Real Analysis MAA 6616
Lecture 4
Continuous Functions

Let $E \subset \mathbb{R}$. A function $f: E \longrightarrow \mathbb{R}$ is said to be continuous at a point $a \in E$ if for every $\epsilon>0$ there exists $\delta>0$ such that $|f(x)-f(a)|<\epsilon$ for all $x \in E$ such that $|x-a|<\delta$. f is continuous on E if it is continuous at all points of E. The function f is said to be Lipschitz on E if there exists a constant $L \geq 0$ (called Lipschitz constant) such that

$$
|f(y)-f(x)| \leq L|y-x| \quad \text { for all } x, y \in E
$$

- Note that if $f: E \longrightarrow \mathbb{R}$ is Lipschitz, then it is continuous on E. Indeed, if L is the Lipschitz constant of f, then for $a \in E$ and $\epsilon>0$, let $\delta=\epsilon / L$. For $x \in E$ such that $|x-a|<\delta$, we have $|f(x)-f(a)| \leq L|x-a|<L \delta=\epsilon$.
- A continuous function is not necessarily Lipschitz. For example $f(x)=\sqrt{x}$ is continuous on $[0,1]$ but it is not Lipschitz. If it were Lipschitz with constant L, then we would have $|\sqrt{y}-\sqrt{x}| \leq L|y-x|$ for all $x, y \in[0,1]$. This implies $1 \leq L(\sqrt{y}+\sqrt{x})$ for all $x, y \in[0,1]$ (with $x \neq y)$. A contradiction.

Proposition

A function $f: E \longrightarrow \mathbb{R}$ is continuous at $a \in E$ if and only if for every sequence $\left\{x_{n}\right\} \subset E$ such that $\lim _{n \rightarrow \infty} x_{n}=a$, we have $\lim _{n \rightarrow \infty} f\left(x_{n}\right)=f(a)$.

Proof.

$" \Longrightarrow$ " Suppose that f is continuous at $a \in \mathbb{R}$ and $\left\{x_{n}\right\} \subset E$ converges to a. Let $\epsilon>0$. It follows from the continuity of f at a that there exists $\delta>0$ such that $|f(y)-f(a)|<\epsilon$ for all $y \in E$ such that $|y-a|<\delta$. It follows from the convergence of $\left\{x_{n}\right\}$ that for given $\delta>0$, there is $N \in \mathbb{N}$ such that $\left|x_{n}-a\right|<\delta$ for all $n>N$. Therefore $\left|f\left(x_{n}\right)-f(a)\right|<\epsilon$ for all $n>N$.
$" \Longleftarrow "$ Left as an exercise.

Proposition

A function $f: E \longrightarrow \mathbb{R}$ is continuous on E if and only if for every open set $U \subset \mathbb{R}$ there is an open set $V \subset \mathbb{R}$ such that $f^{-1}(U)=E \cap V$.

Proof.

$" \Longrightarrow "$ Suppose f is continuous on E. Let $U \subset \mathbb{R}$ be open and let $a \in f^{-1}(U)$. Since $f(a) \in U$ and U is open, then for $\epsilon>0$ (small enough), we have $(f(a)-\epsilon, f(a)+\epsilon) \subset U$ and the continuity of f at a implies the existence of $\delta_{a}>0$ such that for any $x \in E$ with $|x-a|<\delta_{a}$, we have $|f(x)-f(a)|<\epsilon$. Hence

$$
f\left(\left(a-\delta_{a}, a+\delta_{a}\right) \cap E\right) \subset(f(a)-\epsilon, f(a)+\epsilon) \subset U .
$$

Define $V=\bigcup_{a \in f^{-1}(U)}\left(a-\delta_{a}, a+\delta_{a}\right) . V$ is an open set (union of open intervals) and by construction we have $f^{-1}(U) \subset E \cap V$.
" \Longleftarrow " Suppose that for every open set $U \subset \mathbb{R}$ there exists an open set $V \subset \mathbb{R}$ such that $f^{-1}(U)=E \cap V$. We need to show that f is continuous on E. Let $a \in E$, let $\epsilon>0$, and let $U=(f(a)-\epsilon, f(a)+\epsilon)$. Since U is open, then there exists an open set V such that

$$
\begin{equation*}
f^{-1}((f(a)-\epsilon, f(a)+\epsilon)=E \cap V . \tag{*}
\end{equation*}
$$

Since $a \in V$ and V is open, then there exists $\delta>0$ such that ($a-\delta, a+\delta$) $\subset V$. It follows from (*) that for $x \in E$ such that $|x-a|<\delta$, we have $|f(x)-f(a)|<\epsilon$. Therefore f is continuous at a.

Extreme Value Theorem

A function f is said to have a maximum value (respectively minimum value) on a set S if there exist $s^{*} \in S$ such that $f(x) \leq f\left(s^{*}\right)$ (respectively $f(x) \geq f\left(s^{*}\right)$) for all $x \in S$.
A function f is said to be bounded on a set S if the image $f(S)$ is a bounded set. Equivalently, if there exists $M \geq$ such that $\mid f(s \mid \leq M$ for all $s \in S$.

Theorem

Let $E \subset \mathbb{R}$ be closed and bounded and $f: E \longrightarrow \mathbb{R}$ be continuous. Then f has a maximum and a minimum values on E.

Proof.

We first prove that f is bounded. By contradiction, suppose that for every $n \in \mathbb{N}$ there is $x_{n} \in E$ such that $\left|f\left(x_{n}\right)\right|>n$. Since E is closed and bounded, then the sequence $\left\{x_{n}\right\}$ is bounded so has a convergent subsequence $\left\{x_{n_{k}}\right\}$. Let $x^{*}=\lim _{k \rightarrow \infty} x_{n_{k}}$. Then $x^{*} \in E$ (since E is closed and $\left\{x_{n_{k}}\right\} \subset E$.) The function f is continuous at x^{*}. Then for $\epsilon=1$ there exists $\delta>0$ such that for every $y \in E$ with $\left|y-x^{*}\right|<\delta$ we have $\left|f(y)-f\left(x^{*}\right)\right|<1$ and so $|f(y)| \leq 1+\left|f\left(x^{*}\right)\right|$. In particular there exists $N \in \mathbb{N}$ such that for $k>N$ we have $\left|x_{n_{k}}-x^{*}\right|<\delta$ and so $\mid f\left(x_{n_{k}}\left|\leq 1+\left|f\left(x^{*}\right)\right|\right.\right.$. This is a contradiction since $| f\left(x_{n_{k}}\right) \mid>n_{k}$ and n_{k} is a strictly increasing sequence. The function f is therefore bounded.
Let $M=\sup f(E)$ and $m=\inf f(E)$. We have $m, M \in \mathbb{R}$ since f is bounded. For $n \in \mathbb{N}, M-1 / n$ is not an upper bound of $f(E)$ and $m+1 / n$ is not a lower bound for $f(E)$. Therefore there exist $a_{n} \in E$ such that $M-1 / n<f\left(a_{n}\right) \leq M$ and there exist $b_{n} \in E$ such that $m \leq f\left(b_{n}\right)<m+1 / n$. Since E is bounded, then the sequences $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ have convergent subsequences. Let $a^{*}=\lim _{k \rightarrow \infty} a_{n_{k}}$ and $b_{*}=\lim _{k \rightarrow \infty} b_{n_{k}}$. The limits a^{*} and b_{*} are in E (E closed). The continuity of f at a^{*} and b_{*} imply that for any $\epsilon>0$ and for $k \in \mathbb{N}$ large enough we have

$$
M-\frac{1}{n_{k}}-\epsilon<f\left(a_{n_{k}}\right)-\epsilon<f\left(a^{*}\right) \leq M \text { and } m \leq f\left(b_{*}\right)<f\left(b_{n_{k}}\right)+\epsilon<m+\frac{1}{n_{k_{n}}}+\epsilon
$$

This implies that $f\left(a^{*}\right)=M$ is the maximum and $f\left(b_{*}\right)=m$ is the minimum value of f on E.

Theorem

Let $[a, b]$ be a closed and bounded interval and let $f:[a, b] \longrightarrow \mathbb{R}$ be a continuous function. If $r \in \mathbb{R}$ is between $f(a)$ and $f(b)$, then there exists $x^{*} \in(a, b)$ such that $f\left(x^{*}\right)=r$.

Proof.

Suppose that $f(a)<f(b)$ so that $f(a)<r<f(b)$. Define sequences $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$, contained in the interval $[a, b]$, inductively as follows: Set $a_{1}=a, b_{1}=b$. Let $m_{1}=\left(a_{1}+b_{1}\right) / 2$ be the midpoint. Define $a_{2}=a_{1}$ and $b_{2}=m_{1}$ if r is between $f\left(a_{1}\right)$ and $f\left(m_{1}\right)$, otherwise define $a_{2}=m_{1}$ and $b_{2}=b_{1}$. Suppose that a_{1}, \cdots, a_{n} and b_{1}, \cdots, b_{n} are defined. Let $m_{n}=\left(a_{n}+b_{n}\right) / 2$. Set $a_{n+1}=a_{n}$ and $b_{n+1}=m_{n}$ if r is between $f\left(a_{n}\right)$ and $f\left(m_{n}\right)$ otherwise set $a_{n+1}=m_{n}$ and $b_{n+1}=b_{n}$. We have then a sequence of nested intervals

$$
\cdots \subset\left[a_{n+1}, b_{n+1}\right] \subset\left[a_{n}, b_{n}\right] \subset \cdots \subset\left[a_{1}, b_{1}\right]
$$

such that $b_{n+1}-a_{n+1}=\left(b_{n}-a_{n}\right) / 2$ and $f\left(a_{n}\right) \leq r \leq f\left(b_{n}\right)$. It follows from the Nested Set Theorem that the intersection of these intervals is nonempty. Let $x^{*} \in \bigcap_{j=1}^{\infty}\left[a_{j}, b_{j}\right]$. We have $x^{*}-a_{j} \leq b_{j}-a_{j}=\frac{b-a}{2^{j-1}}$. Therefore $a_{j} \longrightarrow x^{*}$. Similarly $b_{j} \longrightarrow x^{*}$. It follows from the continuity of f that $\lim _{j \rightarrow \infty} f\left(a_{j}\right)=f\left(x^{*}\right)=\lim _{j \rightarrow \infty} f\left(b_{j}\right)$. Since (by construction) $f\left(a_{j}\right) \leq r \leq f\left(b_{j}\right)$ for all j, then $r=f\left(x^{*}\right)$.

Uniform Continuity

A function $f: E \longrightarrow \mathbb{R}$ is said to be uniformly continuous on E if for every $\epsilon>0$ there exists $\delta>0$ such that $|f(y)-f(x)|<\epsilon$ for every $x, y \in E$ such that $|y-x|<\delta$.

Theorem

Let $E \subset \mathbb{R}$ be closed and bounded and $f: E \longrightarrow \mathbb{R}$ be a continuous function. Then f is uniformly continuous on E.

Proof.

Let $\epsilon>0$, we need to find $\delta>0$ such that $|f(y)-f(x)|<\epsilon$ whenever $x, y \in E$ satisfy $|y-x|<\delta$.
Since f is continuous, then for every $a \in E$, there exists $\delta_{a}>0$ such that $|f(x)-f(a)|<\epsilon / 2$ for every $x \in E$ satisfying $|x-a|<\delta_{a}$. For every $a \in E$, define the interval $I_{a}=\left(a-\frac{\delta_{a}}{2}, a+\frac{\delta_{a}}{2}\right)$. The family $\left\{l_{a}\right\}_{a \in E}$ is then an open cover of the set E. Since E is closed and bounded, then it follows from the Heine Borel Theorem that E has a finite subcover. That is there exist $a_{1}, \cdots, a_{n} \in E$ such that $E \subset I_{a_{1}} \cup \cdots \cup I_{a_{n}}$
Let $\delta=\frac{1}{2} \min \left(\delta a_{a_{1}}, \cdots, \delta a_{a_{n}}\right)$. Let $x, y \in E$ such that $|y-x|<\delta$. Since $x \in E$, then there exists
$i \in\{1, \cdots, n\}$ such that $x \in I_{a_{i}}$ (i.e. $\left|x-a_{i}\right|<\frac{\delta a_{i}}{2}$). We have also

$$
\left|y-a_{i}\right|=\left|y-x+x-a_{i}\right| \leq|y-x|+\left|x-a_{i}\right|<\delta+\frac{\delta a_{i}}{2} \leq \delta a_{i}
$$

It follows then from the definition of $\delta_{a_{i}}$ that $\left|f(x)-f\left(a_{i}\right)\right|<\epsilon / 2$ and $\left|f(y)-f\left(a_{i}\right)\right|<\epsilon / 2$. Therefore

$$
|f(y)-f(x)| \leq\left|f(y)-f\left(a_{i}\right)\right|+\left|f(x)-f\left(a_{i}\right)\right|<\epsilon
$$

A function $f: E \longrightarrow \mathbb{R}$ is said to be increasing (respectively, decreasing) on E if $f(x) \leq f(y)$ (respectively $f(x) \geq f(y)$) for all $x, y \in E$ with $x \leq y$. The function f is said to be monotone on E if it is either an increasing function on E or a decreasing function on E.

Proposition

Let $I \subset \mathbb{R}$ be an open interval, $x_{0} \in I$, and $f: I \longrightarrow \mathbb{R}$ a monotone function.

1. There exists $M \in \mathbb{R}$ such that for every decreasing sequence $\left\{x_{n}\right\}$ in I with $x_{n}>x_{0}$, and converging to $x_{0}, \lim _{n \rightarrow \infty} f\left(x_{n}\right)=M, M$ is denoted by $f\left(x_{0}^{+}\right)$;
2. There exists $m \in \mathbb{R}$ such that for every increasing sequence $\left\{x_{n}\right\}$ in I, with $x_{n}<x_{0}$, and converging to $x_{0}, \lim _{n \rightarrow \infty} f\left(x_{n}\right)=m, m$ is denoted by $f\left(x_{0}^{-}\right)$.
3. f is continuous at x_{0} if and only if $f\left(x_{0}^{-}\right)=f\left(x_{0}\right)=f\left(x_{0}^{+}\right)$.

- When f is as in the proposition and fails to be continuous at x_{0}, then $f\left(x_{0}\right)$ is the only value of $f(I)$ that is between $f\left(x_{0}^{+}\right)$and $f\left(x_{0}^{-}\right)$and f said to have a jump discontinuity at x_{0}.
- If $I \subset \mathbb{R}$ is an interval and $f: I \longrightarrow \mathbb{R}$ is monotone and continuous, then $f(I)$ is an interval. (This follows from the proposition and the Intermediate Value Theorem).

Proof.

We prove part (1) when f is increasing and leave the rest as an exercise. Let $\left\{x_{n}\right\}$ be a decreasing sequence in $/$ with limit x_{0} and $x_{n}>x_{0}$. Then the sequence $\left\{f\left(x_{n}\right)\right\}$ is decreasing and bounded $f\left(x_{1}\right) \geq f\left(x_{n}\right) \geq f\left(x_{0}\right)(f$ increasing). Therefore $\left\{f\left(x_{n}\right)\right\}$ converges (monotone convergence theorem for sequences) to a number $M \geq f\left(x_{0}\right)$.
Now we need to verify that M is independent on the sequence $\left\{x_{n}\right\}$. Let $\left\{x_{n}^{\prime}\right\}$ be another decreasing sequence in I with limit x_{0} and $x_{n}^{\prime}>x_{0}$ and such that $x_{k} \neq x_{k}^{\prime}$ for infinitely many natural numbers k. The previous argument shows that there exists $M^{\prime} \geq f\left(x_{0}\right)$ such that $\left\{f\left(x_{n}^{\prime}\right)\right\}$ converges to M^{\prime}. We need to show that $M=M^{\prime}$. For this we construct a new sequence $\left\{x_{n}^{\prime \prime}\right\}$ as follows: Define $x_{1}^{\prime \prime}=x_{1}$. Let n_{1} be the smallest integer such that $x_{n_{1}}^{\prime}<x_{1}^{\prime \prime}$, define $x_{2}^{\prime \prime}=x_{n_{1}}^{\prime}$. By induction, suppose $x_{j}^{\prime \prime}$ is defined for $j=1, \cdots, k$. If $k=2 p+1$ is odd, let n_{k} be the smallest integer such that $x_{n_{k}}^{\prime}<x_{k}^{\prime \prime}$, and define $x_{k+1}^{\prime \prime}=x_{n_{k}}^{\prime}$; If $k=2 p$ is even, let n_{k} be the smallest integer such that $x_{n_{k}}<x_{k}^{\prime \prime}$, and define $x_{k+1}^{\prime \prime}=x_{n_{k}}$. We have defined a decreasing sequence $\left\{x_{n}^{\prime \prime}\right\}$ with limit x_{0} such that $\left\{x_{2 j+1}^{\prime \prime}\right\}$ is a subsequence of $\left\{x_{n}\right\}$ and $\left\{x_{2 j}^{\prime \prime}\right\}$ is a subsequence of $\left\{x_{n}^{\prime}\right\}$. Since all these sequence converge and $\lim _{j \rightarrow \infty} f\left(x_{2 j+1}^{\prime \prime}\right)=M$ and $\lim _{j \rightarrow \infty} f\left(x_{2 j}^{\prime \prime}\right)=M^{\prime}$, then $M=M^{\prime}$.

