Real Analysis MAA 6616 Lecture 7
 Nonmeasurable Sets

The Cantor Set and
The Cantor-Lebesgue Function

Lemma (1)

Let $E \in \mathcal{M}$ be bounded. Suppose that there exists a bounded and countably infinite set $\Lambda \subset \mathbb{R}$ such that the collection $\{\lambda+E\}_{\lambda \in \Lambda}$ is disjoint. Then $m(E)=0$.

Proof.

Let M and K be positive numbers such that $E \subset[-M, M]$ and $\Lambda \subset[-K, K]$. We have $\lambda+E \subset[-(M+K),(M+K)]$ for all $\lambda \in \Lambda$. and $m\left(\cup_{\lambda \in \Lambda}(\lambda+E)\right) \leq 2(M+K)$. Since $\{\lambda+E\}_{\lambda \in \Lambda}$ is disjoint, then it follows from the additivity of the measure m that

$$
m\left(\bigcup_{\lambda \in \Lambda}(\lambda+E)\right)=\sum_{\lambda \in \Lambda} m(\lambda+E)=\sum_{\lambda \in \Lambda} m(E) .
$$

The last sum would be ∞ if $m(E)>0$. Therefore $m(E)=0$.
Let $E \subset \mathbb{R}$. Consider the rational equivalence relation define on E by $x \sim y$ if and only if $y-x \in \mathbb{Q}$. The set E is then decomposed into disjoint equivalence classes. Define the choice set \mathcal{C}_{E} for this relation as a subset of E which consists of a single element from each equivalence class. Thus for every $s, t \in \mathcal{C}_{E}, s-t \notin \mathbb{Q}$ and for every $x \in E$ there exists a unique element $s \in \mathcal{C}_{E}$ such that $x-s \in \mathbb{Q}$. It follows that for every $\Lambda \subset \mathbb{Q}$, the collection $\left\{\lambda+\mathcal{C}_{E}\right\}_{\lambda \in \Lambda}$ is disjoint.

Theorem (2-Vitali)

Let $E \subset \mathbb{R}$ with $m^{*}(E)>0$. Then E contains a nonmeasurable set.

Proof.

First assume E is bounded. Let $M>0$ such that $E \subset[-M, M]$. Let \mathcal{C}_{E} be the choice set for the rational equivalence relation in E. We are going to show that \mathcal{C}_{E} is not measurable.
By contradiction suppose that \mathcal{C}_{E} is measurable. It follows from the property of the choice set that for every $\Lambda \subset \mathbb{Q}$ the collection $\left\{\lambda+\mathcal{C}_{E}\right\}_{\lambda \in \Lambda}$ is disjoint. In particular when $\Lambda=\Lambda_{0}$ is countably infinite and bounded, we deduce from Lemma 1 that $m\left(\mathcal{C}_{E}\right)=0$. Now consider $\Lambda_{0}=\mathbb{Q} \cap[-2 M, 2 M]$. Then $E \subset \cup_{\lambda \in \Lambda_{0}}\left(\lambda+\mathcal{C}_{E}\right)$. Indeed, if $x \in E$, then there exists $c \in \mathcal{C}_{E}$ such that $\lambda=x-c \in \mathbb{Q}$. Moreover $|\lambda| \leq|x|+|c|<2 M$, so that $\lambda \in \Lambda_{0}$. It follows from the subadditivity of m^{*} that

$$
m^{*}(E) \leq m\left[\bigcup_{\lambda \in \Lambda_{0}}\left(\lambda+\mathcal{C}_{E}\right)\right]=\sum_{\lambda \in \Lambda_{0}} m\left(\lambda+\mathcal{C}_{E}\right)=\sum_{\lambda \in \Lambda_{0}} m\left(\mathcal{C}_{E}\right)=0
$$

This is contradiction since $m^{*}(E)>0$. Therefore \mathcal{C}_{E} is not measurable.
Next, suppose that E is unbounded. For every $n \in \mathbb{N}$, let $E_{n}=E \cap[-n, n]$. Then $E=\bigcup_{n \in \mathbb{N}} E_{n}$. Since, $m^{*}(E)>0$, then there exists $N>0$ such that $m^{*}\left(E_{N}\right)>0$. The previous argument shows that the choice $\mathcal{C}_{E_{N}}$ (a subset of $E_{N} \subset E$) is not measurable.

Theorem (3)

There exist disjoint sets A and B in \mathbb{R} such that $m^{*}(A \cup B)<m^{*}(A)+m^{*}(B)$.

Proof.

Let E and C be arbitrary subsets of \mathbb{R}. Let $A=C \cap E$ and $B=C \cap E^{c}$. Then $A \cap B=\emptyset$. If the assertion of the theorem is not true, then $m^{*}(A \cup B)=m^{*}(A)+m^{*}(B)$. Since $A \cup B=C$ this means $m^{*}(C)=m^{*}(C \cap E)+m^{*}\left(C \cap E^{C}\right)$ for every C and E and the definition of measurability implies that all subsets of \mathbb{R} are measurable which a contradiction.

The Cantor Set: An Uncountable Set of Measure 0

Let $C_{0}=[0,1]$. Remove the middle third open interval $U_{0}=(1 / 3,2 / 3)$ from C_{0} to obtain $C_{1}=C_{0} \backslash U_{0}$ as a union of two closed intervals $[0,1 / 3]$ and $[2 / 3,1]$ each of length $1 / 3$; From each component interval of C_{1} remove the middle third open intervals $U_{1,1}=(1 / 9,2 / 9)$ and $U_{1,2}=(7 / 9,8 / 9)$ to obtain $C_{2}=C_{1} \backslash\left(U_{1,1} \cup U_{1,2}\right)$ as a union of 2^{2} closed intervals [0,1/9], [2/9, 3/9], [6/9, 7/9], [8/9, 9/9], each of length $1 / 3^{2}$. Repeat this removal of "the middle third open intervals" so that at the n-th step we get a closed set $C_{n} \subset C_{n-1}$ as a union of 2^{n} closed intervals each with length $1 / 3^{n}$. The set $C=\bigcap_{n=1}^{\infty} C_{n}$ (which is not empty by the Nested-Set Theorem) is called the Cantor set.

Proposition (4)

The Cantor set C is uncountable and $m(C)=0$.

Proof.

Since C is a countable intersection of closed sets, then it is measurable. Furthermore since $C \subset C_{n}$ and C_{n} is the disjoint union of 2^{n} intervals of length $1 / 3^{n}$, then $m(C) \leq m\left(C_{n}\right)=\left(\frac{2}{3}\right)^{n}$ for all n. Hence $m(C)=0$.
Now we show that C is uncountable. By contradiction, suppose that $C=\left\{c_{n}\right\}_{n=1}^{\infty}$ is countable. Since $c_{1} \in C_{1}$ and C_{1} is the disjoint union of two closed intervals. Let F_{1} be the component of C_{1} (on of the closed interval)that does not contain c_{1}. Note that $F_{1} \cap C_{2}$ consists of two disjoint closed intervals each of length $1 / 3^{2}$. Let F_{2} be one of the intervals of $F_{1} \cap C_{2}$ that does not contain c_{2}. Hence $F_{2} \subset F_{1}$ and $c_{1}, c_{2} \notin F_{2}$. Suppose that we have constructed a descending family of closed intervals $F_{1} \supset F_{2} \supset \cdots \supset F_{n}$ such that $c_{j} \in F_{j}$ for $j=1, \cdots, n$ and F_{j} a component of C_{j} with length 3^{-j}. The set $F_{n} \cap C_{n+1}$ consists of two disjoint closed interval of length $3^{-(j+1)}$. The point $c_{n+1} \in C_{n+1}$. Let F_{n+1} be one of the intervals of $F_{n} \cap C_{n+1}$ that does not contain c_{n+1}. We have then a countable collection of nested intervals $\left\{F_{n}\right\}_{n}$ with $F_{n} \subset C_{n}$. By the nested set Theorem $\bigcap_{n=1}^{\infty} F_{n} \neq \emptyset$. Let $c \in \bigcap_{n=1}^{\infty} F_{n} \subset C$. Since we assumed that C is countable, then there exists $m \in \mathbb{N}$ such that $c=c_{m}$ and this would mean that $c_{m} \in F_{m}$ which is contradiction.

We construct an increasing piecewise linear continuous function on $[0,1]$ with zero derivative almost everywhere.
First for a linear function $f(x)=m x+b$ we define the average on the interval $I=[a, b]$, as $f_{a v}(I)=(f(a)+f(b)) / 2$. We use the nested collection $\left\{C_{n}\right\}_{n \in \mathbb{N}}$ to define the Cantor set set C and define a sequence of functions on $C_{0}=[0,1]$ as follows.

- $f^{0}(x)=x$.
- $f^{1}(x)=f_{a v}^{0}\left(C_{0}\right)$ on the middle third interval $(1 / 3,2 / 3)=C_{0} \backslash C_{1}$ and $f^{1}(x)$ continuous on C_{0} linear on each interval $[0,1 / 3]$ and $[2 / 3,1]$ such that $f^{1}(0)=0$ and $f^{1}(1)=1$.
- Suppose that f^{0}, \cdots, f^{n} are defined on C_{0}. Define f^{n+1} as follows. Let $f^{n+1}(x)=f^{n}(x)$ on $C_{0} \backslash C_{n}$. Let I be one of the 2^{n} closed intervals of length $1 / 3^{n}$ obtained at the n-th step in the construction of C. Let U be open middle third interval of I so that $I=J_{1} \cup U \cup J_{2}$ where J_{1} and J_{2} are the closed intervals (of length $1 / 3^{n+1}$) contained in C_{n+1}. Define $f^{n+1}(x)=f_{a v}^{n}(I)$ on $U ; f^{n+1}$ linear in each subinterval J_{1}, J_{2} and such that f^{n+1} is continuous on I and $f^{n+1}=f^{n}$ at the extremities of I.
The sequence $\left\{f^{n}\right\}_{n}$ satisfies the following properties (proofs left as exercises)
- f^{n} is constant on each interval of $C_{0} \backslash C_{n}$;
- f^{n} continuous and increasing on $[0,1]$ with $f^{n}(0)=0, f^{n}(1)=1$

Proposition (5)

For every $x \in[0,1]$ and $n \in \mathbb{N}$ we have $\left|f^{n+1}(x)-f^{n}(x)\right| \leq \frac{1}{2^{n+1}}$. In particular the sequence $\left\{f^{n}\right\}$ converges uniformly on $[0,1]$.

Proof.

Consider an interval $I=[a, b]=J_{1} \cup U \cup J_{2}$, where U is the open middle third interval and J_{1} and J_{2} are remaining two closed intervals after removal of U. Consider a linear function $g(x)=2 \alpha x+\beta$ on I. Then the function $h(x)$ defined by $h(x)=g_{a v}(I)$ continuous on I, linear on J_{1} and J_{2} and $h(a)=g(a), h(b)=g(b)$ is given by

$$
h(x)= \begin{cases}3 \alpha x+\beta-\alpha a & \text { if } x \in[a,(2 a+b) / 3] \\ \alpha(a+b)+\beta & \text { if } x \in[(2 a+b) / 3,(a+2 b) / 3] \\ 3 \alpha x+\beta-\alpha b & \text { if } x \in[(a+2 b) / 3, b]\end{cases}
$$

A direct calculation shows that $|h(x)-g(x)| \leq|\alpha|(b-a) / 3$.
We can use this observation to show (induction) that the slope of f^{n} in each interval of C_{n} is $\frac{3^{n}}{2^{n}}$. Since each interval of C_{n} has length $1 / 3^{n}$, then on each such interval we have.

$$
\left|f^{n+1}(x)-f^{n}(x)\right| \leq \frac{3^{n}}{2^{n+1}} \cdot \frac{1}{3^{n}}=\frac{1}{2^{n+1}}
$$

Since $f^{n+1}=f^{n}$ on $C_{0} \backslash C_{n}$, the estimate follows on [0, 1].
Finally, the uniform convergence follows directly from the above inequality. The sequence satisfies the uniform Cauchy criterion: For every $n, p \in \mathbb{N}$ and for every $x \in[0,1]$ we have

$$
\left|f^{n+p}(x)-f^{n}(x)\right| \leq \sum_{j=1}^{p}\left|f^{n+j}(x)-f^{n+j-1}(x)\right| \leq \sum_{j=1}^{p} \frac{1}{2^{n+j}} \leq \frac{1}{2^{n}}
$$

The limit function $\phi=\lim _{n \rightarrow \infty} f^{n}$ is called the Cantor-Lebesgue function on the interval I. Theorem (6)
The Cantor-Lebesgue function ϕ is continuous and increasing on $[0,1]$, maps $[0,1]$ onto $[0,1]$, it is differentiable on the open dense set $[0,1] \backslash C$ and $\phi^{\prime} \equiv 0$.

Proof.

The continuity of ϕ follows from the uniform convergence of the sequence $\left\{f^{n}\right\}$ and the monotonicity follows from the monotonicity of each f^{n}. Furthermore since $f^{n}([0,1])=[0,1]$ for all n, then $\phi([0,1])=[0,1]$. Since each f^{n} is constant on each interval contained on $[0,1] \backslash C_{n}$, then ϕ is constant on each interval contained in open set $[0,1] \backslash C$. and the conclusion follows.

Now we use the Cantor-Lebesgue function ϕ to show that the image under a continuous function of a set of measure zero could be a set of positive measure and that the image of a measurable set could be a nonmeasurable set. For this consider the function ψ on $[0,1]$ given $\psi(x)=\phi(x)+x$.

Proposition (7)

The function ψ satisfies the following properties:

1. $\psi:[0,1] \longrightarrow[0,2]$ is an increasing homeomorphism.
2. Let C be the Cantor set. Then $\psi(C) \in \mathcal{M}$ and $m(\psi(C))>0$.
3. There exists a measurable set $E \subset C$ such that $\psi(E)$ is not measurable.

Proof.

Since ϕ is increasing and the function x is strictly increasing, the function ψ is strictly increasing with $\psi(0)=0$ and $\psi(1)=2$ and as a sum of two continuous functions, ψ is continuous. It follows from the strict increase of ψ that it is bijective and $\psi^{-1}:[0,2] \longrightarrow[0,1]$ is also continuous (proof left as an exercise).
Consider the open set $U=[0,1] \backslash C$. Then $[0,1]=U \cup C$, a disjoint union. It follows from the strict monotonicity of ψ that $[0,2]=\psi([0,1])=\psi(U) \cup \psi(C)$ and it follows from the fact that ψ is a homeomorphism that $\psi(U)$ is open and $\psi(C)$ is closed. Therefore both $\psi(U)$ and $\psi(C)$ are measurable. Let $\left\{I_{n}\right\}_{n}$ be the disjoint collection of all open middle third intervals removed in the construction of the Cantor set C. Then $U=\bigcup_{j=1}^{\infty} I_{n}$. Since $m(C)=0$, then $m(U)=1=\sum_{n=1}^{\infty} \ell\left(I_{n}\right)$. Since the Cantor-Lebesgue function is constant on each I_{n} and since $\psi(x)=\phi(x)+x$, then for every $n, \psi\left(I_{n}\right)$ is an interval with $\ell\left(\psi\left(I_{n}\right)\right)=\ell\left(I_{n}\right)$. We have $\psi(U)=\bigcup_{n=1}^{\infty} \psi\left(I_{n}\right)$ a disjoint union. We deduce $m(\psi(U))=\sum_{n=1}^{\infty} m\left(\psi\left(I_{n}\right)\right)=\sum_{n=1}^{\infty} m\left(I_{n}\right)=1$. This means that since $[0,2]=\psi(U) \cup \psi(C)$, we have $m(\psi(C))=2-m(\psi(W))=1$.
To prove the third point, let E be a nonmeasurable set in $\psi(C)$. Such a nonmeasurable set exists since $m(\psi(C))>0$ (Vitali's Theorem). The set $A=\psi^{-1}(E) \subset C$ is measurable (as a subset of a set of measure 0). Therefore $\psi(A)=E$ is not measurable.

