Real Analysis MAA 6616 Lecture 7 Nonmeasurable Sets The Cantor Set and The Cantor-Lebesgue Function

Lemma (1)

Let $E \in \mathcal{M}$ be bounded. Suppose that there exists a bounded and countably infinite set $\Lambda \subset \mathbb{R}$ such that the collection $\{\lambda + E\}_{\lambda \in \Lambda}$ is disjoint. Then m(E) = 0.

Proof.

Let *M* and *K* be positive numbers such that $E \subset [-M, M]$ and $\Lambda \subset [-K, K]$. We have $\lambda + E \subset [-(M + K), (M + K)]$ for all $\lambda \in \Lambda$. and $m\left(\bigcup_{\lambda \in \Lambda} (\lambda + E)\right) \leq 2(M + K)$. Since $\{\lambda + E\}_{\lambda \in \Lambda}$ is disjoint, then it follows from the additivity of the measure *m* that

$$m\left(\bigcup_{\lambda\in\Lambda}(\lambda+E)\right)=\sum_{\lambda\in\Lambda}m(\lambda+E)=\sum_{\lambda\in\Lambda}m(E).$$

The last sum would be ∞ if m(E) > 0. Therefore m(E) = 0.

Let $E \subset \mathbb{R}$. Consider the rational equivalence relation define on *E* by $x \sim y$ if and only if $y - x \in \mathbb{Q}$. The set *E* is then decomposed into disjoint equivalence classes. Define the choice set C_E for this relation as a subset of *E* which consists of a single element from each equivalence class. Thus for every $s, t \in C_E$, $s - t \notin \mathbb{Q}$ and for every $x \in E$ there exists a unique element $s \in C_E$ such that $x - s \in \mathbb{Q}$. It follows that for every $\Lambda \subset \mathbb{Q}$, the collection $\{\lambda + C_E\}_{\lambda \in \Lambda}$ is disjoint.

Theorem (2-Vitali)

Let $E \subset \mathbb{R}$ with $m^*(E) > 0$. Then E contains a nonmeasurable set.

Proof.

First assume *E* is bounded. Let M > 0 such that $E \subset [-M, M]$. Let C_E be the choice set for the rational equivalence relation in *E*. We are going to show that C_E is not measurable.

By contradiction suppose that C_E is measurable. It follows from the property of the choice set that for every $\Lambda \subset \mathbb{Q}$ the collection $\{\lambda + C_E\}_{\lambda \in \Lambda}$ is disjoint. In particular when $\Lambda = \Lambda_0$ is countably infinite and bounded, we deduce from Lemma 1 that $m(C_E) = 0$. Now consider $\Lambda_0 = \mathbb{Q} \cap [-2M, 2M]$. Then $E \subset \bigcup_{\lambda \in \Lambda_0} (\lambda + C_E)$. Indeed, if $x \in E$, then there exists $c \in C_E$ such that $\lambda = x - c \in \mathbb{Q}$. Moreover $|\lambda| \leq |x| + |c| < 2M$, so that $\lambda \in \Lambda_0$. It follows from the subadditivity of m^* that

$$m^*(E) \le m\left[\bigcup_{\lambda \in \Lambda_0} (\lambda + C_E)\right] = \sum_{\lambda \in \Lambda_0} m(\lambda + C_E) = \sum_{\lambda \in \Lambda_0} m(C_E) = 0.$$

This is contradiction since $m^*(E) > 0$. Therefore C_E is not measurable.

Next, suppose that E is unbounded. For every $n \in \mathbb{N}$, let $E_n = E \cap [-n, n]$. Then $E = \bigcup_{n \in \mathbb{N}} E_n$. Since, $m^*(E) > 0$, then there exists N > 0 such that $m^*(E_N) > 0$. The previous argument shows that the choice \mathcal{C}_{E_N} (a subset of $E_N \subset E$) is not measurable.

Theorem (3)

There exist disjoint sets A and B in \mathbb{R} such that $m^*(A \cup B) < m^*(A) + m^*(B)$.

Proof.

Let *E* and *C* be arbitrary subsets of \mathbb{R} . Let $A = C \cap E$ and $B = C \cap E^c$. Then $A \cap B = \emptyset$. If the assertion of the theorem is not true, then m^* $(A \cup B) = m^*$ $(A) + m^*$ (B). Since $A \cup B = C$ this means m^* $(C) = m^*$ $(C \cap E) + m^*$ $(C \cap E^c)$ for every *C* and *E* and the definition of measurability implies that all subsets of \mathbb{R} are measurable which a contradiction.

The Cantor Set: An Uncountable Set of Measure 0

Let $C_0 = [0, 1]$. Remove the middle third open interval $U_0 = (1/3, 2/3)$ from C_0 to obtain $C_1 = C_0 \setminus U_0$ as a union of two closed intervals [0, 1/3] and [2/3, 1] each of length 1/3; From each component interval of C_1 remove the middle third open intervals $U_{1,1} = (1/9, 2/9)$ and $U_{1,2} = (7/9, 8/9)$ to obtain $C_2 = C_1 \setminus (U_{1,1} \cup U_{1,2})$ as a union of 2^2 closed intervals [0, 1/9], [2/9, 3/9], [6/9, 7/9], [8/9, 9/9], each of length $1/3^2$. Repeat this removal of "the middle third open intervals" so that at the *n*-th step we get a closed set $C_n \subset C_{n-1}$ as a union of 2^n closed intervals each with length $1/3^n$. The set $C = \bigcap_{n=1}^{\infty} C_n$ (which is not empty by the

n = 1

Nested-Set Theorem) is called the Cantor set.

Proposition (4)

The Cantor set C is uncountable and m(C) = 0.

Proof.

Since *C* is a countable intersection of closed sets, then it is measurable. Furthermore since $C \subset C_n$ and C_n is the disjoint union of 2^n intervals of length $1/3^n$, then $m(C) \leq m(C_n) = \left(\frac{2}{3}\right)^n$ for all *n*. Hence m(C) = 0. Now we show that *C* is uncountable. By contradiction, suppose that $C = \{c_n\}_{n=1}^\infty$ is countable. Since $c_1 \in C_1$ and C_1 is the disjoint union of two closed intervals. Let F_1 be the component of C_1 (on of the closed interval)that does not contain c_1 . Note that $F_1 \cap C_2$ consists of two disjoint closed intervals each of length $1/3^2$. Let F_2 be one of the intervals of $F_1 \cap C_2$ that does not contain c_2 . Hence $F_2 \subset F_1$ and $c_1, c_2 \notin F_2$. Suppose that we have constructed a descending family of closed intervals $F_1 \supset F_2 \supset \cdots \supset F_n$ such that $c_j \in F_j$ for $j = 1, \cdots, n$ and F_j a component of C_j with length 3^{-j} . The set $F_n \cap C_{n+1}$ consists of two disjoint closed interval of length $3^{-(j+1)}$. The point $c_{n+1} \in C_{n+1}$. Let F_{n+1} be one of the intervals of $F_n \cap C_{n+1}$ that does not contain c_{n+1} . We have then a countable collection of nested intervals $\{F_n\}_n$ with $F_n \subset C_n$. By the nested set Theorem $\bigcap_{n=1}^\infty F_n \neq \emptyset$. Let $c \in \bigcap_{n=1}^\infty F_n \subset C$. Since we assumed that *C* is countable, then there exists $m \in \mathbb{N}$ such that $c = c_m$ and this would mean that $c_m \in F_m$ which is contradiction.

The Cantor-Lebesgue Function

We construct an increasing piecewise linear continuous function on [0, 1] with zero derivative almost everywhere.

First for a linear function f(x) = mx + b we define the average on the interval I = [a, b], as $f_{av}(I) = (f(a) + f(b))/2$. We use the nested collection $\{C_n\}_{n \in \mathbb{N}}$ to define the Cantor set set *C* and define a sequence of functions on $C_0 = [0, 1]$ as follows.

- $\blacktriangleright f^0(x) = x.$
- ▶ $f^1(x) = f_{av}^0(C_0)$ on the middle third interval $(1/3, 2/3) = C_0 \setminus C_1$ and $f^1(x)$ continuous on C_0 linear on each interval [0, 1/3] and [2/3, 1] such that $f^1(0) = 0$ and $f^1(1) = 1$.
- ▶ Suppose that f^0, \dots, f^n are defined on C_0 . Define f^{n+1} as follows. Let $f^{n+1}(x) = f^n(x)$ on $C_0 \setminus C_n$. Let *I* be one of the 2^n closed intervals of length $1/3^n$ obtained at the *n*-th step in the construction of *C*. Let *U* be open middle third interval of *I* so that $I = J_1 \cup U \cup J_2$ where J_1 and J_2 are the closed intervals (of length $1/3^{n+1}$) contained in C_{n+1} . Define $f^{n+1}(x) = f^n_{av}(I)$ on $U; f^{n+1}$ linear in each subinterval J_1, J_2 and such that f^{n+1} is continuous on *I* and $f^{n+1} = f^n$ at the extremities of *I*.

The sequence $\{f^n\}_n$ satisfies the following properties (proofs left as exercises)

- f^n is constant on each interval of $C_0 \setminus C_n$;
- ▶ f^n continuous and increasing on [0, 1] with $f^n(0) = 0, f^n(1) = 1$

Proposition (5)

For every $x \in [0, 1]$ and $n \in \mathbb{N}$ we have $\left| f^{n+1}(x) - f^n(x) \right| \leq \frac{1}{2^{n+1}}$. In particular the sequence $\{f^n\}$ converges uniformly on [0, 1].

Proof.

Consider an interval $I = [a, b] = J_1 \cup U \cup J_2$, where U is the open middle third interval and J_1 and J_2 are remaining two closed intervals after removal of U. Consider a linear function $g(x) = 2\alpha x + \beta$ on I. Then the function h(x) defined by $h(x) = g_{av}(I)$ continuous on I, linear on J_1 and J_2 and h(a) = g(a), h(b) = g(b) is given by

$$h(x) = \begin{cases} 3\alpha x + \beta - \alpha a & \text{if } x \in [a, (2a+b)/3] \\ \alpha(a+b) + \beta & \text{if } x \in [(2a+b)/3, (a+2b)/3] \\ 3\alpha x + \beta - \alpha b & \text{if } x \in [(a+2b)/3, b] \end{cases}$$

A direct calculation shows that $|h(x) - g(x)| \le |\alpha| (b-a)/3$.

We can use this observation to show (induction) that the slope of f^n in each interval of C_n is $\frac{3^n}{2^n}$. Since each interval of C_n has length $1/3^n$, then on each such interval we have.

$$\left| f^{n+1}(x) - f^{n}(x) \right| \le \frac{3^{n}}{2^{n+1}} \cdot \frac{1}{3^{n}} = \frac{1}{2^{n+1}}$$

Since $f^{n+1} = f^n$ on $C_0 \setminus C_n$, the estimate follows on [0, 1].

Finally, the uniform convergence follows directly from the above inequality. The sequence satisfies the uniform Cauchy criterion: For every $n, p \in \mathbb{N}$ and for every $x \in [0, 1]$ we have

$$\left| f^{n+p}(x) - f^{n}(x) \right| \le \sum_{j=1}^{p} \left| f^{n+j}(x) - f^{n+j-1}(x) \right| \le \sum_{j=1}^{p} \frac{1}{2^{n+j}} \le \frac{1}{2^{n}}.$$

The limit function $\phi = \lim_{n \to \infty} f^n$ is called the Cantor-Lebesgue function on the interval *I*.

Theorem (6)

The Cantor-Lebesgue function ϕ is continuous and increasing on [0, 1], maps [0, 1] onto [0, 1], it is differentiable on the open dense set $[0, 1] \setminus C$ and $\phi' \equiv 0$.

Proof.

The continuity of ϕ follows from the uniform convergence of the sequence $\{f^n\}$ and the monotonicity follows from the monotonicity of each f^n . Furthermore since f^n ([0, 1]) = [0, 1] for all n, then ϕ ([0, 1]) = [0, 1]. Since each f^n is constant on each interval contained on $[0, 1] \setminus C_n$, then ϕ is constant on each interval contained in open set $[0, 1] \setminus C$. and the conclusion follows.

Now we use the Cantor-Lebesgue function ϕ to show that the image under a continuous function of a set of measure zero could be a set of positive measure and that the image of a measurable set could be a nonmeasurable set. For this consider the function ψ on [0, 1] given $\psi(x) = \phi(x) + x$.

Proposition (7)

The function ψ satisfies the following properties:

- 1. ψ : [0, 1] \longrightarrow [0, 2] is an increasing homeomorphism.
- 2. Let C be the Cantor set. Then $\psi(C) \in \mathcal{M}$ and $m(\psi(C)) > 0$.
- 3. There exists a measurable set $E \subset C$ such that $\psi(E)$ is not measurable.

Proof.

Since ϕ is increasing and the function x is strictly increasing, the function ψ is strictly increasing with $\psi(0) = 0$ and $\psi(1) = 2$ and as a sum of two continuous functions, ψ is continuous. It follows from the strict increase of ψ that it is bijective and $\psi^{-1} : [0, 2] \longrightarrow [0, 1]$ is also continuous (proof left as an exercise). Consider the open set $U = [0, 1] \setminus C$. Then $[0, 1] = U \cup C$, a disjoint union. It follows from the strict monotonicity of ψ that $[0, 2] = \psi([0, 1]) = \psi(U) \cup \psi(C)$ and it follows from the fact that ψ is a homeomorphism that $\psi(U)$ is open and $\psi(C)$ is closed. Therefore both $\psi(U)$ and $\psi(C)$ are measurable. Let $\{I_n\}_n$ be the disjoint collection of all open middle third intervals removed in the construction of the Cantor set C. Then $U = \bigcup_{j=1}^{\infty} I_n$. Since m(C) = 0, then $m(U) = 1 = \sum_{n=1}^{\infty} \ell(I_n)$. Since the Cantor-Lebesgue function is constant on each I_n and since $\psi(x) = \phi(x) + x$, then for every $n_i(U)$ is interval with $\psi_i(U)$ is $\psi_i(U) = n_i = U$.

 $m(U) = 1 = \sum_{n=1}^{\infty} \ell(I_n)$. Since the Cantor-Lebesgue function is constant on each I_n and since $\psi(x) = \phi(x) + x$, then for every n, $\psi(I_n)$ is an interval with $\ell(\psi(I_n)) = \ell(I_n)$. We have $\psi(U) = \bigcup_{n=1}^{\infty} \psi(I_n)$ a disjoint union. We deduce $m(\psi(U)) = \sum_{n=1}^{\infty} m(\psi(I_n)) = \sum_{n=1}^{\infty} m(I_n) = 1$. This means that since $[0, 2] = \psi(U) \cup \psi(C)$, we have $m(\psi(C)) = 2 - m(\psi(W)) = 1$.

To prove the third point, let *E* be a nonmeasurable set in $\psi(C)$. Such a nonmeasurable set exists since $m(\psi(C)) > 0$ (Vitali's Theorem). The set $A = \psi^{-1}(E) \subset C$ is measurable (as a subset of a set of measure 0). Therefore $\psi(A) = E$ is not measurable.