Real Analysis MAA 6616 Lecture 6 Measurability: Inner and Outer Approximations

Criteria for measurability

Lemma (1)

Let A be a measurable set in \mathbb{R} with $m^*(A) < \infty$. Let $B \subset \mathbb{R}$ be any set containing A. Then $m^*(B \setminus A) = m^*(B) - m^*(A)$.

Proof.

Note that since $A \subset B$, then $B \cap A = A$ and $B \cap A^c = B \setminus A$. By definition of the measurability of A it follows that

$$m^{*}(B) = m^{*}(B \cap A) + m^{*}(B \cap A^{c}) = m^{*}(A) + m^{*}(B \setminus A)$$
.

Theorem (2)

Let $A \subset \mathbb{R}$. The following properties are equivalent

- 1. A is measurable;
- 2. For every $\epsilon > 0$, there exists an open set U, with $A \subset U$ such that $m^*(U \setminus A) < \epsilon$ (Approximation by open sets);
- There exists a G_δ set G, with A ⊂ G such that m* (G\A) = 0 (Approximation by G_δ sets);
- 4. For every $\epsilon > 0$, there exists a closed set V, with $V \subset A$ such that $m^*(A \setminus V) < \epsilon$ (Approximation by closed sets);
- 5. There exists an F_{σ} set F, with $F \subset A$ such that $m^*(A \setminus F) = 0$ (Approximation by F_{σ} sets);

Proof.

"(1) \implies (2)" *Case* : m^* (*A*) < ∞ . Let $\epsilon > 0$. It follows from the definition of m^* as a l.u.b that there a collection of open intervals $\{I_j\}_{j=1}^{\infty}$ that cover *A* and such that $\sum_{j=1}^{\infty} \ell(I_j) < m^*(A) + \epsilon$. Then $U = \bigcup_{j=1}^{\infty} I_j$ is an open set containing *A* such that

$$m^*(U) < \sum_{j=1}^{\infty} \ell(I_j) < m^*(A) + \epsilon$$
. Therefore (Lemma) $m^*(U \setminus A) = m^*(U) - m^*(A) < \epsilon$.

Case : $m^*(A) = \infty$. Let $\epsilon > 0$. For $m \in \mathbb{Z}$, let $J_m = [m, m + 1)$ and $A_m = A \cap J_m$. Then A_m is measurable, $m^*(A_m) \leq 1$ for all m, and A is the disjoint union of the A_m 's. It follows from the previous case that for each m there is

collection of open intervals $\{I_{m,j}\}_{j=1}^{\infty}$ such that $A_m \subset U_m$ with $U_m = \bigcup_{i=1}^{\infty} I_{m,i}$,

$$m^*(U_m \setminus A_m) = m^*(U_m) - m^*(A_m) < \frac{\epsilon}{2^{|m|}}$$
. The collection of open sets $\{U_m\}_{m \in \mathbb{Z}}$ cover A. Let $U = \bigcup_{m \in \mathbb{Z}} U_m$. Then

U is an open set containing A and $m^*(U) \leq \sum_{m \in \mathbb{Z}} m^*(U_m) \leq \sum_{m \in \mathbb{Z}} \left(m^*(A_m) + \frac{\epsilon}{2|m|}\right)$. Since $U \setminus A = \bigcup_{m \in \mathbb{Z}} U_m \setminus A \subset \bigcup_{m \in \mathbb{Z}} (U_m \setminus A_m)$, then $m^*(U \setminus A) \leq \sum_{m \in \mathbb{Z}} m^*(U_m \setminus A_m) \leq \sum_{m=1}^{\infty} \frac{\epsilon}{2|m|} \leq 3\epsilon$. "(2) \Longrightarrow (3)" Suppose that A satisfies (2), then for each $j \in \mathbb{N}$, there is an open set U_j containing A such that

$$m^*(U_j \setminus A) < 1/j$$
. The G_{δ} set $G = \bigcap_{j=1}^{\infty} U_j$ contains A . Moreover $(G \setminus A) \subset (U_j \setminus A)$ for all j . Hence,

 m^* (G\A) $< m^*$ (U_j\A) < 1/j for all j. Therefore m^* (G\A) = 0. "(3) \implies (1)" Let G be a G_{δ} set containing A such that m^* (G\A) = 0. Then G and G\A are measurable (as a G_{δ} -set and a set of measure 0). Then $A = G \cap (G \setminus A)^c$ is also measurable.

"(1) \Longrightarrow (4)"Suppose A measurable, then A^c is measurable and so satisfies (2). Let $\epsilon > 0$. There exists an open set $U \supset A^c$ such that m^* $(U \setminus A^c) < \epsilon$. The set $V = U^c$ is closed and $V \subset A$. Since $A \setminus V = U \setminus A^c$, then m^* $(A \setminus V) < \epsilon$.

The the proofs of the remaining implications are left as exercises.

The symmetric difference between the sets *A* and *B* is $A \triangle B = A \setminus B \cup B \setminus A$ Theorem (3)

Let $E \subset R$ be a measurable set with $m^*(E) < \infty$. Then for any $\epsilon > 0$, there exists a finite,

disjoint, collection of open intervals $\{I_j\}_{j=1}^n$ such that $m^*\left(\left[\bigcup_{j=1}^n I_j\right] \bigtriangleup E\right) < \epsilon$.

Proof.

Let $\epsilon > 0$. There exists an open set $U \supset E$ such that $m^*(U \setminus E) < \epsilon/2$ (Theorem 2). Since $m^*(E) < \infty$, then $m^*(U) < \infty$ (consequence of Lemma 1). Since U is open then there is a countable disjoint collection of open intervals $\{I_j\}_{j=1}^{\infty}$ such that $U = \bigcup_{i=1}^{\infty} I_i$. Hence for any $m \in \mathbb{N}$, we have

$$\sum_{j=1}^{m} \ell(I_j) = m^* \left(\bigcup_{j=1}^{m} I_j \right) \le m^* (U) < \infty .$$

 $\begin{aligned} \text{Therefore } \sum_{j=1}^{\infty} \ell(I_j) < \infty. \text{ We can therefore find } n \in \mathbb{N} \text{ such that } \sum_{j=n+1}^{\infty} \ell(I_j) < \epsilon/2. \end{aligned}$ $\begin{aligned} \text{We have } \left[\bigcup_{j=1}^{m} I_j \right] \setminus E \ \subset \ U \setminus E \text{ and so } m^* \left(\left[\bigcup_{j=1}^{n} I_j \right] \setminus E \right) \le m^* (U \setminus E) < \epsilon/2. \text{ Also } E \subset U \text{ implies } \end{aligned}$ $E \setminus \left[\bigcup_{j=1}^{n} I_j \right] \ \subset \ \bigcup_{j=n+1}^{\infty} I_j \text{ and then } m^* \left(E \setminus \left[\bigcup_{j=1}^{n} I_j \right] \right) \le \sum_{j=n+1}^{\infty} \ell(I_j) < \epsilon/2. \text{ Therefore } \end{aligned}$ $m^* \left(E \bigtriangleup \left[\bigcup_{j=1}^{n} I_j \right] \right) = m^* \left(E \setminus \left[\bigcup_{j=1}^{n} I_j \right] \right) + m^* \left(\left[\bigcup_{j=1}^{n} I_j \right] \setminus E \right) < \epsilon \end{aligned}$

Lebesgue Measure

Let \mathcal{M} be the σ -algebra of measurable sets. The Lebesgue measure of a set $E \in \mathcal{M}$ is defined as $m(E) = m^*(E)$.

Proposition (4) If $\{E_j\}_{j=1}^{\infty} \subset \mathcal{M}$ is disjoint, then $\bigcup_{j=1}^{\infty} E_j \subset \mathcal{M}$ and $m\left(\bigcup_{j=1}^{\infty} E_j\right) = \sum_{j=1}^{\infty} m(E_j)$.

Proof.

We already know that a countable union of measurable sets is measurable; that the outer measure is subadditive; and that it is additive on finite collections of disjoint measurable sets (see Lecture 5). Then $m\left(\bigcup_{j=1}^{\infty} E_j\right) \leq \sum_{j=1}^{\infty} m(E_j)$, and

 $m\left(\bigcup_{j=1}^{n} E_{j}\right) = \sum_{j=1}^{n} m(E_{j}).$ Therefore

$$m\left(\bigcup_{j=1}^{\infty} E_j\right) \geq m\left(\bigcup_{j=1}^n E_j\right) = \sum_{j=1}^n m(E_j)$$

for all n. This implies the proposition.

Proposition 4 together with results of Lecture 5 establish the following.

Theorem (5)

The Lebesgue measure $m: \mathcal{M} \longrightarrow \overline{\mathbb{R}^+}$ satisfies the following properties

- If I is an interval $m(I) = \ell(I)$.
- ▶ *m* is translation invariant: For every $E \in M$ and $s \in \mathbb{R}$, m(E + s) = m(E).
- *m* is countably additive: If $\{E_j\}_{j=1}^{\infty} \subset \mathcal{M}$ is disjoint, then $m\left(\bigcup_{j=1}^{\infty} E_j\right) = \sum_{j=1}^{\infty} m(E_j)$.

Recall that a countable family of sets $\{E_j\}_{j\in\mathbb{N}}$ is said to be ascending if $E_n \subset E_{n+1}$ and descending if $E_n \supset E_{n+1}$ for all n.

Theorem (6)

The Lebesgue measure is continuous in the following sense:

- If $\{E_j\}_{j=1}^{\infty} \subset \mathcal{M}$ is ascending, then $m\left(\bigcup_{j=1}^{\infty} E_j\right) = \lim_{j \to \infty} m(E_j);$
- If $\{E_j\}_{j=1}^{\infty} \subset \mathcal{M}$ is descending, then $m\left(\bigcap_{j=1}^{\infty} E_j\right) = \lim_{j \to \infty} m(E_j);$

Proof.

Let $\{E_j\}_{j=1}^{\infty} \subset \mathcal{M}$ be ascending. *Case*: $m(E_{j_0}) = \infty$ for some j_0 . In this case $m(E_j) = \infty$ for all $j \ge j_0$. Therefore $\infty = m\left(\bigcup_{j=1}^{\infty} E_j\right) = \lim_{j \to \infty} m(E_j)$. *Case*: $m(E_j) < \infty$ for all j. Define the collection $\{V_j\}_{j=0}^{\infty} \subset \mathcal{M}$ by $V_j = E_j \setminus E_{j-1}$, where $E_0 = \emptyset$. Then $V_k \cap V_j = \emptyset$ if $k \ne j$ and $\bigcup_{j=1}^{\infty} V_j = \bigcup_{j=1}^{\infty} E_j$. By using the countable additivity of the measure m and Lemma 1, we have

$$m\left(\bigcup_{j=1}^{\infty} E_j\right) = \sum_{j=1}^{\infty} m(V_j) = \sum_{j=1}^{\infty} \left(m(E_j) - m(E_{j-1})\right) = \lim_{j \to \infty} m(E_j)$$

Now suppose that $\{E_i\}_{j=1}^{\infty} \subset \mathcal{M}$ is descending. Define $\{W_i\}_{j=0}^{\infty} \subset \mathcal{M}$ by $W_j = E_1 \setminus E_j$ so that $W_j \subset W_{j+1}$ and $\bigcup_{j=1}^{\infty} W_j = E_1 \setminus \left(\bigcap_{j=1}^{\infty} E_j\right)$. By the ascending continuity property proved above and Lemma 1, the conclusion of the theorem follows from

$$m(E_1) - m\left(\bigcap_{j=1}^{\infty} E_j\right) = m\left(\bigcup_{j=1}^{\infty} W_j\right) = \lim_{j \to \infty} m(W_j) = m(E_1) - \lim_{j \to \infty} m(E_j).$$

Borel-Cantelli Lemma

Given a measurable set *E* a property (\mathcal{P}) is said to hold almost everywhere on *E* or that (\mathcal{P}) holds for almost all $x \in E$. If there exists a set $S \in \mathcal{M}$ of measure 0 such that (\mathcal{P}) holds for all $x \in E \setminus S$.

Theorem (7)

Let $\{E_j\}_{j=1}^{\infty} \subset \mathcal{M}$ such that $\sum_{j=1}^{\infty} m(E_j) < \infty$. Then almost all $x \in \mathbb{R}$ belong to at most a finite

number of E_j 's. More precisely, there exists a set of measure zero S such that for every $x \in \mathbb{R} \setminus S$ there exists $n \in \mathbb{N}$ such that $x \notin E_j$ for every $j \ge n$.

Proof.

Let $S = \limsup \{E_j\} = \bigcap_{n=1}^{\infty} \left(\bigcup_{j=n}^{\infty} E_j \right)$. For $x \in \mathbb{R} \setminus S$, there exists $n \in \mathbb{N}$ such that $x \notin \bigcup_{j=n}^{\infty} E_j$ and so $x \notin E_j$ for all

 $j \ge n$. We need to verify that m(S) = 0. For this we use the hypothesis $\sum_j m(E_j) < \infty$, the subadditivity and the continuity (Theorem 6) of the measure *m* to get

$$m(S) = \lim_{n \to \infty} m\left(\bigcup_{j=n}^{\infty} E_j\right) \le \lim_{n \to \infty} \sum_{j=n}^{\infty} m(E_j) = 0.$$

Summary: Properties of m

- Monotonicity: If $A, B \in \mathcal{M}$ and $A \subset B$, then $m(A) \leq m(B)$
- Excision: If *A*, *B* are as above and $m(A) < \infty$, then $m(B \setminus A) = m(B) m(A)$.
- Countable Additivity: If $\{E_j\}_{j=1}^{\infty} \subset \mathcal{M}$ is disjoint, then

$$m\left(\bigcup_{j=1}^{n} E_{j}\right) = \sum_{j=1}^{n} m(E_{j})$$

► Countable Monotonicity: Let $\{E_j\}_{j=1}^{\infty} \subset \mathcal{M}$ and $A \in \mathcal{M}$ covered by $\{E_j\}_{j=1}^{\infty}$. Then $m(A) \leq \sum_{j=1}^{\infty} m(E_j)$.