Real Analysis MAA 6616
Lecture 4
Continuous Functions



Let E C R. Afunction f: E — R is said to be continuous at a point a € E if for every
e > 0 there exists 6 > 0 such that |f(x) — f(a)| < e for all x € E such that |x — a| < 4.
f is continuous on E if it is continuous at all points of E. The function f is said to be
Lipschitz on E if there exists a constant L > 0 (called Lipschitz constant) such that

[f(y) —f(x)| < L|ly —x| foralx,y€E.

> Note thatif f : E — R s Lipschitz, then it is continuous on E. Indeed, if L is the
Lipschitz constant of f, thenfora € E and e > 0, let § = ¢/L. For x € E such that
|x —al < §,wehave |f(x) —f(a)|] < L|x—a <L§=e

> A continuous function is not necessarily Lipschitz. For example f(x) = v/x is
continuous on [0, 1] but it is not Lipschitz. If it were Lipschitz with constant L,
then we would have |\/¥ — v/x| < L|y — x| for all x, y € [0, 1]. This implies
1 < L(y/y +v/x)forall x,y € [0, 1] (with x # y). A contradiction.

Proposition
A function f : E — R is continuous at a € E if and only if for every sequence
{xn} C E such that Jim_Xn = a, we have lim f(xn) = f(a).

oo (oo}

Proof.

"=—" Suppose that f is continuous at a € R and {xp} C E converges to a. Let e > 0. It follows from the continuity
of f at athat there exists § > 0 such that |f(y) — f(a)| < eforally € E suchthat |y — a| < . It follows from the
convergence of {xp} that for given § > 0, there is N € N such that |x, — a| < & for all n > N. Therefore

|f(xn) — f(a)| < eforalln > N.

"<=" Left as an exercise. O



Proposition

A function f : E — R is continuous on E if and only if for every open set U C R there
is an open set V C R such that f~'(U) = EN V.

Proof.

"=>" Suppose f is continuous on E. Let U C R be open and let a € =1 (V). Since f(a) € U and U is open, then
for e > 0 (small enough), we have (f(a) — €, f(a) + €) C U and the continuity of f at aimplies the existence of
S84 > O such that for any x € E with |x — a| < 84, we have |f(x) — f(a)| < e. Hence

f((a—éa, a+8a)NE) C (f(a) — ¢, fla)+€) C U.

Define V = U (a— 8a, a+ 83). Vis an open set (union of open intervals) and by construction we have
acf=1(v)

~Y)cEnv.

"<=" Suppose that for every open set U C R there exists an open set V C R such that 1 (U)=EnV.We

need to show that f is continuous on E. Leta € E, lete > 0,andlet U = (f(a) — €, f(a) + €). Since U is open,
then there exists an open set V such that

1 (f(a) — ¢, f(@)+¢€) = ENV. (%)

Since a € V and V is open, then there exists § > 0 such that (a — §, a+ &) C V. It follows from (x) that for
x € Esuchthat [x — a| < &, we have |f(x) — f(a)| < e. Therefore f is continuous at a. O



Extreme Value Theorem

A function f is said to have a maximum value (respectively minimum value) on a set S if there exist s* € S such
that f(x) < f(s™*) (respectively f(x) > f(s*))forallx € S.

A function f is said to be bounded on a set S if the image f(S) is a bounded set. Equivalently, if there exists M >
such that |f(s| < Mforalls € S.

Theorem
Let E C R be closed and bounded and f : E — R be continuous. Then f has a
maximum and a minimum values on E.

Proof.

We first prove that f is bounded. By contradiction, suppose that for every n € N there is x, € E such that

|f(xn)| > n. Since E is closed and bounded, then the sequence {xp} is bounded so has a convergent

subsequence {X"k }. Letx* = kim Xny - Then x* € E (since E is closed and {X”k} C E.) The function f is
oo

continuous at x*. Then for e = 1 there exists § > 0 such that for every y € E with |y — x*| < § we have

|f(y) — f(x*)| < 1andso|f(y)| < 1+ |f(x*)|. In particular there exists N € N such that for k > N we have

|X”k - x*| < & and so ‘f(xnk ‘ <1+ }f(x*)}. This is a contradiction since |f(xnk)‘ > ny and ny is a strictly

increasing sequence. The function f is therefore bounded.

Let M = sup f(E) and m = inf f(E). We have m, M € R since f is bounded. For n € N, M — 1/n’is not an upper

bound of f(E) and m + 1/nis not a lower bound for f(E). Therefore there exist a, € E such that

M —1/n < f(an) < Mand there exist by € E such that m < f(bp) < m+ 1/n. Since E is bounded, then the

sequences {an} and {bn} have convergent subsequences. Let a* = « lim an and by, = « lim b”k' The limits
— 00 — 00

a* and b, are in E (E closed). The continuity of f at a* and b, imply that for any ¢ > 0 and for k € N large
enough we have

1 1
M— — —¢<flan)—c<fa")<Mand m< f(by) < flbn,) +e<mt+ — +c

Nk Ny,

This implies that f(a*) = M is the maximum and f(b,) = m is the minimum value of f on E. O



Intermediate Value Theorem

Theorem

Let [a, b] be a closed and bounded interval and let f : [a, b] — R be a continuous
function. If r € R is between f(a) and f(b), then there exists x* € (a, b) such that
f(x*)=r.

Proof.

Suppose that f(a) < f(b) so that f(a) < r < f(b). Define sequences {an} and {bp}, contained in the interval
[a, b], inductively as follows: Set a; = a, by = b. Let my = (ay + by)/2 be the midpoint. Define a, = a; and
b, = my if r is between f(ay) and f(my), otherwise define a, = my and by = by. Suppose that a4, - - - , ap and
by, - - -, bp are defined. Let mp = (an + bn)/2. Set ap1 = ap and bpy1 = my if r is between f(an) and f(mp)
otherwise set a,,1 = mp and by, 1 = bn. We have then a sequence of nested intervals

<+ C [ans1, bpy1] Clan, bp] C -+ C [aq, byl

such that by 1 — apy1 = (bn — an)/2 and f(an) < r < f(bp). It follows from the Nested Set Theorem that the
oo —

a
T Therefore

intersection of these intervals is nonempty. Let x* € ﬂ[aj, bj]. We have x* - a < bj—a=
j=1

aj — x™.Similarly bj — x™. It follows from the continuity of f that lim f(g;) = f(x™) = (b;). Since
J— oo

lim f
J— oo
(by construction) f(a;) < r < f(by) for all j, then r = f(x*). O



Uniform Continuity

A function f: E — R is said to be uniformly continuous on E if for every e > 0 there
exists § > 0 such that |f(y) — f(x)| < e for every x, y € E such that |y — x| < 4.

Theorem
Let E C R be closed and bounded and f : E — R be a continuous function. Then f
is uniformly continuous on E.

Proof.

Lete > 0, we need to find § > 0 such that |f(y) — f(x)| < e whenever x, y € E satisfy |y — x| < 6.
Since f is continuous, then for every a € E, there exists §; > 0 such that |f(x) — f(a)| < e/2forevery x € E
8 )
satisfying |[x — a| < &a. For every a € E, define the interval I = (a — Ea’ a+ Ea)' The family {/a} 2c £ is then

an open cover of the set E. Since E is closed and bounded, then it follows from the Heine Borel Theorem that E has

a finite subcover. That is there exist a1, - - - , an € E such that E C I[,,1 U---Ulg,
1
Lets = > min(6a1 ,-++ ,0ay) Letx,y € Esuchthat |y — x| < 4. Since x € E, then there exists
ba;
i€ {1,---,nysuchthatx € Iy (ie. x — a| < g). We have also

Sa:
ly—al=ly—x+x—a| < |y—xl+Ix—al < 5+?‘ < 8a; -
It follows then from the definition of 54, that |f(x) — f(a;)| < €/2and |f(y) — f(a;)| < €/2. Therefore

[1(y) = fO)1 < {f(y) = f(a)] + [f(x) — f(a)] < e



Monotone Functions

A function f: E — Ris said to be increasing (respectively, decreasing) on E if
f(x) < f(y) (respectively f(x) > f(y)) for all x, y € E with x < y. The function f is said
to be monotone on E if it is either an increasing function on E or a decreasing function

onE.

Proposition

Let ! C R be an open interval, xy € I, and f : | — R a monotone function.

1.

There exists M € R such that for every decreasing sequence {xn} in | with
Xn > Xo. and converging to xo, lim_f(xn) = M, M is denoted by f(xg):

There exists m € R such that for every increasing sequence {xn} in I, with
Xn < Xo, and converging to X, nim f(xn) = m, m is denoted by f(x; ).
oo

f is continuous at xg if and only if f(x;") = f(xo) = f(xg ).

When f is as in the proposition and fails to be continuous at xg, then f(xp) is the
only value of f(/) that is between f(x0+) and f(x; ) and f said to have a jump
discontinuity at xg.

If /C Risanintervaland f : | — R is monotone and continuous, then f(/) is an
interval. (This follows from the proposition and the Intermediate Value Theorem).



Proof.

We prove part (1) when f is increasing and leave the rest as an exercise. Let {x,} be a decreasing sequence in /
with limit xp and x, > Xg. Then the sequence {f(xn)} is decreasing and bounded f(x1) > f(xn) > f(xg) (f
increasing). Therefore {f(xn)} converges (monotone convergence theorem for sequences) to a number

M > f(xg).

Now we need to verify that M is independent on the sequence {xp}. Let {x,ﬂ} be another decreasing sequence in /
with limit x5 and x,Q > Xp and such that x # x,: for infinitely many natural numbers k. The previous argument
shows that there exists M’ > f(xo) such that {f(x;,)} converges to M’. We need to show that M = M’. For this we
construct a new sequence {x,’} as follows: Define x;’ = x;. Let ny be the smallest integer such that x,’,1 < x,
define x5’ = xg1 . By induction, suppose x,-" is defined forj =1, - .- , k. If k = 2p + 1 is odd, let n be the

=
that xp, < x;’, and define X,Q’H = Xp,,- We have defined a decreasing sequence {x}/'} with limit xy such that
{XZ/;H } is a subsequence of {x,} and {xz’]{} is a subsequence of {x;,}. Since all these sequence converge and

1" . 1 ! /
‘.4)=Mand lim f(x3;) =M, thenM =M.
(%2j41) an ; im f(x) en

smallest integer such that x,',K < x;/, and define x;; x’k; If k = 2p s even, let ny be the smallest integer such

lim f
J— oo

O



