
Real Analysis MAA 6616
Lecture 31

The Dual Space of Lp



Recall (from Lecture 26) that if (X, ‖·‖) be a normed space. A linear functional on X is a map
T : X −→ R such that T(αf + βg) = αT(f ) + βT(g) for all f , g ∈ X and α, β ∈ R.

The linear functional T is said to be bounded if there exists M > 0 such that T(f ) ≤ M ‖f‖ for
all f ∈ X. Denote by X∗ the space of all bounded linear functionals on X. the space X∗ is called
the dual of X. For linear functional T ∈ X∗, define ‖T‖∗ by
‖T‖∗ = inf {M : |Tf | ≤ M ‖f‖ for all f ∈ X.} = sup {|Tf | : f ∈ X with ‖f‖ ≤ 1.}

If (X, ‖·‖) is Banach space, then so is (X∗, ‖·‖∗) (Theorem 1 of Lecture 26).

We are interested in characterizing the dual space of Lp(X, µ) for 1 ≤ p <∞ and µ a σ-finite
measure. This is given by the Riesz Representation Theorem that says that

Lp(X, µ)∗ ∼= Lq(X, µ) where
1
q

+
1
q

= 1. First recall the following

Proposition (1)
Let 1 ≤ p <∞, q the conjugate of p, E a µ-measurable set and g ∈ Lq(E, µ). Then the

Tg : Lp(E, µ) −→ R defined by Tg(f ) =

∫
E

fgdµ is a bounded linear functional and

‖Tg‖∗ ≤ ‖g‖q.

The proof is a direct consequence of the linearity of the integral and of the Hölder inequality.



Riesz Representation Theorem

Theorem (1)
Let (X,A, µ) be a σ-finite measure space, 1 ≤ p <∞, and q the conjugate of p. Then the map

Φ : Lq(X, µ) −→ Lp(X, µ)∗

given by Φ(g) = Tg is an isometric isomorphism, where Tg : Lp(X, µ) −→ R,

Tg(f ) =

∫
E

fgdµ. Isometric isomorphism means that Φ is linear, bijective, and

‖Φ(g)‖∗ = ‖g‖q for all g ∈ Lq(X, dµ).

Proof.
We already know from Proposition 1 that the map Φ is well defined and that ‖Φ(g)‖∗ ≤ ‖g‖q for all g ∈ Lq(X, dµ). To
continue, we need consider two cases on whether or not the measure µ is finite.

I Case µ(X) <∞. Let T ∈ Lp(X, µ)∗ . Define a set function
ν : A −→ R by ν(A) = T(χA ) for A ∈ A.

Note that this set function is well defined since µ(X) <∞ implies χA ∈ Lp(X, dµ). Now we prove that ν is a
countably additive signed measure. First we verify finite additivity. If A1, A2 ∈ A and A1 ∩ A2 = ∅, then

ν(A1 ∪ A2) = T(χA1∪A2
) = T(χA1

+ χA2
) = T(χA1

) + T(χA2
) = ν(A1) + ν(A2).

To verify the countable additivity, let {Aj}∞j=1 ⊂ A be a disjoint collection. Let A =
⋃

j Aj and write
A = Bn ∪ Cn , where Bn =

⋃n
j=1 Aj and Cn =

⋃∞
j=n+1 Aj . Then Bn ∩ Cn = ∅ and

ν(A) = ν(Bn ∪ Cn) = ν(Bn) + ν(Cn) =
n∑

j=1

ν(Aj) + ν(Cn).

Since µ(A) ≤ µ(X) <∞ and µ is countably additive, then µ(Cn)→ 0 as n→∞. It follows from

|ν(Cn)| ≤ ‖T‖∗
∥∥∥χCn

∥∥∥
p

= ‖T‖∗ µ(Cn)1/p that lim
n→∞

ν(Cn) = 0. Hence ν(A) =
∞∑
j=1

ν(Aj) This shows

that ν is a signed measure defined onA.
Note also that if follows from ν(A) ≤ ‖T‖∗ µ(A)1/p that ν(A) = 0 whenever µ(A) = 0. This means that
ν � µ (i.e. ν absolutely continuous with respect to µ).



Proof.
CONTINUED:

Now we can apply the Radon-Nikodym Theorem: There exists a unique g ∈ L1(X, dµ) such that

T(χA ) = ν(A) =

∫
A

gdµ =

∫
X
χA gdµ for all A ∈ A.

Let φ be any µ-measurable simple function: φ =
∑n

j=1 cjχAj
for some c1, · · · , cn ∈ R and disjoint sets

A1, · · · , An ∈ A. Then

T(φ) =
n∑

j=1

cjT(χAj
) =

n∑
j=1

cj

∫
X
χAj

gdµ =

∫
X
φgdµ.

Now we need to extend this formula and show that T(f ) =

∫
X

fgdµ for all f ∈ Lp(X, dµ). Before this we establish

that g ∈ Lq(X, dµ) and ‖g‖q = ‖T‖∗ . Note since ‖g‖q ≥ ‖T‖∗ (Hölder’s inequality), it is enough to establish.
‖g‖q ≤ ‖T‖∗ . If g = 0, there is nothing to prove. Suppose g 6= 0.

Consider the case p > 1. Since |g|q ∈ L1(X, dµ) there exists a sequence of simple functions {φk}k ⊂ L1(X, dµ)
such that 0 ≤ φk and φk ↗ |g|q .

For each k, consider the simple functionψk = φ

1
p
k sgn(g). Thenψk ∈ Lp(X, dµ) and ‖ψk‖p = ‖φk‖

1
p
1 . We have

T(ψk) =

∫
X
ψkgdµ =

∫
X
φ

1
p
k |g|dµ ≤ ‖T‖∗ ‖ψk‖p = ‖T‖∗ ‖φk‖

1
p
1 .

Next, since φ
1
q
k ↗ |g| and ψkg = φ

1
p
k |g| ≥ φ

1
p + 1

q
k = φk , then

‖φk‖1 =

∫
X
φkdµ ≤

∫
X
ψkgdµ = T(ψk) ≤ ‖T‖∗ ‖ψk‖p = ‖T‖∗ ‖φk‖

1
p
1 .

It follows that ‖φk‖
1− 1

p
1 ≤ ‖T‖∗ and as k →∞ we get ‖g‖q ≤ ‖T‖∗ .



Proof.
CONTINUED:

To complete the proof in the case p > 1, it remains to verify the unique-

ness of g. Suppose there exists g′ ∈ Lq(X, dµ) such that T(f ) =

∫
X

fg′dµ for all f ∈ Lp(X, dµ). Let A ∈ A, then

0 = T(χA )− T(χA ) =

∫
X
χA gdµ−

∫
X
χA g′dµ =

∫
X
χA (g− g′)dµ =

∫
A
(g− g′)dµ .

Since A ∈ A is arbitrary, then g = g′ a.e. in X.
Now we consider the case p = 1 so that g ∈ L∞(X, dµ). We need to verify that ‖T‖∗ is an essential upper bound
for |g|. By contradiction ‖T‖∗ < ‖g‖∞ . Then there exists ε > 0 such that the set
Sε = {x ∈ X : |g(x)| > ‖T‖∗ + ε} has positive measure. Without loss of generality, we can assume that
µ(S1

ε) > 0, where S1
ε = {x ∈ X : g(x) > ‖T‖∗ + ε} . Then

‖T‖∗ µ(S1
ε) ≥

∣∣∣∣T(χ
S1
ε

)

∣∣∣∣ =

∫
S+ε

gdµ > (‖T‖∗ + ε)µ(S1
ε).

This is contradiction. This completes the proof of the theorem when µ is finite.
I Case µ(X) =∞. Since µ is σ-finite, there exists an ascending sequence {Xj}j ⊂ A such that Xj ↗ X and

µ(Xj) <∞ for all j. Note that Lp(Xj, dµ) can be identified as a subset of Lp(X, dµ): an element f ∈ Lp(Xj, dµ)

can considered as f̃ ∈ Lp(X, dµ), where f̃ is the extension of f by setting f̃ = 0 on X\Xj and we have
‖f‖p,Xj

= ‖f‖f ,X . Now let T ∈ Lp(X, dµ)∗ . For each j ∈ N, let Tj be the restriction of T to Lp(Xj, dµ)∗:

Tj(f ) = T (̃f ). We have
∥∥Tj
∥∥
∗ ≤ ‖T‖∗ .

Since µ(Xj) <∞ it follows from the first case, that for each j there exists a unique gj ∈ Lq(Xj, dµ) such that

Tj(f ) =

∫
Xj

fgjdµ, for all f ∈ Lp(Xj, dµ), and ‖g‖q,Xj
=
∥∥Tj
∥∥
∗ ≤ ‖T‖∗ . Since Xj ⊂ Xj+1 , then for every

f ∈ Lp(Xj, dµ), we have Tj(f ) = T(f ) = Tj+1(f ). This implies that gj = gj+1 a.e. in Xj . Without loss of
generality we can assume gj = gj+1 on Xj and define a function g on X by g(x) = gj(x) if x ∈ Xj . Then g is

µ-measurable and ‖g‖q ≤ ‖T‖∗ . Let f ∈ Lp(X, dµ). Then fg ∈ L1(X, dµ) (follows from Hölder’s Inequality).

We have T(fχXj
) = Tj(f ) =

∫
Xj

fgjdµ =

∫
Xj

fgdµ. Since fχXj
→ f in Lp(X, dµ), then∫

Xj
fgdµ = T(fχXj

)→
∫

X
fgdµ = T(f ). This completes the proof.



The δ-Function

In general L∞(X, dµ)∗ 6= L1(X, dµ): The dual space of L∞(X, dµ) cannot be identified with
L1(X, dµ). The Dirac δ functional provides an example of a functional on L∞ that cannot be

represented as δ(f ) =

∫
fg with g ∈ L1. The example below relies on the Hahn-Banach

Theorem: Let (X, ‖·‖) be a linear normed space and Y ⊂ X be a linear subspace. Let S ∈ Y∗

(i.e. S : Y −→ R a linear and bounded operator with norm ‖S‖∗ <∞). Then there a bounded
linear operator T ∈ X∗ such that T = S on Y and ‖T‖∗ = ‖S‖∗

Example
The space C0([−1, 1]) is a linear subspace of L∞[−1, 1]. The linear functional

δ : C0([−1, 1]) −→ R
given by δ(f ) = f (0) extends (Hahn-Banach Theorem) as an element of L∞[−1, 1]∗. We

claim that there is no function g ∈ L1[−1, 1] such that δ(f ) =

∫ 1

−1
fgdx. If there were such g,

let ε > 0 and let A be any measurable subset of [−1, 1]\[−ε, ε]. For f = χA ∈ L∞[−1, 1] we
have 0 = δ(f ) =

∫
A gdx. Since A is arbitrary, then g = 0 a.e. and this implies δ = 0 a

contradiction.


