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Lebesgue Outer Measure



Let I ⊂ R be an interval. The length ℓ(I) is defined to be ℓ(I) = ∞ if I is unbounded and
ℓ(I) = b − a if I has finite left endpoint a and finite right endpoint b.
Let E ⊂ R be any set in R and let {Ij}∞j=1 be a collection of bounded open intervals that cover

the set E. That is E ⊂
∞⋃
j=1

Ij. We associate to such a cover
∞∑
j=1

ℓ(Ij) (which could be ∞). Define

the outer measure of E as

m∗ (E) = inf


∞∑
j=1

ℓ(Ij) : E ⊂
∞⋃
j=1

Ij

 .

The following properties follow directly from the definition.
▶ m∗ (∅) = 0
▶ The outer measure is monotone. That is, if E ⊂ F, then m∗ (E) ≤ m∗ (F)

Proposition
If C ⊂ R is countable, then m∗ (C) = 0.

Proof.
Suppose C = {xn}. Let ϵ > 0. For each n, let In =

(
xn −

ϵ

2n+1
, xn +

ϵ

2n+1

)
. Then C ⊂

∞⋃
n=1

In and ℓ(In) =
ϵ

2n
.

Hence
∞∑

n=1

ℓ(In) =
∞∑

n=1

ϵ

2n
= ϵ. Therefore m∗ (C) ≤ ϵ. Since ϵ > 0 is arbitrary, we have m∗ (C) = 0.



Proposition
Let I ⊂ R be an interval. Then m∗ (I) = ℓ(I). In particular m∗ (R) = ∞.

Proof.
• Case I = [a, b], closed and bounded. Let ϵ > 0. Then I ⊂ (a − ϵ, b + ϵ) and it follows from the definition of outer
measure that m∗ (I) ≤ (b + ϵ) − (a − ϵ) = ℓ(I) + 2ϵ. Since ϵ > 0 is arbitrary, then m∗ (I) ≤ ℓ(I).
To prove the proposition in this case, we need to prove that m∗ (I) ≥ ℓ(I). First suppose that I covered by finitely many open

and bounded interval I1, · · · , In . We are going to show that
n∑

j=1

ℓ(Ij) ≥ ℓ(I). Since a ∈ I, then there exists

j1 ∈ {1, · · · , n} such that a ∈ Ij1 = (a1, b1). If b ≤ b1 , then ℓ(I) < ℓ(Ij1 ) and we are done. If not, then a < b1 < b,
so that b1 ∈ I and there is j2 ∈ {1, · · · , n} such that b1 ∈ Ij2 = (a2, b2). If b ≤ b2 , then ℓ(I) < ℓ(Ij1 ) + ℓ(Ij2 ). If
not, we can repeat this process which must end after at most k steps with k ≤ n to get

ℓ(I) <
k∑

p=1

ℓ(Ijp ) <
n∑

j=1

ℓ(Ij)

Now if {Ip}∞p=1 is any countable collection of open and bounded sets that cover I, then it has a finite subcover {Ip}n
p=1 for I

(Heine-Borel). It follows then from the previous paragraph that

ℓ(I) <

n∑
p=1

ℓ(Ip) ≤
∞∑
j=1

ℓ(Ij)

This shows that m∗ (I) ≥ ℓ(I) and therefore m∗ (I) = ℓ(I) in this case.



Proof.
• Case I bounded interval. Let a and b be the left and right endpoints of I. For ϵ > 0 (small) let

J1 = [a +
ϵ

2
, b −

ϵ

2
] and J2 = [a −

ϵ

2
, b +

ϵ

2
]

Hence J1 and J2 are closed bounded intervals with ℓ(J1) = ℓ(I) − ϵ, ℓ(J2) = ℓ(I) + ϵ and J1 ⊂ I ⊂ J2 . It follows from
the first case (applied to J1 and J2) and the monotinicity of the outer measure that

ℓ(I) − ϵ = ℓ(J1) = m∗
(J1) ≤ m∗

(I) ≤ m∗
(J2) = ℓ(J2) = ℓ(I) + ϵ

Therefore m∗ (I) = ℓ(I) since ϵ > 0 is arbitrary.

• Case I unbounded interval. If I = R, then m∗ (I) = ∞ = ℓ(I). Suppose I ̸= R and it is unbounded above so that
ℓ(I) = ∞. Let c ∈ I. For each n ∈ N the closed and bounded interval In = [c, c + n] is contained in I. It follows from the
monotonocity of the outer measure that

m∗
(I) ≥ m∗

(In) = n for all n ∈ N

Therefore m∗ (I) = ∞ = ℓ(I).



For set E ⊂ R and s ∈ R, the translate of E is the set E + s = {x = e + s : e ∈ E}.
Note: Let I ⊂ R be an interval with endpoints a, b, then I + s is an interval with endpoints
a + s, b + s and ℓ(I + s) = ℓ(I).

Proposition
For every E ⊂ R and s ∈ R, we have m∗ (E + s) = m∗ (E). The outer measure m∗ is
invariant under translations.

Proof.
The collection of open and bounded intervals {Ij}∞j=1 covers E if and only the collection of open and bounded translate

intervals {Ij + s}∞j=1 covers the translate E + s. This implies m∗ (E + s) = m∗ (E).

Proposition
Let {Ej}∞j=1 be a countable collection of subsets of R. Then

m∗

∞⋃
j=1

Ej

 ≤
∞∑
j=1

m∗ (Ej) . (∗)

The outer measure m∗ is subadditive.



Proof.
First note that if

∑
j

m∗ (
Ej
)
= ∞, then (∗) holds trivially. Suppose then

∑
j

m∗ (
Ej
)
< ∞. Let ϵ > 0. It follows from

the definition of m∗ that for each j, there is a countable collection of open and bounded intervals {Ij,k}∞k=1 such that

Ej ⊂
∞⋃

k=1

Ij,k and

∞∑
k=1

ℓ(Ij,k) < m∗ (
Ej
)
+

ϵ

2j
.

The collection of open and bounded intervals {Ij,k}(j,k)∈N×N is countable and

∞⋃
j=1

Ej ⊂
∞⋃
j=1

 ∞⋃
k=1

Ij,k

 .

Furthermore,

m∗

∞⋃
j=1

Ej

 ≤
∞∑
j=1

 ∞∑
k=1

ℓ(Ij,k)



≤
∞∑
j=1

(
m∗ (

Ej
)
+

ϵ

2j

)
=

∞∑
j=1

m∗ (
Ej
)

+ ϵ

And (∗) follows since ϵ > 0 is arbitrary.



Measurable Sets

A set E ⊂ R is said to be measurable if for every set S ⊂ R, the following equality holds:

m∗ (S) = m∗ (S ∩ E) + m∗ (S ∩ Ec) , (∗∗)

where Ec = R\E is the R-complement of E.
▶ ∅ and R are measurable.
▶ E is measurable if and only if Ec is measurable.
▶ If E is measurable and T ⊂ R is disjoint from E , then m∗ (E ∪ T) = m∗ (E) + m∗ (T).

Indeed E ∪ T = [(E ∪ T) ∩ E] ∪ [(E ∪ T) ∩ Ec] and it follows from (∗∗) and from
E ∩ T = ∅ that
m∗ (E ∪ T) = m∗ ((E ∪ T) ∩ E) + m∗ ((E ∪ T) ∩ Ec) = m∗ (E) + m∗ (T).

▶ E is measurable if and only if for every set S ⊂ R, m∗ (S) ≥ m∗ (S ∩ E) + m∗ (S ∩ Ec).
This is a consequence of the definition of measurable set and the subadditivity of the
outer measure.

▶ Any set E with outer measure 0 (m∗ (E) = 0) is measurable. Indeed, let S ⊂ R. Then
S ∩ E ⊂ E implies that m∗ (S ∩ E) = 0, and S ∩ Ec ⊂ S implies m∗ (S ∩ Ec) ≤ m∗ (S).
Hence, by the subadditivity we have

m∗ (S) ≤ m∗ (S ∩ E) + m∗ (S ∩ Ec) ≤ 0 + m∗ (S)

and (∗∗) holds.



Proposition
If E1 and E2 are measurable sets, then E1 ∪ E2 is measurable. In general if E1, · · · ,En are
measurable sets, then their union is also measurable.

Proof.
Let S ⊂ R be any set. The following identities (verification left as exercise) will be used

S ∩ (E1 ∪ E2) = (S ∩ E1) ∪
(

S ∩ Ec
1 ∩ E2

)
; S ∩ (E1 ∪ E2)

c
=

(
S ∩ Ec

1
)
∩ Ec

2

Note that the subadditivity of m∗ and the first identity above imply that

m∗
(S ∩ E1) + m∗ (

S ∩ Ec
1 ∩ E2

)
≥ m∗

(S ∩ (E1 ∪ E2)) .

Using the measurability of E1 and then of E2 and the above identities, we have

m∗ (S) = m∗ (S ∩ E1) + m∗ (
S ∩ Ec

1
)
= m∗ (S ∩ E1) + m∗ (

S ∩ Ec
1 ∩ E2

)
+ m∗ (

S ∩ Ec
1 ∩ Ec

2
)

≥ m∗ (S ∩ (E1 ∪ E2)) + m∗ (
S ∩ Ec

1 ∩ Ec
2
)

≥ m∗ (S ∩ (E1 ∪ E2)) + m∗ (S ∩ (E1 ∪ E2)
c) ≥ m∗ (S)

Therefore E1 ∪ E2 satisfies (∗∗) and it is measurable. The case of finite union of measurable sets follows by induction.



Proposition
Let E1, · · · ,En be measurable sets that are mutually disjoint (Ei ∩ Ej = ∅ if i ̸= j) and let
S ⊂ R be any set. Then

m∗

S ∩

 n⋃
j=1

Ej

 =
n∑

j=1

m∗ (S ∩ Ej) and m∗

 n⋃
j=1

Ej

 =
n∑

j=1

m∗ (Ej)

Proof.
The second relation is a special case of the first with S = R. We prove the first relation by induction. The case n = 1 is trivial.
Suppose that the relation holds up to n − 1. Let E1, · · · , En be measurable and mutually disjoint. Then for S ⊂ R we have
the following identities

S ∩

 n⋃
j=1

Ej

 ∩ En = S ∩ En and S ∩

 n⋃
j=1

Ej

 ∩ Ec
n = S ∩

n−1⋃
j=1

Ej

 .

It follows from these identities, the measurability of En and the induction hypothesis that

m∗

S ∩

 n⋃
j=1

Ej

 = m∗
(S ∩ En) + m∗

S ∩

n−1⋃
j=1

Ej


= m∗

(S ∩ En) +

n−1∑
j=1

m∗ (
S ∩ Ej

)
=

n∑
j=1

m∗ (
S ∩ Ej

)



Proposition
Let {Ej}∞j=1 be a countable collection of measurable sets. Then E =

∞⋃
j=1

Ej is measurable.

Proof.
First we prove that E can be expressed as the disjoint union of a countable family of measurable sets. For each n ∈ N, let

E′
n = En\

n−1⋃
k=1

Ek = En ∩

n−1⋃
k=1

Ek

c

. Then E′
n ∩ E′

m = ∅ if n ̸= m; E′
n is measurable (as a finite intersection of

measurable sets); and
∞⋃

n=1

E′
n =

∞⋃
n=1

En = E.

For each n ∈ N, let Fn =

j⋃
j=1

E′
j . Then Fn is measurable (finite union of measurable sets). Note that Ec ⊂ Fc

n for all n. Now

let S ⊂ R be any set. Then we use the measurability of Fn and the monotonicity of m∗ to get

m∗
(S) = m∗

(S ∩ Fn) + m∗ (
S ∩ Fc

n
)
≥ m∗

(S ∩ Fn) + m∗ (
S ∩ Ec)

.

Since Fn is the disjoint union of finitely many measurable set, then it follows from a previous proposition that

m∗ (S ∩ Fn) =
n∑

j=1

m∗
(

S ∩ E′
j

)
. Hence, m∗

(S) ≥
n∑

j=1

m∗
(

S ∩ E′
j

)
+ m∗ (

S ∩ Ec) for all n ∈ N, and it follows

from the subadditivity of m∗ that

m∗
(S) ≥

∞∑
j=1

m∗
(

S ∩ E′
j

)
+ m∗ (

S ∩ Ec) ≥ m∗
(S ∩ E) + m∗ (

S ∩ Ec)
.

Therefore E is measurable.



σ-Algebra of Measurable Sets

Recall that a σ-algebra in R is a collection of subsets containing R; is closed under formation of
complement and countable union. The previous propositions imply that the collection of
measurable sets forms a σ-algebra.

Theorem
An interval in R is measurable.

Proof.
Consider the case I = (a, ∞) with a ∈ R. Let S ⊂ R be any set. Since m∗ (S\{a}) = m∗ (S), we can assume a /∈ S.
Let S1 = S ∩ Ic = S ∩ (−∞, a) and S2 = S ∩ I = S ∩ (a, ∞). To prove that I is measurable, it is enough to show that

m∗ (S) ≥ m∗
(

S1
)
+ m∗

(
S2

)
.

Let {Ij}∞j=1 be a countable collection of open and bounded intervals that cover S. For each j ∈ N let I1
j = Ij ∩ (−∞, a)

and I2
j = Ij ∩ (a, ∞). Then I1

j , I2
j are open bounded intervals such that ℓ(Ij) = ℓ(I1

j ) + ℓ(I2
j ) and the collections

{I1
j }

∞
j=1 and {I2

j }
∞
j=1 cover S1 and S2 , respectively. It follows from m∗ as an infimum that m∗

(
S1

)
≤

∑∞
j=1 ℓ(I1

j ) and

m∗
(

S2
)

≤
∑∞

j=1 ℓ(I2
j ). Hence,

m∗
(

S1
)
+ m∗

(
S2

)
≤

∞∑
j=1

(
ℓ(I1

j ) + ℓ(I2
j )

)
≤

∞∑
j=1

ℓ(Ij) .

Since {Ij}∞j=1 is an arbitrary cover of S, it follows m∗
(

S1
)
+ m∗

(
S1

)
≤ m∗ (S) and I is measurable.

Finally by using the fact that measurable sets form a σ-algebra, it can be proved that any interval is measurable.



It follows from the preceding results that:
▶ Any open set is measurable (since it can be written as a countable union of intervals).
▶ Any closed set is measurable (as a complement of an open set)
▶ Any Gδ set is measurable (recall that a Gδ set is a set that can be written as the

intersection of a countable collection of open sets)
▶ Any Fσ set is measurable (recall that an Fσ set is a set that can be written as the union of

a countable collection of closed sets)
▶ Recall that a Borel σ-algebra is the σ-algebra generated by open sets (it is contained in

any σ-algebra that contains open sets). Its members are called Borel sets. Since
measurable sets form a σ-algebra, it follows that any Borel set is measurable.

We can summarize the above as:

Theorem
The collection M of measurable sets forms a σ-algebra that contains the σ-algebra of Borel
sets. Each interval is measurable, each open set is measurable, each closed is measurable, each
Gδ is measurable, and each Fσ is measurable.


