Real Analysis MAA 6616
Lecture 5
Lebesgue Outer Measure



Let I C R be an interval. The length £(I) is defined to be £(I) = oo if I is unbounded and
£(I) = b — aif I has finite left endpoint @ and finite right endpoint b.
Let E C R be any set in R and let {/; }j"; | be a collection of bounded open intervals that cover

oo
the set E. Thatis E C U I;. We associate to such a cover Z £(I;) (which could be co). Define

j=1 j=1
the outer measure of E as

= inf ZZ[I ECGI,

The following properties follow directly from the definition.
> m*(0) =0
» The outer measure is monotone. That is, if E C F, then m* (E) < m* (F)

Proposition
If C C R is countable, then m* (C) = 0.
Proof.
€ e €
Suppose C = {x,}. Lete > 0. Foreachn, letl, = (xn T Xy + —— pYEs ) Then C C L_Jl Iy and £(I,) = o
fe =] fe o] € "=
Hence Z o1,) = Z o = e. Therefore m* (C) < e. Since € > 0 is arbitrary, we have m* (C) = 0. O

n=1 n=1



Proposition
Let I C R be an interval. Then m* (I) = £(I). In particular m* (R) = oo.

Proof.

® Case I = [a, b), closed and bounded. Lete > 0. Then! C (a — €, b + €) and it follows from the definition of outer

measure that m* (I) < (b + €) — (a — €) = £(I) + 2e. Since € > 0 is arbitrary, then m™ (I) < £(1I).

To prove the proposition in this case, we need to prove that m™* (I) > £(I). First suppose that / covered by finitely many open
n

and bounded interval I}, - - - , I,,. We are going to show that Z £(I;) > £(I). Sincea € I, then there exists

j=1
j1 € {1,--- ,n}suchthata € Il = (ay, by).1fb < by, then £(1) < Z(I/-l ) and we are done. If not, thena < b; < b,
sothatb € Iandthereisjp € {1,--- ,n}suchthathy € Ij, = (az, by). 1 b < by, then £(1) < £(Lj; ) + £(1j,)-1If

not, we can repeat this process which must end after at most & steps with k < n to get

k n
LIy < Do Am,) < e
j=1

p=1

Now if {I,,},?il is any countable collection of open and bounded sets that cover /, then it has a finite subcover {1, };:l for 1
(Heine-Borel). It follows then from the previous paragraph that

o < S < S

p=1 Jj=1

This shows that m™ (1) > £(I) and therefore m™ (I) = £(1) in this case.



Proof.

o Case I bounded interval. Let a and b be the left and right endpoints of 7. For € > 0 (small) let

B=fa+ S b—SJadh=[a— S, b+ S
=la+ -, b — =] an =la— -, -
! 2 2 2 2 2

Hence J; and J; are closed bounded intervals with £(J}) = £(I) — €, £(J2) = £(I) 4+ eandJ; C I C J,. It follows from
the first case (applied to J; and J,) and the monotinicity of the outer measure that

01 — e = ey) = m* () < m* (D) < m* () = €(r) = £(D) + €
Therefore m* (I) = £(I) since € > 0 is arbitrary.
® Case I unbounded interval. 1f1 = R, thenm™ (I) = co = £(I). Suppose I # R and it is unbounded above so that

£(I) = oo.Letc € I. Foreachn € N the closed and bounded interval I, = [c, ¢ + n] is contained in /. It follows from the
monotonocity of the outer measure that

m* (1) > m* (I,) =n foralln € N

Therefore m* (I) = oo = £(I). O



Forset E C Rand s € R, the translate of Eisthe set E+s={x =e+s: e € E}.
Note: Let / C R be an interval with endpoints a, b, then I + s is an interval with endpoints
a+s, b+sand 0(I + 5) = £(1).

Proposition

For every E C Rand s € R, we have m* (E + s) = m™ (E). The outer measure m* is
invariant under translations.

Proof.

The collection of open and bounded intervals {/; };’;1 covers E if and only the collection of open and bounded translate
intervals {/; + s} 22 covers the translate E + s. This implies m™ (E + s) = m* (E). O
Proposition

Let {E;}?2, be a countable collection of subsets of R. Then
o0
w (U5) < S . ¢

The outer measure m™ is subadditive.



Proof.
First note that if Z m™ (Ej) = oo, then (x) holds trivially. Suppose then Z m" (Ej) < oco.Lete > 0. It follows from

J
the definition of m™ that for each j, there is a countable collection of open and bounded intervals {I/,k }koil such that

oo
E c |Jfxand
k=1
oo

Do) < m" (E) + ; .
k=1

The collection of open and bounded intervals {/; ; } (j,k) ENx N is countable and

oo o0 oo
Us c U U

j=1 j=1 \k=1

Furthermore,

o [ oo
m | JE <> (1)
k=1

j= j=1

IN
8

1 (m* () + ;) = im* (B) + e

j=1

-
Il

And () follows since € > 0 is arbitrary. O



Measurable Sets

A set E C Ris said to be measurable if for every set S C R, the following equality holds:

m* (S) =m* (SNE)+m* (SNE°), (xx)

where E¢ = R\E is the R-complement of E.

| 4
| 4
| 4

() and R are measurable.

E is measurable if and only if E¢ is measurable.

If E is measurable and T C R is disjoint from E , then m* (EU T) = m* (E) + m* (T).
Indeed EUT = [(EUT)NE] U [(EUT)NE] and it follows from () and from
ENT = (that

m*(EUT)=m* ((EUT)NE)+m*((EUT)NE) =m*(E) +m*(T).

E is measurable if and only if for every set S C R, m* (§) > m* (SN E) + m* (SN E°).
This is a consequence of the definition of measurable set and the subadditivity of the
outer measure.

Any set E with outer measure 0 (m* (E) = 0) is measurable. Indeed, let S C R. Then
SN E C E implies that m* (SN E) = 0, and SN E® C S implies m* (SN E®) < m* (S).
Hence, by the subadditivity we have

m* (S) < m* (SNE) +m* (SNE) <0+ m* (S)

and (*x) holds.



Proposition

If E| and E;, are measurable sets, then E| U E, is measurable. In general if Ey, - - - | E, are
measurable sets, then their union is also measurable.

Proof.

Let S C R be any set. The following identities (verification left as exercise) will be used
SN(EyUE) = (SNE)U(SNE NE); SN (E UE) = (SNE) NE;
Note that the subadditivity of m™ and the first identity above imply that
m* (SNE) +m™ (SNE{NE) >m" (SN (E; UE)).
Using the measurability of £} and then of E, and the above identities, we have

m* (S) m* (SOE) +m* (SNE]) =m* (SNE)+m* (SNE{ NEy) +m* (SNEf NES)
(

m* (SN (Ej UE)) +m* (SN E NES
m* (SN (E; UEy)) +m™ (SN (E; UER)) > m* (S)

VIV I

Therefore E; U E, satisfies (*>) and it is measurable. The case of finite union of measurable sets follows by induction.



Proposition

LetEy,- - - , E, be measurable sets that are mutually disjoint (E; N Ej = 0 if i # j) and let
S C R be any set. Then

m* [ SN OEJ :zn:m*(SﬁEj) and m™ UE/
j=1

j=1 J=

Proof.

The second relation is a special case of the first with § = R. We prove the first relation by induction. The case n = 1 is trivial.
Suppose that the relation holdsup ton — 1. Let Ey, - - - , E, be measurable and mutually disjoint. Then for § C R we have
the following identities

n n n—1
c
n (/UEJ) NE,=SNE, and SN (/UE/> NE, =5N <U E/-> .
=1 =1 j=1

It follows from these identities, the measurability of E, and the induction hypothesis that

n n—1
m* s | JE =m" (SNE)+m* [sn | |JE
j= Jj=1
n—1

=m" (SNE)+ > m" (SNE)

Jj=1
—Zm (SNE)



Proposition

o]

Let {Ej}/"zo1 be a countable collection of measurable sets. Then E = U Ej is measurable.

j=1
Proof.
First we prove that E can be expressed as the disjoint union of a countable family of measurable sets. For each n € N, let
n—1 n—1 :
S - - ) o Ll Lo .
E, = E;\ U E, =E, N U Ei | .ThenE, NE, = Qifn # m; E, is measurable (as a finite intersection of
k=1 k=1

oo oo
measurable sets); and U E:l = U E, =E.

n=1 n=1
J
Foreachn € N, let F,, = U Ej/. Then F, is measurable (finite union of measurable sets). Note that E° C F}, for all n. Now

Jj=1
let S C R be any set. Then we use the measurability of F,, and the monotonicity of m™ to get

m* (S) =m* (SNF,) +m" (SNFy) >m" (SNF,) +m™ (SNE) .
Since F), is the disjoint union of finitely many measurable set, then it follows from a previous proposition that
n n
me (SN E) =3 m* (s n EJ’) Hence, m™* ($) > > m* (s n E,’) +m* (SN E) foralln € N, and it follows
j=1 j=1
from the subadditivity of m™ that
=
m* (S) > Zm* (SQE;) +m* (SNEY) >m™ (SNE)+m™ (SNE) .

j=

Therefore E is measurable.



o-Algebra of Measurable Sets

Recall that a o-algebra in R is a collection of subsets containing RR; is closed under formation of
complement and countable union. The previous propositions imply that the collection of
measurable sets forms a o-algebra.

Theorem
An interval in R is measurable.

Proof.
Consider the case I = (a, co) witha € R.LetS C R be any set. Since m™ (S\{a}) = m™ (S), we can assume a ¢ S.
LetS' =SNI°=5N(—o00, a)andS2 = SN T = SN (a, co). To prove that I is measurable, it is enough to show that

m* () > m* ( 1)+m*(2)
Let {I; } | be a countable collection of open and bounded intervals that cover S. For eachj € N let I =1 N (—o0, a)
and l- = I; N (a, o). Then l- l-2 are open bounded intervals such that £(;) = Z(l. ) + Z(I-Z) and the collections

{1 }],1 and {12 2 cover §' and 2, respectively. It follows from m™ as an infimum that m™ (Sl) < Z;’;’l Z(Ijl) and
(52) <XE €(112)4 Hence,

m* (s‘) + m* (sz) < i (4(1/.‘) + 2(1/.2)) < izuj).

j=1 j=1

Since {I;} 22, is an arbitrary cover of S, it follows m™ (Sl) +m* (Sl) < m* (S) and I is measurable.

Finally by using the fact that measurable sets form a o-algebra, it can be proved that any interval is measurable. O



It follows from the preceding results that:

>
>
>

Any open set is measurable (since it can be written as a countable union of intervals).
Any closed set is measurable (as a complement of an open set)

Any G set is measurable (recall that a G set is a set that can be written as the
intersection of a countable collection of open sets)

Any F, set is measurable (recall that an F, set is a set that can be written as the union of
a countable collection of closed sets)

Recall that a Borel o-algebra is the o-algebra generated by open sets (it is contained in
any o-algebra that contains open sets). Its members are called Borel sets. Since
measurable sets form a o-algebra, it follows that any Borel set is measurable.

‘We can summarize the above as:

Theorem

The collection M of measurable sets forms a o-algebra that contains the o-algebra of Borel
sets. Each interval is measurable, each open set is measurable, each closed is measurable, each
G is measurable, and each F is measurable.



