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Lecture 4

Continuous Functions



Let E ⊂ R. A function f : E −→ R is said to be continuous at a point a ∈ E if for every
ϵ > 0 there exists δ > 0 such that |f (x)− f (a)| < ϵ for all x ∈ E such that |x − a| < δ.
f is continuous on E if it is continuous at all points of E . The function f is said to be
Lipschitz on E if there exists a constant L ≥ 0 (called Lipschitz constant) such that

|f (y)− f (x)| ≤ L |y − x | for all x , y ∈ E .

▶ Note that if f : E −→ R is Lipschitz, then it is continuous on E . Indeed, if L is the
Lipschitz constant of f , then for a ∈ E and ϵ > 0, let δ = ϵ/L. For x ∈ E such that
|x − a| < δ, we have |f (x)− f (a)| ≤ L |x − a| < Lδ = ϵ.

▶ A continuous function is not necessarily Lipschitz. For example f (x) =
√

x is
continuous on [0, 1] but it is not Lipschitz. If it were Lipschitz with constant L,
then we would have

∣∣√y −
√

x
∣∣ ≤ L |y − x | for all x , y ∈ [0, 1]. This implies

1 ≤ L(
√

y +
√

x) for all x , y ∈ [0, 1] (with x ̸= y ). A contradiction.

Proposition
A function f : E −→ R is continuous at a ∈ E if and only if for every sequence
{xn} ⊂ E such that lim

n→∞
xn = a, we have lim

n→∞
f (xn) = f (a).

Proof.
"=⇒" Suppose that f is continuous at a ∈ R and {xn} ⊂ E converges to a. Let ϵ > 0. It follows from the continuity
of f at a that there exists δ > 0 such that |f (y) − f (a)| < ϵ for all y ∈ E such that |y − a| < δ. It follows from the
convergence of {xn} that for given δ > 0, there is N ∈ N such that |xn − a| < δ for all n > N. Therefore
|f (xn) − f (a)| < ϵ for all n > N.

"⇐=" Left as an exercise.



Proposition
A function f : E −→ R is continuous on E if and only if for every open set U ⊂ R there
is an open set V ⊂ R such that f−1(U) = E ∩ V.

Proof.
"=⇒" Suppose f is continuous on E . Let U ⊂ R be open and let a ∈ f−1(U). Since f (a) ∈ U and U is open, then
for ϵ > 0 (small enough), we have (f (a) − ϵ, f (a) + ϵ) ⊂ U and the continuity of f at a implies the existence of
δa > 0 such that for any x ∈ E with |x − a| < δa , we have |f (x) − f (a)| < ϵ. Hence

f ((a − δa, a + δa) ∩ E) ⊂ (f (a) − ϵ, f (a) + ϵ) ⊂ U .

Define V =
⋃

a∈f−1(U)

(a − δa, a + δa). V is an open set (union of open intervals) and by construction we have

f−1(U) ⊂ E ∩ V .
"⇐=" Suppose that for every open set U ⊂ R there exists an open set V ⊂ R such that f−1(U) = E ∩ V . We
need to show that f is continuous on E . Let a ∈ E , let ϵ > 0, and let U = (f (a) − ϵ, f (a) + ϵ). Since U is open,
then there exists an open set V such that

f−1 ((f (a) − ϵ, f (a) + ϵ) = E ∩ V . (∗)

Since a ∈ V and V is open, then there exists δ > 0 such that (a − δ, a + δ) ⊂ V . It follows from (∗) that for

x ∈ E such that |x − a| < δ, we have |f (x) − f (a)| < ϵ. Therefore f is continuous at a.



Extreme Value Theorem
A function f is said to have a maximum value (respectively minimum value) on a set S if there exist s∗ ∈ S such
that f (x) ≤ f (s∗) (respectively f (x) ≥ f (s∗)) for all x ∈ S.

A function f is said to be bounded on a set S if the image f (S) is a bounded set. Equivalently, if there exists M ≥
such that |f (s| ≤ M for all s ∈ S.

Theorem
Let E ⊂ R be closed and bounded and f : E −→ R be continuous. Then f has a
maximum and a minimum values on E.

Proof.
We first prove that f is bounded. By contradiction, suppose that for every n ∈ N there is xn ∈ E such that
|f (xn)| > n. Since E is closed and bounded, then the sequence {xn} is bounded so has a convergent
subsequence {xnk }. Let x∗ = lim

k→∞
xnk . Then x∗ ∈ E (since E is closed and {xnk } ⊂ E .) The function f is

continuous at x∗. Then for ϵ = 1 there exists δ > 0 such that for every y ∈ E with
∣∣y − x∗∣∣ < δ we have∣∣f (y) − f (x∗)

∣∣ < 1 and so |f (y)| ≤ 1 +
∣∣f (x∗)

∣∣. In particular there exists N ∈ N such that for k > N we have∣∣∣xnk − x∗
∣∣∣ < δ and so

∣∣∣f (xnk

∣∣∣ ≤ 1 +
∣∣f (x∗)

∣∣. This is a contradiction since
∣∣∣f (xnk )

∣∣∣ > nk and nk is a strictly

increasing sequence. The function f is therefore bounded.
Let M = sup f (E) and m = inf f (E). We have m, M ∈ R since f is bounded. For n ∈ N, M − 1/n is not an upper
bound of f (E) and m + 1/n is not a lower bound for f (E). Therefore there exist an ∈ E such that
M − 1/n < f (an) ≤ M and there exist bn ∈ E such that m ≤ f (bn) < m + 1/n. Since E is bounded, then the
sequences {an} and {bn} have convergent subsequences. Let a∗ = lim

k→∞
ank and b∗ = lim

k→∞
bnk . The limits

a∗ and b∗ are in E (E closed). The continuity of f at a∗ and b∗ imply that for any ϵ > 0 and for k ∈ N large
enough we have

M −
1

nk
− ϵ < f (ank ) − ϵ < f (a∗) ≤ M and m ≤ f (b∗) < f (bnk ) + ϵ < m +

1

nkn
+ ϵ

This implies that f (a∗) = M is the maximum and f (b∗) = m is the minimum value of f on E .



Intermediate Value Theorem

Theorem
Let [a, b] be a closed and bounded interval and let f : [a, b] −→ R be a continuous
function. If r ∈ R is between f (a) and f (b), then there exists x∗ ∈ (a, b) such that
f (x∗) = r .

Proof.
Suppose that f (a) < f (b) so that f (a) < r < f (b). Define sequences {an} and {bn}, contained in the interval
[a, b], inductively as follows: Set a1 = a, b1 = b. Let m1 = (a1 + b1)/2 be the midpoint. Define a2 = a1 and
b2 = m1 if r is between f (a1) and f (m1), otherwise define a2 = m1 and b2 = b1. Suppose that a1, · · · , an and
b1, · · · , bn are defined. Let mn = (an + bn)/2. Set an+1 = an and bn+1 = mn if r is between f (an) and f (mn)
otherwise set an+1 = mn and bn+1 = bn . We have then a sequence of nested intervals

· · · ⊂ [an+1, bn+1] ⊂ [an, bn ] ⊂ · · · ⊂ [a1, b1]

such that bn+1 − an+1 = (bn − an)/2 and f (an) ≤ r ≤ f (bn). It follows from the Nested Set Theorem that the

intersection of these intervals is nonempty. Let x∗ ∈
∞⋂
j=1

[aj , bj ]. We have x∗ − aj ≤ bj − aj =
b − a

2j−1
. Therefore

aj −→ x∗. Similarly bj −→ x∗. It follows from the continuity of f that lim
j→∞

f (aj ) = f (x∗) = lim
j→∞

f (bj ). Since

(by construction) f (aj ) ≤ r ≤ f (bj ) for all j , then r = f (x∗).



Uniform Continuity

A function f : E −→ R is said to be uniformly continuous on E if for every ϵ > 0 there
exists δ > 0 such that |f (y)− f (x)| < ϵ for every x , y ∈ E such that |y − x | < δ.

Theorem
Let E ⊂ R be closed and bounded and f : E −→ R be a continuous function. Then f
is uniformly continuous on E.

Proof.
Let ϵ > 0, we need to find δ > 0 such that |f (y) − f (x)| < ϵ whenever x, y ∈ E satisfy |y − x| < δ.
Since f is continuous, then for every a ∈ E , there exists δa > 0 such that |f (x) − f (a)| < ϵ/2 for every x ∈ E

satisfying |x − a| < δa . For every a ∈ E , define the interval Ia = (a −
δa

2
, a +

δa

2
). The family {Ia}a∈E is then

an open cover of the set E . Since E is closed and bounded, then it follows from the Heine Borel Theorem that E has
a finite subcover. That is there exist a1, · · · , an ∈ E such that E ⊂ Ia1 ∪ · · · ∪ Ian

Let δ =
1

2
min(δa1 , · · · , δan ). Let x, y ∈ E such that |y − x| < δ. Since x ∈ E , then there exists

i ∈ {1, · · · , n} such that x ∈ Iai (i.e. |x − ai | <
δai
2

). We have also

|y − ai | = |y − x + x − ai | ≤ |y − x| + |x − ai | < δ +
δai
2

≤ δai .

It follows then from the definition of δai that |f (x) − f (ai )| < ϵ/2 and |f (y) − f (ai )| < ϵ/2. Therefore

|f (y) − f (x)| ≤ |f (y) − f (ai )| + |f (x) − f (ai )| < ϵ



Monotone Functions

A function f : E −→ R is said to be increasing (respectively, decreasing) on E if
f (x) ≤ f (y) (respectively f (x) ≥ f (y)) for all x , y ∈ E with x ≤ y . The function f is said
to be monotone on E if it is either an increasing function on E or a decreasing function
on E .

Proposition
Let I ⊂ R be an open interval, x0 ∈ I, and f : I −→ R a monotone function.

1. There exists M ∈ R such that for every decreasing sequence {xn} in I with
xn > x0, and converging to x0, lim

n→∞
f (xn) = M, M is denoted by f (x+

0 );

2. There exists m ∈ R such that for every increasing sequence {xn} in I, with
xn < x0, and converging to x0, lim

n→∞
f (xn) = m, m is denoted by f (x−

0 ).

3. f is continuous at x0 if and only if f (x−
0 ) = f (x0) = f (x+

0 ).

▶ When f is as in the proposition and fails to be continuous at x0, then f (x0) is the
only value of f (I) that is between f (x+

0 ) and f (x−
0 ) and f said to have a jump

discontinuity at x0.
▶ If I ⊂ R is an interval and f : I −→ R is monotone and continuous, then f (I) is an

interval. (This follows from the proposition and the Intermediate Value Theorem).



Proof.
We prove part (1) when f is increasing and leave the rest as an exercise. Let {xn} be a decreasing sequence in I
with limit x0 and xn > x0. Then the sequence {f (xn)} is decreasing and bounded f (x1) ≥ f (xn) ≥ f (x0) (f
increasing). Therefore {f (xn)} converges (monotone convergence theorem for sequences) to a number
M ≥ f (x0).
Now we need to verify that M is independent on the sequence {xn}. Let {x′

n} be another decreasing sequence in I
with limit x0 and x′

n > x0 and such that xk ̸= x′
k for infinitely many natural numbers k . The previous argument

shows that there exists M′ ≥ f (x0) such that {f (x′
n)} converges to M′. We need to show that M = M′. For this we

construct a new sequence {x′′
n } as follows: Define x′′

1 = x1. Let n1 be the smallest integer such that x′
n1

< x′′
1 ,

define x′′
2 = x′

n1
. By induction, suppose x′′

j is defined for j = 1, · · · , k . If k = 2p + 1 is odd, let nk be the

smallest integer such that x′
nk

< x′′
k , and define x′′

k+1 = x′
nk

; If k = 2p is even, let nk be the smallest integer such

that xnk < x′′
k , and define x′′

k+1 = xnk . We have defined a decreasing sequence {x′′
n } with limit x0 such that

{x′′
2j+1} is a subsequence of {xn} and {x′′

2j } is a subsequence of {x′
n}. Since all these sequence converge and

lim
j→∞

f (x′′
2j+1) = M and lim

j→∞
f (x′′

2j ) = M′, then M = M′.


