Real Analysis MAA 6616
Lecture 6
Measurability: Inner and Outer Approximations



Criteria for measurability

Lemma (1)

Let A be a measurable set in R with m* (A) < oco. Let B C R be any set containing A. Then
m* (B\A) = m* (B) — m* (A).

Proof.

Note that since A C B, then BN A = A and B N A° = B\A. By definition of the measurability of A it follows that

m* (B) = m™ (BNA) +m™ (BNA®) =m™ (A) + m™ (B\A) .

Theorem (2)

Let A C R. The following properties are equivalent
1. A is measurable;
2. Forevery € > 0, there exists an open set U, with A C U such that m* (U\A) < e
(Approximation by open sets);
3. There exists a Gs set G, with A C G such that m* (G\A) = 0 (Approximation by G
sets);

4. For every ¢ > 0, there exists a closed set V, with V- C A such that m* (A\V) < e
(Approximation by closed sets);

5. There exists an Fo set F, with F C A such that m* (A\F) = 0 (Approximation by Fs
sets);



Proof.

"(1) = (2)" Case : m* (A) < oo.Lete > 0. It follows from the definition of m™ as a Lu.b that there a collection of open

oo oo
intervals {I; };ﬁl that cover A and such that Z £(1) < m* (A) 4+ €. ThenU = U Ij is an open set containing A such that
j=1 j=1
o0
m* (U) < D e(I;) < m™ (A) + e. Thetefore (Lemma) m* (U\A) = m* (U) — m* (4) < e.
j=1
Case : m* (A) = oco.Lete > 0.Form € Z,letJ,, = [m, m + 1) and A,, = A N Jp,. Then A, is measurable,
m* (Am) < 1 forall m, and A is the disjoint union of the A,,’s. It follows from the previous case that for each m there is

oo
collection of open intervals {Im,/};)il such that A, C Uy, with Uy, = U I ,js

j=1
€
m* (Un\Am) = m* (Un) —m* (Am) < W.The collection of open sets { Uy, } ez cover A. Let U = U U. Then
2 meZ
€
U is an open set containing A and m™ (U) < Z m* (Up) < Z (m* (Am) + 2‘7‘) Since
meZ meZ
s €
U\A = Un\A C U \Ap), then m™ (U\A) < * (Un\Am) < —— < 3e.
V= U\ € U ). thenn™ (0\4) < 37 " (Ua\A) < 37 S <3

meZ meZ mez m=1
"(2) == (3)" Suppose that A satisfies (2), then for each j € N, there is an open set U; containing A such that

oo

m* (U\A) < 1/j. The Gg set G = m Uj contains A. Moreover (G\A) C (U;\A) for all j. Hence,

Jj=1
m* (G\A) < m* (Uj\A) < 1/jforallj. Therefore m* (G\A) = 0.
"(3) = (1)"Let G be a G4 set containing A such that m™ (G\A) = 0. Then G and G\A are measurable (as a G-set and a
set of measure 0). ThenA = G N (G\A) is also measurable.
"(1) = (4)"Suppose A measurable, then A€ is measurable and so satisfies (2). Let € > 0. There exists an open set U D A°
such that m™ (U\A®) < e. ThesetV = U isclosedand V C A. Since A\V = U\A®, then m™ (A\V) < e.

The the proofs of the remaining implications are left as exercises. D



The symmetric difference between the sets A and Bis A A B = A\B U B\A

Theorem (3)

Let E C R be a measurable set with m* (E) < oo. Then for any € > 0, there exists a finite,

n
disjoint, collection of open intervals {Ij}j":1 such that m* U | AE] <e
j=1

Proof.

Let € > 0. There exists an open set U D E such that m* (U\E) < €/2 (Theorem 2). Since m* (E) < oo, then
m™* (U) < oo (consequence of Lemma 1). Since U is open then there is a countable disjoint collection of open intervals
oo

{Ij}jozo1 such that U = U Ij. Hence for any m € N, we have
=1

ZZ(I,) =m* </UI]> <m* (U) < 0.
j=1 j

=1
o0
Therefore Zl-o:(’] £(Ij) < oo. We can therefore find n € N such that Z 1) < €/2.
j=n+1

m n
We have LU I/-:| \E C U\Eandsom™ (LU 1,} \E> < m"* (U\E) < €/2. Also E C U implies
1

j=1 j=

E\ |;CJ 1,:| C G I; and then m™ (E\ |;L”J Il:|> < i £(I;) < €/2. Therefore
j=1 j=1

Jj=n+1 Jj=n+1

oo < ) = (204 <



Lebesgue Measure
Let M be the o-algebra of measurable sets. The Lebesgue measure of a set E € M is defined

asm(E) = m* (E).
Proposition (4)
If{E;}2, C Mis disjoint, then \J72, E; C M andm (U/";’l E/) =372 m(E).

Proof.

We already know that a countable union of measurable sets is measurable; that the outer measure is subadditive; and that it is

additive on finite collections of disjoint measurable sets (see Lecture 5). Then m ( ;’:1 Ej) < E;’):Cl m(Ej), and

m (U;}:l Ej) = >2j—y m(E)). Therefore

m <U E,-) >m (/U E,) = Zm(Ej)
=1 i=1 j=1

for all n. This implies the proposition. O

Proposition 4 together with results of Lecture 5 establish the following.

Theorem (5)

The Lebesgue measure m : M — Rt satisfies the following properties
> If1is aninterval m(I) = £(I).
» m is translation invariant: For every E € M and s € R, m(E 4 s) = m(E).
> m s countably additive: If {E;}2°, C M is disjoint, then m <UJ°§1 E]) = 3572 m(Ej).



Recall that a countable family of sets {E;}jcn is said to be ascending if E, C E, and
descending if E,;, D E, 4 for all n.

Theorem (6)

The Lebesgue measure is continuous in the following sense:
> If{Ej}2, C Misascending, then m (Ujozo1 Ej> = limj, 00 m(Ej);

> If{Ej}2, C Mis descending, then m <ﬂ1_] ) = limj_ o0 m(E));

Proof.

Let {E; }J-Z’] C M be ascending. Case: m(Ej;) = oo for some jo. In this case m(E;) = oo forall j > jo. Therefore
co=m (Ujo:ol E,) = lim;_, o m(Ej). Case: m(Ej) < oo for all j. Define the collection {V, 2y C My

V; = Ej\Ej_|, where Eg = 0. Then Vi N V; = Qifk # jand Uj=1 Vi = U/=1 Ej. By using the countable additivity of
the measure m and Lemma 1, we have

=) oo oo

m U E| = Zm(V,) = Z (m(Ej) — m(Ej—y)) :jgno]o m(Ej)

= =1 =1

Now suppose that {E,-};’;’l C M is descending. Define {W,}fgo C M by W; = E{\Ej sothat W; C W;; and

Ugl W = E \ (ﬂfzol E/) By the ascending continuity property proved above and Lemma 1, the conclusion of the
theorem follows from

) oo
m(E)) —m m Ej| =m U W; :jgnolo m(W;) = m(Ey) _jgnolo m(Ej).
j=1 -



Borel-Cantelli Lemma

Given a measurable set E a property () is said to hold almost everywhere on E or that (P)
holds for almost all x € E. If there exists a set S € M of measure 0 such that (7P) holds for all
X € E\S.

Theorem (7)

oo
Let {Ej}2, C M such that Z m(Ej) < oo. Then almost all x € R belong to at most a finite
Jj=1
number of E;’s. More precisely, there exists a set of measure zero S such that for every x € R\S
there exists n € N such that x ¢ Ej for every j > n.

Proof.

oo
Let S = lim sup{E;} = m Ej | . Forx € R\S, there exists n € N such thatx ¢ U Ejandsox ¢ E; forall
n=1 \j=n j=n
J > n. We need to verify that m(S) = 0. For this we use the hypothesis Zj m(Ej) < oo, the subadditivity and the continuity
(Theorem 6) of the measure m to get

o0 o0
m(S) = ngr& m <U E,) < nli)nolo Zm(Ej) =0.

Jj=n Jj=n



Summary: Properties of m

» Monotonicity: If A,B € M and A C B, then m(A) < m(B)

» Excision: If A, B are as above and m(A) < oo, then
m(B\A) = m(B) — m(A).
> Countable Additivity: If {E;}7°, C M is disjoint, then

#(Us ) - Smiey
j=1
> Countable Monotonicity: Let {Ej}2) € Mand A € M covered

by {E;}7°,. Then m(A) < Z



