Real Analysis MAA 6616
Lecture 31
The Dual Space of 1/



Recall (from Lecture 26) that if (X, ||||) be a normed space. A linear functional on X is a map
T:X — R suchthat T(of + Bg) = aT(f) + BT(g) forallf,g € Xand o, 8 € R.

The linear functional 7 is said to be bounded if there exists M > 0 such that T'(f) < M ||f|| for
all f € X. Denote by X* the space of all bounded linear functionals on X. the space X* is called
the dual of X. For linear functional T € X*, define ||T||, by

T, = inf M |T7] < M |f]| forallf € X.} = sup{|TF]: £ € X with [If| < 1.}

If (X, ||-||) is Banach space, then so is (X*, ||-||,.) (Theorem 1 of Lecture 26).

We are interested in characterizing the dual space of L” (X, ) for 1 < p < oo and p a o-finite
measure. This is given by the Riesz Representation Theorem that says that

1 1
LP(X, pu)* = LY(X, u) where — + — = 1. First recall the following
q9 4

Proposition (1)
Let1 < p < oo, q the conjugate of p, E a p-measurable set and g € L1(E, ). Then the
T : IP(E, u) — R defined by T¢(f) = /fgdu is a bounded linear functional and

E

I7ell, < N,
The proof is a direct consequence of the linearity of the integral and of the Holder inequality.



Riesz Representation Theorem

Theorem (1)

Let (X, A, ) be a o-finite measure space, 1 < p < oo, and q the conjugate of p. Then the map
LE Lq(va’) — Lp(X7 l”/)*
given by ®(g) = T, is an isometric isomorphism, where Ty : [P (X, p) — R,

To(f) = [ fedp. Isometric isomorphism means that ® is linear, bijective, and

E
12l = llgll, forall g € L4(X, dp).

Proof.
We already know from Proposition I that the map & is well defined and that || (g) ||, < [lgl|, forall g € LI(X,dp). To
continue, we need consider two cases on whether or not the measure s is finite.
P Case u(X) < co. LetT € IP(X, p)*. Define a set function
v:A—— Rby v(A) =T(x,) for A€ A
Note that this set function is well defined since 11(X) < oo implies x, € L” (X, du). Now we prove that v is a
countably additive signed measure. First we verify finite additivity. IfA;, Ay € A andA; N Ay = @, then
V(A1 UA2) = TOx, py) = T, +X,) = T0xy ) + Tlxy,) = v(A1) + v(42).
To verify the countable additivity, let {A; }j-°:°l C A be a disjoint collection. Let A = U,' Aj and write
A =B, U Gy, where By, = U Ajand G, = U2, Aj- Then B, N G, = B and
n
v(A) = v(By U GCy) = v(By) +v(Ca) = Z v(Aj) + v(Cy).
j=1
Since 1(A) < p(X) < oo and p is countably additive, then 1(C,) — 0asn — oo. It follows from
=

= 71, w(C)'/P that lim _v(Cy) = 0. Hence v(4) = ;u(Aj) This shows
=

[v(Ca)| < IIT]L

Xc,

that v is a signed measure defined on A.
Note also that if follows from v(A) < ||T| /.L(A)l/P that v(A) = 0 whenever p1(A) = 0. This means that
v <& p (i.e. v absolutely continuous with respect to ).



Proof.
CONTINUED:

Now we can apply the Radon-Nikodym Theorem: There exists a unique g € L (X, dp) such that

T(x,) =v(A) = /Agdu = /XXAgdu forall A€ A.
Let ¢ be any p-measurable simple function: ¢ = E;’T:l C.fXAj forsome cy, - -+ , ¢, € R and disjoint sets
Ay, -+ Ay, € A. Then

T(¢) = I_:Z]qT(xAl,) = j:ZIC//XXAjgdu = /X¢gdu~

Now we need to extend this formula and show that 7'(f) = /fgd,u forallf € L” (X, du). Before this we establish
X

that g € LY(X, dp) and ||qu = ||T]| .. Note since Hg||q > ||IT|| . (Holder’s inequality), it is enough to establish.

||g\|q < ||T|| . If ¢ = 0, there is nothing to prove. Suppose g 7# 0.

Consider the case p > 1. Since |g|? € L (X, dp) there exists a sequence of simple functions { ¢y} C L (X,dp)

such that 0 < ¢ and ¢ 7 |g|9.
1

1 1
For each k, consider the simple function ¢, = gi)[ sgn(g). Then iy, € LP (X, dp) and ||y Hp = ||l ]p . We have

1 1
T(e) = _/kagdu = /X¢>[ leldpe < 1711 1l = 171l -
1 1 1,1
Next, since ¢kq A |gl and g = 4)kp lg] > ¢kp 9 = ¢y, then
1

- du < dp = < = .
ol l'/Xaak w< [nsdn = 700 < 11, 1l = 171 el

1
It follows that || ¢ || 7 < ||T||, and as k — oo we get llglly < 1IT1l-



Proof.

CONTINUED:
To complete the proof in the case p > 1, it remains to verify the unique-

ness of g. Suppose there exists g’ € LY (X, du) such that T(f) = /fg'du forallf € LP(X,dp). LetA € A, then
X

0="T(x,) —T(x,) = /XXAgdu - ‘/XXAg'du = /XXA (g—¢)dp = ./A(g —¢"dp.

Since A € A is arbitrary, then g = g’ ae. in X.

Now we consider the case p = 1 so thatg € L% (X, dp). We need to verify that ||T|| . is an essential upper bound
for |g|. By contradiction || T'||,, < ||g|| o Then there exists € > 0 such that the set

Se = {x € X : |g(x)| > ||T||. + €} has positive measure. Without loss of generality, we can assume that

w(sl) > 0, where ! = {x € X : g(x) > ||T||, + €} . Then
171 m(Se) > ‘T(xs,) = /S+gdu > (Tl + € n(sy)-
€ €

This is contradiction. This completes the proof of the theorem when g is finite.

P Case j1(X) = oo. Since  is o-finite, there exists an ascending sequence {X;}; C AsuchthatX; ~ X and
n(X;) < oo for illj. Note that L” (X;, d/f) can be identified as a subset of L7 (X, dp): an element f € LF (X;, dp)
can considered as f € L (X, djv), where f is the extension of f by setting f = 0 on X\X; and we have
WHI’«X/' = |Iflly,x- Nowlet T € LP (X, dp)™. Foreachj € N, let 7; be the restriction of T'to L (X;, dpu) ™
Ti(f) = T(f). Wehave || 5|, < |7l
Since pu(X;) < oo it follows from the first case, that for each j there exists a unique g; € L9 (X;, dp) such that
T;(f) = /ijgjdu, forall f € L (Xj, du), and HquYXj = HTJ”* < ||IT|l - Since X; C X; 1, then for every
fe LP(Xj,‘d,u), we have Tj(f) = T(f) = Tj41(f). This implies that g; = g; | a.e. in X;. Without loss of
generality we can assume g; = g | on X; and define a function g on X by g(x) = g;(x) if x € X;. Then g is
p-measurable and Hqu < |IT|l,.. Letf € L” (X, dp). Then fg € L (X, dp) (follows from Hélder’s Inequality).

Wehae Ty ) = 1,0) = [ S = [ fedya. Since x> Fin 7 (X, ) hen
G X; X; j
J J

/ fedp = T(fXX_) — /fgdp = T(f). This completes the proof.
X; J X
J



The é-Function

In general L (X, dp)* # L'(X, dp): The dual space of L (X, dyi) cannot be identified with
L'(X, du). The Dirac & functional provides an example of a functional on L that cannot be

represented as 6(f) = / feg with g € L'. The example below relies on the Hahn-Banach

Theorem: Let (X, ||-||) be a linear normed space and Y C X be a linear subspace. Let S € Y*
(i.e. S : Y — R a linear and bounded operator with norm ||S||, < oo). Then there a bounded
linear operator T € X* suchthatT = SonY and ||T||, = ||S]|,

Example

The space CO([—1, 1]) is a linear subspace of L>[—1, 1]. The linear functional
§:C%-1, 1) —R
given by 6(f) = f(0) extends (Hahn-Banach Theorem) as an element of L>[—1, 1]*. We

1
claim that there is no function g € L'[—1, 1] such that §(f) = / fedx. If there were such g,
-1

let € > 0 and let A be any measurable subset of [—1, 1]\[—¢, €]. Forf = x, € L*°[—1, 1] we
have 0 = §(f) = fA gdx. Since A is arbitrary, then g = 0 a.e. and this implies § = 0 a
contradiction.



