1}^{\frac{1}{p}}
$$

Next, since $\phi_{k}^{\frac{1}{q}} \nearrow|g|$ and $\psi_{k} g=\phi_{k}^{\frac{1}{p}}|g| \geq \phi_{k}^{\frac{1}{p}+\frac{1}{q}}=\phi_{k}$, then

$$
\begin{aligned}
& \qquad\left\|\phi_{k}\right\|_{1}=\int_{X} \phi_{k} d \mu \leq \int_{X} \psi_{k} g d \mu=T\left(\psi_{k}\right) \leq\|T\|_{*}\left\|\psi_{k}\right\|_{p}=\|T\|_{*}\left\|\phi_{k}\right\|_{1}^{\frac{1}{p}} \\
& \text { It follows that }\left\|\phi_{k}\right\|_{1}^{1-\frac{1}{p}} \leq\|T\|_{*} \text { and as } k \rightarrow \infty \text { we get }\|g\|_{q} \leq\|T\|_{*}
\end{aligned}
$$

Proof.

CONTINUED:

To complete the proof in the case $p>1$, it remains to verify the uniqueness of g. Suppose there exists $g^{\prime} \in L^{q}(X, d \mu)$ such that $T(f)=\int_{X} f g^{\prime} d \mu$ for all $f \in L^{p}(X, d \mu)$. Let $A \in \mathcal{A}$, then

$$
0=T\left(\chi_{A}\right)-T\left(\chi_{A}\right)=\int_{X} \chi_{A} g d \mu-\int_{X} \chi_{A} g^{\prime} d \mu=\int_{X} \chi_{A}\left(g-g^{\prime}\right) d \mu=\int_{A}\left(g-g^{\prime}\right) d \mu
$$

Since $A \in \mathcal{A}$ is arbitrary, then $g=g^{\prime}$ a.e. in X.
Now we consider the case $p=1$ so that $g \in L^{\infty}(X, d \mu)$. We need to verify that $\|T\|_{*}$ is an essential upper bound for $|g|$. By contradiction $\|T\|_{*}<\|g\|_{\infty}$. Then there exists $\epsilon>0$ such that the set $S_{\epsilon}=\left\{x \in X:|g(x)|>\|T\|_{*}+\epsilon\right\}$ has positive measure. Without loss of generality, we can assume that $\mu\left(S_{\epsilon}^{1}\right)>0$, where $S_{\epsilon}^{1}=\left\{x \in X: g(x)>\|T\|_{*}+\epsilon\right\}$. Then

$$
\|T\|_{*} \mu\left(S_{\epsilon}^{1}\right) \geq\left|T\left(\chi_{S_{\epsilon}^{1}}\right)\right|=\int_{S_{\epsilon}^{+}} g d \mu>\left(\|T\|_{*}+\epsilon\right) \mu\left(S_{\epsilon}^{1}\right)
$$

This is contradiction. This completes the proof of the theorem when μ is finite.
\checkmark Case $\mu(X)=\infty$. Since μ is σ-finite, there exists an ascending sequence $\left\{X_{j}\right\}_{j} \subset \mathcal{A}$ such that $X_{j} \nearrow X$ and $\mu\left(X_{j}\right)<\infty$ for all j. Note that $L^{p}\left(X_{j}, d \mu\right)$ can be identified as a subset of $L^{p}(X, d \mu)$: an element $f \in L^{p}\left(X_{j}, d \mu\right)$ can considered as $\tilde{f} \in L^{p}(X, d \mu)$, where \tilde{f} is the extension of f by setting $\tilde{f}=0$ on $X \backslash X_{j}$ and we have $\|f\|_{p, X_{j}}=\|f\|_{f, X}$. Now let $T \in L^{p}(X, d \mu)^{*}$. For each $j \in \mathbb{N}$, let T_{j} be the restriction of T to $L^{p}\left(X_{j}, d \mu\right)^{*}$: $T_{j}(f)=T(\tilde{f})$. We have $\left\|T_{j}\right\|_{*} \leq\|T\|_{*}$.
Since $\mu\left(X_{j}\right)<\infty$ it follows from the first case, that for each j there exists a unique $g_{j} \in L^{q}\left(X_{j}, d \mu\right)$ such that $T_{j}(f)=\int_{X_{j}} f g g_{j} d \mu$, for all $f \in L^{p}\left(X_{j}, d \mu\right)$, and $\|g\|_{q, X_{j}}=\left\|T_{j}\right\|_{*} \leq\|T\|_{*}$. Since $X_{j} \subset X_{j+1}$, then for every $f \in L^{p}\left(X_{j}, d \mu\right)$, we have $T_{j}(f)=T(f)=T_{j+1}(f)$. This implies that $g_{j}=g_{j+1}$ a.e. in X_{j}. Without loss of generality we can assume $g_{j}=g_{j+1}$ on X_{j} and define a function g on X by $g(x)=g_{j}(x)$ if $x \in X_{j}$. Then g is μ-measurable and $\|g\|_{q} \leq\|T\|_{*}$. Let $f \in L^{p}(X, d \mu)$. Then $f g \in L^{1}(X, d \mu)$ (follows from Hölder's Inequality). We have $T\left(f \chi_{X_{j}}\right)=T_{j}(f)=\int_{X_{j}} f g_{j} d \mu=\int_{X_{j}} f g d \mu$. Since $f \chi_{X_{j}} \rightarrow f$ in $L^{p}(X, d \mu)$, then $\int_{X_{j}} f g d \mu=T\left(f \chi_{X_{j}}\right) \rightarrow \int_{X} f g d \mu=T(f)$. This completes the proof.

In general $L^{\infty}(X, d \mu)^{*} \neq L^{1}(X, d \mu)$: The dual space of $L^{\infty}(X, d \mu)$ cannot be identified with $L^{1}(X, d \mu)$. The Dirac δ functional provides an example of a functional on L^{∞} that cannot be represented as $\delta(f)=\int f g$ with $g \in L^{1}$. The example below relies on the Hahn-Banach Theorem: Let $(X,\|\cdot\|)$ be a linear normed space and $Y \subset X$ be a linear subspace. Let $S \in Y^{*}$ (i.e. $S: Y \longrightarrow \mathbb{R}$ a linear and bounded operator with norm $\|S\|_{*}<\infty$). Then there a bounded linear operator $T \in X^{*}$ such that $T=S$ on Y and $\|T\|_{*}=\|S\|_{*}^{*}$

Example

The space $C^{0}([-1,1])$ is a linear subspace of $L^{\infty}[-1,1]$. The linear functional

$$
\delta: C^{0}([-1,1]) \longrightarrow \mathbb{R}
$$

given by $\delta(f)=f(0)$ extends (Hahn-Banach Theorem) as an element of $L^{\infty}[-1,1]^{*}$. We claim that there is no function $g \in L^{1}[-1,1]$ such that $\delta(f)=\int_{-1}^{1} f g d x$. If there were such g, let $\epsilon>0$ and let A be any measurable subset of $[-1,1] \backslash[-\epsilon, \epsilon]$. For $f=\chi_{A} \in L^{\infty}[-1,1]$ we have $0=\delta(f)=\int_{A} g d x$. Since A is arbitrary, then $g=0$ a.e. and this implies $\delta=0$ a contradiction.

