Real Analysis MAA 6616 Lecture 4 Continuous Functions Let $E \subset \mathbb{R}$. A function $f : E \longrightarrow \mathbb{R}$ is said to be continuous at a point $a \in E$ if for every $\epsilon > 0$ there exists $\delta > 0$ such that $|f(x) - f(a)| < \epsilon$ for all $x \in E$ such that $|x - a| < \delta$. *f* is continuous on *E* if it is continuous at all points of *E*. The function *f* is said to be Lipschitz on *E* if there exists a constant $L \ge 0$ (called Lipschitz constant) such that

$$|f(y) - f(x)| \le L |y - x|$$
 for all $x, y \in E$.

- Note that if f : E → ℝ is Lipschitz, then it is continuous on E. Indeed, if L is the Lipschitz constant of f, then for a ∈ E and ε > 0, let δ = ε/L. For x ∈ E such that |x − a| < δ, we have |f(x) − f(a)| ≤ L |x − a| < Lδ = ε.</p>
- A continuous function is not necessarily Lipschitz. For example $f(x) = \sqrt{x}$ is continuous on [0, 1] but it is not Lipschitz. If it were Lipschitz with constant *L*, then we would have $|\sqrt{y} \sqrt{x}| \le L|y x|$ for all $x, y \in [0, 1]$. This implies $1 \le L(\sqrt{y} + \sqrt{x})$ for all $x, y \in [0, 1]$ (with $x \ne y$). A contradiction.

Proposition

A function $f : E \longrightarrow \mathbb{R}$ is continuous at $a \in E$ if and only if for every sequence $\{x_n\} \subset E$ such that $\lim_{n \to \infty} x_n = a$, we have $\lim_{n \to \infty} f(x_n) = f(a)$.

Proof.

" \Longrightarrow " Suppose that *f* is continuous at $a \in \mathbb{R}$ and $\{x_n\} \subset E$ converges to *a*. Let $\epsilon > 0$. It follows from the continuity of *f* at a that there exists $\delta > 0$ such that $|f(y) - f(a)| < \epsilon$ for all $y \in E$ such that $|y - a| < \delta$. It follows from the convergence of $\{x_n\}$ that for given $\delta > 0$, there is $N \in \mathbb{N}$ such that $|x_n - a| < \delta$ for all n > N. Therefore $|f(x_n) - f(a)| < \epsilon$ for all n > N.

"= Left as an exercise.

Proposition

A function $f : E \longrightarrow \mathbb{R}$ is continuous on E if and only if for every open set $U \subset \mathbb{R}$ there is an open set $V \subset \mathbb{R}$ such that $f^{-1}(U) = E \cap V$.

Proof.

" \Longrightarrow " Suppose *f* is continuous on *E*. Let $U \subset \mathbb{R}$ be open and let $a \in f^{-1}(U)$. Since $f(a) \in U$ and *U* is open, then for $\epsilon > 0$ (small enough), we have $(f(a) - \epsilon, f(a) + \epsilon) \subset U$ and the continuity of *f* at *a* implies the existence of $\delta_a > 0$ such that for any $x \in E$ with $|x - a| < \delta_a$, we have $|f(x) - f(a)| < \epsilon$. Hence

$$f((a - \delta_a, a + \delta_a) \cap E) \subset (f(a) - \epsilon, f(a) + \epsilon) \subset U.$$

Define $V = \bigcup_{a \in f^{-1}(U)} (a - \delta_a, a + \delta_a)$. *V* is an open set (union of open intervals) and by construction we have $f^{-1}(U) \subset E \cap V$.

" \leftarrow " Suppose that for every open set $U \subset \mathbb{R}$ there exists an open set $V \subset \mathbb{R}$ such that $f^{-1}(U) = E \cap V$. We need to show that f is continuous on E. Let $a \in E$, let $\epsilon > 0$, and let $U = (f(a) - \epsilon, f(a) + \epsilon)$. Since U is open, then there exists an open set V such that

$$f^{-1}\left(\left(f(a) - \epsilon, f(a) + \epsilon\right) = E \cap V. \right)$$
(*)

Since $a \in V$ and V is open, then there exists $\delta > 0$ such that $(a - \delta, a + \delta) \subset V$. It follows from (*) that for $x \in E$ such that $|x - a| < \delta$, we have $|f(x) - f(a)| < \epsilon$. Therefore f is continuous at a.

Extreme Value Theorem

A function f is said to have a maximum value (respectively minimum value) on a set S if there exist $s^* \in S$ such that $f(x) \leq f(s^*)$ (respectively $f(x) \geq f(s^*)$) for all $x \in S$.

A function *f* is said to be bounded on a set *S* if the image f(S) is a bounded set. Equivalently, if there exists $M \ge$ such that $|f(s)| \le M$ for all $s \in S$.

Theorem

Let $E \subset \mathbb{R}$ be closed and bounded and $f : E \longrightarrow \mathbb{R}$ be continuous. Then f has a maximum and a minimum values on E.

Proof.

We first prove that *f* is bounded. By contradiction, suppose that for every $n \in \mathbb{N}$ there is $x_n \in E$ such that $|f(x_n)| > n$. Since *E* is closed and bounded, then the sequence $\{x_n\}$ is bounded so has a convergent subsequence $\{x_n_k\}$. Let $x^* = \lim_{k \to \infty} x_{n_k}$. Then $x^* \in E$ (since *E* is closed and $\{x_{n_k}\} \subset E$.) The function *f* is continuous at x^* . Then re = 1 there exists $\delta > 0$ such that for every $y \in E$ with $|y - x^*| < \delta$ we have $|f(y) - f(x^*)| < 1$ and so $|f(y)| \leq 1 + |f(x^*)|$. In particular there exists $N \in \mathbb{N}$ such that for k > N we have $|x_{n_k} - x^*| < \delta$ and so $|f(x_{n_k}| \leq 1 + |f(x^*)|$. This is a contradiction since $|f(x_{n_k})| > n_k$ and n_k is a strictly increasing sequence. The function *f* is therefore bounded. Let $M = \sup f(E)$ and $m = \inf f(E)$. We have $m, M \in \mathbb{R}$ since *f* is bounded. For $n \in \mathbb{N}$, M - 1/n is not an upper bound of f(E). Therefore there exist $a_n \in E$ such that $M - 1/n \leq f(a_n) \leq M$ and there exist $b_n \in E$ such that $m \leq f(b_n) < m + 1/n$. Since *E* is bounded, then the sequences $\{a_n\}$ and $\{b_n\}$ have convergent subsequences. Let $a^* = \lim_{k \to \infty} a_{n_k}$ and $b_* = \lim_{k \to \infty} b_{n_k}$. The limits a^* and b_* are in E (E closed). The continuity of *f* at a^* and b_* imply that for any $\epsilon > 0$ and for $k \in \mathbb{N}$ large

$$M - \frac{1}{n_k} - \epsilon < f(a_{n_k}) - \epsilon < f(a^*) \le M \text{ and } m \le f(b_*) < f(b_{n_k}) + \epsilon < m + \frac{1}{n_{k_n}} + \epsilon$$

This implies that $f(a^*) = M$ is the maximum and $f(b_*) = m$ is the minimum value of f on E.

Theorem

Let [a, b] be a closed and bounded interval and let $f : [a, b] \longrightarrow \mathbb{R}$ be a continuous function. If $r \in \mathbb{R}$ is between f(a) and f(b), then there exists $x^* \in (a, b)$ such that $f(x^*) = r$.

Proof.

Suppose that f(a) < f(b) so that f(a) < r < f(b). Define sequences $\{a_n\}$ and $\{b_n\}$, contained in the interval [a, b], inductively as follows: Set $a_1 = a, b_1 = b$. Let $m_1 = (a_1 + b_1)/2$ be the midpoint. Define $a_2 = a_1$ and $b_2 = m_1$ if *r* is between $f(a_1)$ and $f(m_1)$, otherwise define $a_2 = m_1$ and $b_2 = b_1$. Suppose that a_1, \dots, a_n and b_1, \dots, b_n are defined. Let $m_n = (a_n + b_n)/2$. Set $a_{n+1} = a_n$ and $b_{n+1} = m_n$ if *r* is between $f(a_n)$ and $f(m_n)$ otherwise set $a_{n+1} = m_n$ and $b_{n+1} = b_n$. We have then a sequence of nested intervals

 $\cdots \subset [a_{n+1}, \ b_{n+1}] \subset [a_n, \ b_n] \subset \cdots \subset [a_1, \ b_1]$

such that $b_{n+1} - a_{n+1} = (b_n - a_n)/2$ and $f(a_n) \le r \le f(b_n)$. It follows from the Nested Set Theorem that the intersection of these intervals is nonempty. Let $x^* \in \bigcap_{j=1}^{\infty} [a_j, b_j]$. We have $x^* - a_j \le b_j - a_j = \frac{b-a}{2^{j-1}}$. Therefore $a_j \longrightarrow x^*$. Similarly $b_j \longrightarrow x^*$. It follows from the continuity of f that $\lim_{j \to \infty} f(a_j) = f(x^*) = \lim_{j \to \infty} f(b_j)$. Since (by construction) $f(a_i) \le r \le f(b_i)$ for all j, then $r = f(x^*)$.

Uniform Continuity

A function $f : E \longrightarrow \mathbb{R}$ is said to be uniformly continuous on E if for every $\epsilon > 0$ there exists $\delta > 0$ such that $|f(y) - f(x)| < \epsilon$ for every $x, y \in E$ such that $|y - x| < \delta$.

Theorem

Let $E \subset \mathbb{R}$ be closed and bounded and $f : E \longrightarrow \mathbb{R}$ be a continuous function. Then f is uniformly continuous on E.

Proof.

Let $\epsilon > 0$, we need to find $\delta > 0$ such that $|f(y) - f(x)| < \epsilon$ whenever $x, y \in E$ satisfy $|y - x| < \delta$. Since f is continuous, then for every $a \in E$, there exists $\delta_a > 0$ such that $|f(x) - f(a)| < \epsilon/2$ for every $x \in E$ satisfying $|x - a| < \delta_a$. For every $a \in E$, define the interval $I_a = (a - \frac{\delta_a}{2}, a + \frac{\delta_a}{2})$. The family $\{I_a\}_{a \in E}$ is then an open cover of the set E. Since E is closed and bounded, then it follows from the Heine Borel Theorem that E has a finite subcover. That is there exist $a_1, \dots, a_n \in E$ such that $E \subset I_{a_1} \cup \dots \cup I_{a_n}$. Let $\delta = \frac{1}{2} \min(\delta_{a_1}, \dots, \delta_{a_n})$. Let $x, y \in E$ such that $|y - x| < \delta$. Since $x \in E$, then there exists

 $i \in \{1, \cdots, n\}$ such that $x \in I_{a_i}$ (i.e. $|x - a_i| < \frac{\delta_{a_i}}{2}$). We have also

$$|y - a_i| = |y - x + x - a_i| \le |y - x| + |x - a_i| < \delta + \frac{\delta_{a_i}}{2} \le \delta_{a_i}.$$

It follows then from the definition of δ_{a_i} that $|f(x) - f(a_i)| < \epsilon/2$ and $|f(y) - f(a_i)| < \epsilon/2$. Therefore

$$|f(y) - f(x)| \le |f(y) - f(a_i)| + |f(x) - f(a_i)| < \epsilon$$

A function $f : E \longrightarrow \mathbb{R}$ is said to be increasing (respectively, decreasing) on *E* if $f(x) \le f(y)$ (respectively $f(x) \ge f(y)$) for all $x, y \in E$ with $x \le y$. The function *f* is said to be monotone on *E* if it is either an increasing function on *E* or a decreasing function on *E*.

Proposition

Let $I \subset \mathbb{R}$ be an open interval, $x_0 \in I$, and $f : I \longrightarrow \mathbb{R}$ a monotone function.

- 1. There exists $M \in \mathbb{R}$ such that for every decreasing sequence $\{x_n\}$ in I with $x_n > x_0$, and converging to x_0 , $\lim_{n \to \infty} f(x_n) = M$, M is denoted by $f(x_0^+)$;
- 2. There exists $m \in \mathbb{R}$ such that for every increasing sequence $\{x_n\}$ in *I*, with $x_n < x_0$, and converging to x_0 , $\lim_{n \to \infty} f(x_n) = m$, *m* is denoted by $f(x_0^-)$.
- 3. *f* is continuous at x_0 if and only if $f(x_0^-) = f(x_0) = f(x_0^+)$.
- When *f* is as in the proposition and fails to be continuous at x₀, then f(x₀) is the only value of f(*I*) that is between f(x₀⁺) and f(x₀[−]) and *f* said to have a jump discontinuity at x₀.
- If *I* ⊂ ℝ is an interval and *f* : *I* → ℝ is monotone and continuous, then *f*(*I*) is an interval. (This follows from the proposition and the Intermediate Value Theorem).

Proof.

We prove part (1) when *f* is increasing and leave the rest as an exercise. Let $\{x_n\}$ be a decreasing sequence in *I* with limit x_0 and $x_n > x_0$. Then the sequence $\{f(x_n)\}$ is decreasing and bounded $f(x_1) \ge f(x_n) \ge f(x_0)$ (*f* increasing). Therefore $\{f(x_n)\}$ converges (monotone convergence theorem for sequences) to a number $M \ge f(x_0)$. Now we need to verify that *M* is independent on the sequence $\{x_n\}$. Let $\{x'_n\}$ be another decreasing sequence in *I* with limit x_0 and $x'_n > x_0$. Then the sequence $\{x_n\}$. Let $\{x'_n\}$ be another decreasing sequence in *I* with limit x_0 and $x'_n > x_0$ and such that $x_k \ne x'_k$ for infinitely many natural numbers *k*. The previous argument shows that there exists $M' \ge f(x_0)$ such that $\{f(x'_n)\}$ converges to M'. We need to show that M = M'. For this we construct a new sequence $\{x''_n\}$ as follows: Define $x''_1 = x_1$. Let n_1 be the smallest integer such that $x'_{n_1} < x''_1$, define $x''_{2} = x'_{n_1}$. By induction, suppose x''_1 is defined for $j = 1, \dots, k$. If k = 2p + 1 is odd, let n_k be the smallest integer such that $x'_{n_k} < x''_k$, and define $x''_{k+1} = x'_{n_k}$; If k = 2p is even, let n_k be the smallest integer such that $x'_{n_k} < x''_k$, and define $x''_{k+1} = x'_{n_k}$; If k = 2p is even, let n_k be the smallest integer such that $x'_{n_k} < x''_k$ as a subsequence of $\{x'_n\}$ is a subsequence of $\{x'_n\}$. Since all these sequence converge and lime $f(x''_{2j+1}) = M$ and $\lim_{j \to \infty} f(x''_{2j}) = M'$, then M = M'.