Real Analysis MAA 6616 Lecture 5 Lebesgue Outer Measure Let $I \subset \mathbb{R}$ be an interval. The length $\ell(I)$ is defined to be $\ell(I) = \infty$ if I is unbounded and $\ell(I) = b - a$ if I has finite left endpoint a and finite right endpoint b. Let $E \subset \mathbb{R}$ be any set in \mathbb{R} and let $\{I_j\}_{j=1}^{\infty}$ be a collection of bounded open intervals that cover the set E. That is $E \subset \bigcup_{j=1}^{\infty} I_j$. We associate to such a cover $\sum_{j=1}^{\infty} \ell(I_j)$ (which could be ∞). Define the outer measure of E as

$$m^*(E) = \inf \left\{ \sum_{j=1}^{\infty} \ell(I_j) : E \subset \bigcup_{j=1}^{\infty} I_j \right\} \,.$$

The following properties follow directly from the definition.

▶ The outer measure is monotone. That is, if $E \subset F$, then $m^*(E) \leq m^*(F)$

Proposition

If $C \subset \mathbb{R}$ is countable, then $m^*(C) = 0$.

Proof.

Suppose
$$C = \{x_n\}$$
. Let $\epsilon > 0$. For each n , let $I_n = \left(x_n - \frac{\epsilon}{2^{n+1}}, x_n + \frac{\epsilon}{2^{n+1}}\right)$. Then $C \subset \bigcup_{n=1}^{\infty} I_n$ and $\ell(I_n) = \frac{\epsilon}{2^n}$.

Hence
$$\sum_{n=1}^{\infty} \ell(I_n) = \sum_{n=1}^{\infty} \frac{\epsilon}{2^n} = \epsilon$$
. Therefore $m^*(C) \le \epsilon$. Since $\epsilon > 0$ is arbitrary, we have $m^*(C) = 0$.

Let $I \subset \mathbb{R}$ be an interval. Then $m^*(I) = \ell(I)$. In particular $m^*(\mathbb{R}) = \infty$.

Proof.

• *Case I* = [*a*, *b*], *closed and bounded.* Let $\epsilon > 0$. Then $I \subset (a - \epsilon, b + \epsilon)$ and it follows from the definition of outer measure that $m^*(I) \leq (b + \epsilon) - (a - \epsilon) = \ell(I) + 2\epsilon$. Since $\epsilon > 0$ is arbitrary, then $m^*(I) \leq \ell(I)$. To prove the proposition in this case, we need to prove that $m^*(I) \geq \ell(I)$. First suppose that *I* covered by finitely many open and bounded interval I_1, \dots, I_n . We are going to show that $\sum_{j=1}^n \ell(I_j) \geq \ell(I)$. Since $a \in I$, then there exists $j_1 \in \{1, \dots, n\}$ such that $a \in I_{j_1} = (a_1, b_1)$. If $b \leq b_1$, then $\ell(I) < \ell(I_{j_1})$ and we are done. If not, then $a < b_1 < b$, so that $b_1 \in I$ and there is $j_2 \in \{1, \dots, n\}$ such that $b_1 \in I_{j_2} = (a_2, b_2)$. If $b \leq b_2$, then $\ell(I) < \ell(I_{j_1}) + \ell(I_{j_2})$. If not, we can repeat this process which must end after at most *k* steps with k < n to get

$$\ell(I) < \sum_{p=1}^{k} \ell(I_{j_p}) < \sum_{j=1}^{n} \ell(I_j)$$

Now if $\{I_p\}_{p=1}^{\infty}$ is any countable collection of open and bounded sets that cover *I*, then it has a finite subcover $\{I_p\}_{p=1}^n$ for *I* (Heine-Borel). It follows then from the previous paragraph that

$$\ell(I) < \sum_{p=1}^{n} \ell(I_p) \leq \sum_{j=1}^{\infty} \ell(I_j)$$

This shows that $m^*(I) \ge \ell(I)$ and therefore $m^*(I) = \ell(I)$ in this case.

Proof.

• Case I bounded interval. Let a and b be the left and right endpoints of I. For $\epsilon > 0$ (small) let

$$J_1 = [a + \frac{\epsilon}{2}, b - \frac{\epsilon}{2}]$$
 and $J_2 = [a - \frac{\epsilon}{2}, b + \frac{\epsilon}{2}]$

Hence J_1 and J_2 are closed bounded intervals with $\ell(J_1) = \ell(I) - \epsilon$, $\ell(J_2) = \ell(I) + \epsilon$ and $J_1 \subset I \subset J_2$. It follows from the first case (applied to J_1 and J_2) and the monotinicity of the outer measure that

$$\ell(I) - \epsilon = \ell(J_1) = m^* (J_1) \le m^* (I) \le m^* (J_2) = \ell(J_2) = \ell(I) + \epsilon$$

Therefore $m^*(I) = \ell(I)$ since $\epsilon > 0$ is arbitrary.

• *Case 1 unbounded interval.* If $I = \mathbb{R}$, then $m^*(I) = \infty = \ell(I)$. Suppose $I \neq \mathbb{R}$ and it is unbounded above so that $\ell(I) = \infty$. Let $c \in I$. For each $n \in \mathbb{N}$ the closed and bounded interval $I_n = [c, c+n]$ is contained in I. It follows from the monotonocity of the outer measure that

$$m^*(I) \ge m^*(I_n) = n$$
 for all $n \in \mathbb{N}$

Therefore $m^*(I) = \infty = \ell(I)$.

For set $E \subset \mathbb{R}$ and $s \in \mathbb{R}$, the translate of *E* is the set $E + s = \{x = e + s : e \in E\}$. Note: Let $I \subset \mathbb{R}$ be an interval with endpoints *a*, *b*, then I + s is an interval with endpoints a + s, b + s and $\ell(I + s) = \ell(I)$.

Proposition

For every $E \subset \mathbb{R}$ and $s \in \mathbb{R}$, we have $m^*(E+s) = m^*(E)$. The outer measure m^* is invariant under translations.

Proof.

The collection of open and bounded intervals $\{I_j\}_{j=1}^{\infty}$ covers *E* if and only the collection of open and bounded translate intervals $\{I_j + s\}_{i=1}^{\infty}$ covers the translate *E* + *s*. This implies m^* (*E* + *s*) = m^* (*E*).

Proposition

Let $\{E_j\}_{j=1}^{\infty}$ be a countable collection of subsets of \mathbb{R} . Then

$$m^*\left(\bigcup_{j=1}^{\infty} E_j\right) \leq \sum_{j=1}^{\infty} m^*(E_j)$$
 . (*)

The outer measure m^* is subadditive.

Proof. First note that if $\sum_{j} m^* (E_j) = \infty$, then (*) holds trivially. Suppose then $\sum_{j} m^* (E_j) < \infty$. Let $\epsilon > 0$. It follows from the definition of m^* that for each *j*, there is a countable collection of open and bounded intervals $\{I_{j,k}\}_{k=1}^{\infty}$ such that $E_j \subset \bigcup_{k=1}^{\infty} I_{j,k}$ and $\sum_{k=1}^{\infty} \ell(I_{j,k}) < m^* (E_j) + \frac{\epsilon}{2^j}$.

The collection of open and bounded intervals $\{I_{j,k}\}_{(j,k)\in\mathbb{N}\times\mathbb{N}}$ is countable and

$$\bigcup_{j=1}^{\infty} E_j \subset \bigcup_{j=1}^{\infty} \left(\bigcup_{k=1}^{\infty} I_{j,k} \right)$$

Furthermore,

$$m^* \left(\bigcup_{j=1}^{\infty} E_j \right) \leq \sum_{j=1}^{\infty} \left(\sum_{k=1}^{\infty} \ell(I_{j,k}) \right)$$
$$\leq \sum_{j=1}^{\infty} \left(m^* \left(E_j \right) + \frac{\epsilon}{2^j} \right) = \sum_{j=1}^{\infty} m^* \left(E_j \right) + \epsilon$$

And (*) follows since $\epsilon > 0$ is arbitrary.

Measurable Sets

A set $E \subset \mathbb{R}$ is said to be measurable if for every set $S \subset \mathbb{R}$, the following equality holds:

$$m^{*}(S) = m^{*}(S \cap E) + m^{*}(S \cap E^{c}) , \qquad (**)$$

where $E^c = \mathbb{R} \setminus E$ is the \mathbb{R} -complement of E.

- \triangleright Ø and \mathbb{R} are measurable.
- \triangleright *E* is measurable if and only if E^c is measurable.
- ▶ If *E* is measurable and $T \subset \mathbb{R}$ is disjoint from *E*, then $m^*(E \cup T) = m^*(E) + m^*(T)$. Indeed $E \cup T = [(E \cup T) \cap E] \cup [(E \cup T) \cap E^c]$ and it follows from (**) and from $E \cap T = \emptyset$ that $m^*(E \cup T) = m^*((E \cup T) \cap E) + m^*((E \cup T) \cap E^c) = m^*(E) + m^*(T)$.
- E is measurable if and only if for every set S ⊂ ℝ, m* (S) ≥ m* (S ∩ E) + m* (S ∩ E^c). This is a consequence of the definition of measurable set and the subadditivity of the outer measure.
- Any set *E* with outer measure 0 ($m^*(E) = 0$) is measurable. Indeed, let $S \subset \mathbb{R}$. Then $S \cap E \subset E$ implies that $m^*(S \cap E) = 0$, and $S \cap E^c \subset S$ implies $m^*(S \cap E^c) \le m^*(S)$. Hence, by the subadditivity we have

$$m^*(S) \le m^*(S \cap E) + m^*(S \cap E^c) \le 0 + m^*(S)$$

and (**) holds.

If E_1 and E_2 are measurable sets, then $E_1 \cup E_2$ is measurable. In general if E_1, \dots, E_n are measurable sets, then their union is also measurable.

Proof.

Let $S \subset \mathbb{R}$ be any set. The following identities (verification left as exercise) will be used

 $S \cap (E_1 \cup E_2) = (S \cap E_1) \cup (S \cap E_1^c \cap E_2)$; $S \cap (E_1 \cup E_2)^c = (S \cap E_1^c) \cap E_2^c$

Note that the subadditivity of m^* and the first identity above imply that

 $m^* (S \cap E_1) + m^* (S \cap E_1^c \cap E_2) \ge m^* (S \cap (E_1 \cup E_2)).$

Using the measurability of E_1 and then of E_2 and the above identities, we have

$$\begin{array}{ll} m^{*}\left(S\right) &= m^{*}\left(S \cap E_{1}\right) + m^{*}\left(S \cap E_{1}^{c}\right) = m^{*}\left(S \cap E_{1}\right) + m^{*}\left(S \cap E_{1}^{c} \cap E_{2}\right) + m^{*}\left(S \cap E_{1}^{c} \cap E_{2}^{c}\right) \\ &\geq m^{*}\left(S \cap (E_{1} \cup E_{2})\right) + m^{*}\left(S \cap (E_{1} \cup E_{2})^{c}\right) \geq m^{*}\left(S\right) \\ &\geq m^{*}\left(S \cap (E_{1} \cup E_{2})\right) + m^{*}\left(S \cap (E_{1} \cup E_{2})^{c}\right) \geq m^{*}\left(S\right) \end{array}$$

Therefore $E_1 \cup E_2$ satisfies (**) and it is measurable. The case of finite union of measurable sets follows by induction.

Let E_1, \dots, E_n be measurable sets that are mutually disjoint $(E_i \cap E_j = \emptyset$ if $i \neq j)$ and let $S \subset \mathbb{R}$ be any set. Then

$$m^*\left(S \cap \left[\bigcup_{j=1}^n E_j\right]\right) = \sum_{j=1}^n m^*\left(S \cap E_j\right) \text{ and } m^*\left(\bigcup_{j=1}^n E_j\right) = \sum_{j=1}^n m^*\left(E_j\right)$$

Proof.

The second relation is a special case of the first with $S = \mathbb{R}$. We prove the first relation by induction. The case n = 1 is trivial. Suppose that the relation holds up to n - 1. Let E_1, \dots, E_n be measurable and mutually disjoint. Then for $S \subset \mathbb{R}$ we have the following identities

$$S \cap \left(\bigcup_{j=1}^{n} E_{j}\right) \cap E_{n} = S \cap E_{n} \text{ and } S \cap \left(\bigcup_{j=1}^{n} E_{j}\right) \cap E_{n}^{c} = S \cap \left(\bigcup_{j=1}^{n-1} E_{j}\right)$$

It follows from these identities, the measurability of E_n and the induction hypothesis that

$$m^*\left(S \cap \left[\bigcup_{j=1}^n E_j\right]\right) = m^*\left(S \cap E_n\right) + m^*\left(S \cap \left(\bigcup_{j=1}^{n-1} E_j\right)\right)$$
$$= m^*\left(S \cap E_n\right) + \sum_{j=1}^{n-1} m^*\left(S \cap E_j\right)$$
$$= \sum_{j=1}^n m^*\left(S \cap E_j\right)$$

Let $\{E_j\}_{j=1}^{\infty}$ be a countable collection of measurable sets. Then $E = \bigcup_{j=1}^{\infty} E_j$ is measurable.

Proof.

First we prove that E can be expressed as the disjoint union of a countable family of measurable sets. For each $n \in \mathbb{N}$, let

 $E'_{n} = E_{n} \setminus \bigcup_{k=1}^{n-1} E_{k} = E_{n} \cap \left(\bigcup_{k=1}^{n-1} E_{k}\right)^{c}$. Then $E'_{n} \cap E'_{m} = \emptyset$ if $n \neq m$; E'_{n} is measurable (as a finite intersection of measurable sets); and $\bigcup_{n=1}^{\infty} E'_{n} = \bigcup_{n=1}^{\infty} E_{n} = E$. For each $n \in \mathbb{N}$, let $F_{n} = \bigcup_{j=1}^{j} E'_{j}$. Then F_{n} is measurable (finite union of measurable sets). Note that $E^{c} \subset F_{n}^{c}$ for all n. Now

let $S \subset \mathbb{R}$ be any set. Then we use the measurability of F_n and the monotonicity of m^* to get

$$m^{*}(S) = m^{*}(S \cap F_{n}) + m^{*}(S \cap F_{n}^{c}) \ge m^{*}(S \cap F_{n}) + m^{*}(S \cap E^{c})$$

Since F_n is the disjoint union of finitely many measurable set, then it follows from a previous proposition that

 $m^* (S \cap F_n) = \sum_{j=1}^n m^* (S \cap E'_j). \text{ Hence, } m^* (S) \ge \sum_{j=1}^n m^* (S \cap E'_j) + m^* (S \cap E^c) \text{ for all } n \in \mathbb{N}, \text{ and it follows}$

from the subadditivity of m^* that

$$m^*\left(S\right) \geq \sum_{j=1}^{\infty} m^*\left(S \cap E_j'\right) + m^*\left(S \cap E^c\right) \geq m^*\left(S \cap E\right) + m^*\left(S \cap E^c\right) \;.$$

Therefore E is measurable.

σ -Algebra of Measurable Sets

Recall that a σ -algebra in \mathbb{R} is a collection of subsets containing \mathbb{R} ; is closed under formation of complement and countable union. The previous propositions imply that the collection of measurable sets forms a σ -algebra.

Theorem

An interval in \mathbb{R} is measurable.

Proof.

Consider the case $I = (a, \infty)$ with $a \in \mathbb{R}$. Let $S \subset \mathbb{R}$ be any set. Since $m^* (S \setminus \{a\}) = m^* (S)$, we can assume $a \notin S$. Let $S^{1} = S \cap I^{c} = S \cap (-\infty, a)$ and $S^{2} = S \cap I = S \cap (a, \infty)$. To prove that I is measurable, it is enough to show that $m^* (S) \ge m^* (S^{1}) + m^* (S^{2})$. Let $\{I_{j}\}_{j=1}^{\infty}$ be a countable collection of open and bounded intervals that cover S. For each $j \in \mathbb{N}$ let $I_{j}^{1} = I_{j} \cap (-\infty, a)$ and $I_{j}^{2} = I_{j} \cap (a, \infty)$. Then I_{j}^{1} , I_{j}^{2} are open bounded intervals such that $\ell(I_{j}) = \ell(I_{j}^{1}) + \ell(I_{j}^{2})$ and the collections $\{I_{j}^{1}\}_{j=1}^{\infty}$ and $\{I_{j}^{2}\}_{j=1}^{\infty}$ cover S^{1} and S^{2} , respectively. It follows from m^{*} as an infimum that $m^{*} (S^{1}) \le \sum_{j=1}^{\infty} \ell(I_{j}^{1})$ and $m^{*} (S^{2}) \le \sum_{j=1}^{\infty} \ell(I_{j}^{2})$. Hence,

$$n^*(S^1) + m^*(S^2) \le \sum_{j=1}^{\infty} (\ell(l_j^1) + \ell(l_j^2)) \le \sum_{j=1}^{\infty} \ell(l_j).$$

Since $\{I_j\}_{j=1}^{\infty}$ is an arbitrary cover of *S*, it follows $m^*(S^1) + m^*(S^1) \le m^*(S)$ and *I* is measurable. Finally by using the fact that measurable sets form a σ -algebra, it can be proved that any interval is measurable. It follows from the preceding results that:

- Any open set is measurable (since it can be written as a countable union of intervals).
- Any closed set is measurable (as a complement of an open set)
- Any G_{δ} set is measurable (recall that a G_{δ} set is a set that can be written as the intersection of a countable collection of open sets)
- Any F_{σ} set is measurable (recall that an F_{σ} set is a set that can be written as the union of a countable collection of closed sets)
- Recall that a Borel σ-algebra is the σ-algebra generated by open sets (it is contained in any σ-algebra that contains open sets). Its members are called Borel sets. Since measurable sets form a σ-algebra, it follows that any Borel set is measurable.

We can summarize the above as:

Theorem

The collection \mathcal{M} of measurable sets forms a σ -algebra that contains the σ -algebra of Borel sets. Each interval is measurable, each open set is measurable, each closed is measurable, each G_{δ} is measurable, and each F_{σ} is measurable.