
Real Analysis MAA 6616
Lecture 6

Measurability: Inner and Outer Approximations



Criteria for measurability

Lemma (1)
Let A be a measurable set in R with m∗ (A) < ∞. Let B ⊂ R be any set containing A. Then
m∗ (B\A) = m∗ (B)− m∗ (A).

Proof.
Note that since A ⊂ B, then B ∩ A = A and B ∩ Ac = B\A. By definition of the measurability of A it follows that

m∗
(B) = m∗

(B ∩ A) + m∗ (
B ∩ Ac)

= m∗
(A) + m∗

(B\A) .

Theorem (2)
Let A ⊂ R. The following properties are equivalent

1. A is measurable;

2. For every ϵ > 0, there exists an open set U, with A ⊂ U such that m∗ (U\A) < ϵ
(Approximation by open sets);

3. There exists a Gδ set G, with A ⊂ G such that m∗ (G\A) = 0 (Approximation by Gδ

sets);

4. For every ϵ > 0, there exists a closed set V, with V ⊂ A such that m∗ (A\V) < ϵ
(Approximation by closed sets);

5. There exists an Fσ set F, with F ⊂ A such that m∗ (A\F) = 0 (Approximation by Fσ

sets);



Proof.
"(1) =⇒ (2)" Case : m∗ (A) < ∞. Let ϵ > 0. It follows from the definition of m∗ as a l.u.b that there a collection of open

intervals {Ij}∞j=1 that cover A and such that
∞∑
j=1

ℓ(Ij) < m∗
(A) + ϵ. Then U =

∞⋃
j=1

Ij is an open set containing A such that

m∗ (U) <
∞∑
j=1

ℓ(Ij) < m∗
(A) + ϵ. Therefore (Lemma) m∗ (U\A) = m∗ (U) − m∗ (A) < ϵ.

Case : m∗ (A) = ∞. Let ϵ > 0. For m ∈ Z, let Jm = [m, m + 1) and Am = A ∩ Jm . Then Am is measurable,
m∗ (Am) ≤ 1 for all m, and A is the disjoint union of the Am’s. It follows from the previous case that for each m there is

collection of open intervals {Im,j}∞j=1 such that Am ⊂ Um with Um =
∞⋃
j=1

Im,j ,

m∗
(Um\Am) = m∗

(Um)− m∗
(Am) <

ϵ

2|m| . The collection of open sets {Um}m∈Z cover A. Let U =
⋃

m∈Z
Um . Then

U is an open set containing A and m∗
(U) ≤

∑
m∈Z

m∗
(Um) ≤

∑
m∈Z

(
m∗

(Am) +
ϵ

2|m|

)
. Since

U\A =
⋃

m∈Z
Um\A ⊂

⋃
m∈Z

(Um\Am), then m∗
(U\A) ≤

∑
m∈Z

m∗
(Um\Am) ≤

∞∑
m=1

ϵ

2|m| ≤ 3ϵ.

"(2) =⇒ (3)" Suppose that A satisfies (2), then for each j ∈ N, there is an open set Uj containing A such that

m∗ (
Uj\A

)
< 1/j. The Gδ set G =

∞⋂
j=1

Uj contains A. Moreover (G\A) ⊂ (Uj\A) for all j. Hence,

m∗ (G\A) < m∗ (
Uj\A

)
< 1/j for all j. Therefore m∗ (G\A) = 0.

"(3) =⇒ (1)" Let G be a Gδ set containing A such that m∗ (G\A) = 0. Then G and G\A are measurable (as a Gδ -set and a
set of measure 0). Then A = G ∩ (G\A)c is also measurable.
"(1) =⇒ (4)"Suppose A measurable, then Ac is measurable and so satisfies (2). Let ϵ > 0. There exists an open set U ⊃ Ac

such that m∗ (U\Ac) < ϵ. The set V = Uc is closed and V ⊂ A. Since A\V = U\Ac , then m∗ (A\V) < ϵ.

The the proofs of the remaining implications are left as exercises.



The symmetric difference between the sets A and B is A △ B = A\B ∪ B\A

Theorem (3)
Let E ⊂ R be a measurable set with m∗ (E) < ∞. Then for any ϵ > 0, there exists a finite,

disjoint, collection of open intervals {Ij}n
j=1 such that m∗

 n⋃
j=1

Ij

△ E

 < ϵ.

Proof.
Let ϵ > 0. There exists an open set U ⊃ E such that m∗ (U\E) < ϵ/2 (Theorem 2). Since m∗ (E) < ∞, then
m∗ (U) < ∞ (consequence of Lemma 1). Since U is open then there is a countable disjoint collection of open intervals

{Ij}∞j=1 such that U =
∞⋃
j=1

Ij . Hence for any m ∈ N, we have

m∑
j=1

ℓ(Ij) = m∗

 m⋃
j=1

Ij

 ≤ m∗
(U) < ∞ .

Therefore
∑∞

j=1 ℓ(Ij) < ∞. We can therefore find n ∈ N such that
∞∑

j=n+1

ℓ(Ij) < ϵ/2.

We have

 m⋃
j=1

Ij

 \E ⊂ U\E and so m∗

 n⋃
j=1

Ij

 \E

 ≤ m∗
(U\E) < ϵ/2. Also E ⊂ U implies

E\

 n⋃
j=1

Ij

 ⊂
∞⋃

j=n+1

Ij and then m∗

E\

 n⋃
j=1

Ij

 ≤
∞∑

j=n+1

ℓ(Ij) < ϵ/2. Therefore

m∗

E △

 n⋃
j=1

Ij

 = m∗

E\

 n⋃
j=1

Ij

 + m∗

 n⋃
j=1

Ij

 \E

 < ϵ



Lebesgue Measure
Let M be the σ-algebra of measurable sets. The Lebesgue measure of a set E ∈ M is defined
as m(E) = m∗ (E).

Proposition (4)
If {Ej}∞j=1 ⊂ M is disjoint, then

⋃∞
j=1 Ej ⊂ M and m

(⋃∞
j=1 Ej

)
=

∑∞
j=1 m(Ej).

Proof.
We already know that a countable union of measurable sets is measurable; that the outer measure is subadditive; and that it is

additive on finite collections of disjoint measurable sets (see Lecture 5). Then m
(⋃∞

j=1 Ej

)
≤

∑∞
j=1 m(Ej), and

m
(⋃n

j=1 Ej

)
=

∑n
j=1 m(Ej). Therefore

m

∞⋃
j=1

Ej

 ≥ m

 n⋃
j=1

Ej

 =
n∑

j=1

m(Ej)

for all n. This implies the proposition.

Proposition 4 together with results of Lecture 5 establish the following.

Theorem (5)
The Lebesgue measure m : M −→ R+ satisfies the following properties

▶ If I is an interval m(I) = ℓ(I).
▶ m is translation invariant: For every E ∈ M and s ∈ R, m(E + s) = m(E).

▶ m is countably additive: If {Ej}∞j=1 ⊂ M is disjoint, then m
(⋃∞

j=1 Ej

)
=

∑∞
j=1 m(Ej).



Recall that a countable family of sets {Ej}j∈N is said to be ascending if En ⊂ En+1 and
descending if En ⊃ En+1 for all n.

Theorem (6)
The Lebesgue measure is continuous in the following sense:

▶ If {Ej}∞j=1 ⊂ M is ascending, then m
(⋃∞

j=1 Ej

)
= limj→∞ m(Ej);

▶ If {Ej}∞j=1 ⊂ M is descending, then m
(⋂∞

j=1 Ej

)
= limj→∞ m(Ej);

Proof.
Let {Ej}∞j=1 ⊂ M be ascending. Case: m(Ej0 ) = ∞ for some j0 . In this case m(Ej) = ∞ for all j ≥ j0 . Therefore

∞ = m
(⋃∞

j=1 Ej

)
= limj→∞ m(Ej). Case: m(Ej) < ∞ for all j. Define the collection {Vj}∞j=0 ⊂ M by

Vj = Ej\Ej−1 , where E0 = ∅. Then Vk ∩ Vj = ∅ if k ̸= j and
⋃∞

j=1 Vj =
⋃∞

j=1 Ej . By using the countable additivity of
the measure m and Lemma 1, we have

m

∞⋃
j=1

Ej

 =
∞∑
j=1

m(Vj) =
∞∑
j=1

(
m(Ej) − m(Ej−1)

)
= lim

j→∞
m(Ej)

Now suppose that {Ej}∞j=1 ⊂ M is descending. Define {Wj}∞j=0 ⊂ M by Wj = E1\Ej so that Wj ⊂ Wj+1 and⋃∞
j=1 Wj = E1\

(⋂∞
j=1 Ej

)
. By the ascending continuity property proved above and Lemma 1, the conclusion of the

theorem follows from

m(E1) − m

∞⋂
j=1

Ej

 = m

∞⋃
j=1

Wj

 = lim
j→∞

m(Wj) = m(E1) − lim
j→∞

m(Ej).



Borel-Cantelli Lemma

Given a measurable set E a property (P) is said to hold almost everywhere on E or that (P)
holds for almost all x ∈ E. If there exists a set S ∈ M of measure 0 such that (P) holds for all
x ∈ E\S.

Theorem (7)
Let {Ej}∞j=1 ⊂ M such that

∞∑
j=1

m(Ej) < ∞. Then almost all x ∈ R belong to at most a finite

number of Ej’s. More precisely, there exists a set of measure zero S such that for every x ∈ R\S
there exists n ∈ N such that x /∈ Ej for every j ≥ n.

Proof.
Let S = lim sup{Ej} =

∞⋂
n=1

∞⋃
j=n

Ej

. For x ∈ R\S, there exists n ∈ N such that x /∈
∞⋃
j=n

Ej and so x /∈ Ej for all

j ≥ n. We need to verify that m(S) = 0. For this we use the hypothesis
∑

j m(Ej) < ∞, the subadditivity and the continuity
(Theorem 6) of the measure m to get

m(S) = lim
n→∞

m

∞⋃
j=n

Ej

 ≤ lim
n→∞

∞∑
j=n

m(Ej) = 0.



Summary: Properties of m

▶ Monotonicity: If A,B ∈ M and A ⊂ B, then m(A) ≤ m(B)
▶ Excision: If A,B are as above and m(A) < ∞, then

m(B\A) = m(B)− m(A).
▶ Countable Additivity: If {Ej}∞j=1 ⊂ M is disjoint, then

m

 n⋃
j=1

Ej

 =

n∑
j=1

m(Ej)

▶ Countable Monotonicity: Let {Ej}∞j=1 ⊂ M and A ∈ M covered

by {Ej}∞j=1. Then m(A) ≤
∞∑

j=1

m(Ej).


