Real Analysis MAA 6616
Lecture 7
Nonmeasurable Sets
The Cantor Set and
The Cantor-Lebesgue Function



Nonmeasurable Sets

Lemma (1)

Let E € M be bounded. Suppose that there exists a bounded and countably infinite set A C R
such that the collection {\ + E} x¢c A is disjoint. Then m(E) = 0.

Proof.

Let M and K be positive numbers such that E C [—M, M]and A C [—K, K]. We have
AN+ EC [—(M+K), (M+K)|forall A € A.andm (UAE,\(A + E)) < 2(M + K). Since {\ + E} xcn is
disjoint, then it follows from the additivity of the measure m that

m(U (>\+E)) =S mA+E) =Y mE).
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The last sum would be oo if m(E) > 0. Therefore m(E) = 0. O

Let E C R. Consider the rational equivalence relation define on E by x ~ y if and only if

y —x € Q. The set E is then decomposed into disjoint equivalence classes. Define the choice
set Cg, for this relation as a subset of E which consists of a single element from each equivalence
class. Thus for every s,t € Cg, s — t ¢ Q and for every x € E there exists a unique element

s € Cg such thatx — s € Q. It follows that for every A C Q, the collection {\ + Cr}aen is
disjoint.



Theorem (2-Vitali)

Let E C R withm* (E) > 0. Then E contains a nonmeasurable set.

Proof.

First assume E is bounded. Let M > 0 such that E C [—M, M]. Let Cg be the choice set for the rational equivalence relation
in E. We are going to show that Cg, is not measurable.

By contradiction suppose that Cg, is measurable. It follows from the property of the choice set that for every A C Q the
collection { X + Cg} x e A is disjoint. In particular when A = Ay is countably infinite and bounded, we deduce from Lemma
1 that m(Cg) = 0. Now consider Ag = Q N [—2M, 2M]. Then E C UXEAU (X + Cg). Indeed, if x € E, then there

exists ¢ € Cg suchthat A = x — ¢ € Q. Moreover |A| < |x| + |¢] < 2M,sothat X € Ag. It follows from the
subadditivity of m™ that

m*E)<m| |J O+Ce)| = D m(A+Cr)= > m(Cg) =0.
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This is contradiction since m™ (E) > 0. Therefore C, is not measurable.
Next, suppose that E is unbounded. For every n € N, let E, = E N [—n, n]. Then £ = U, cy En- Since, m™ (E) > 0,
then there exists N > 0 such that m™ (Ey) > 0. The previous argument shows that the choice CEN (asubsetof Ey C E)is

not measurable. O

Theorem (3)
There exist disjoint sets A and B in R such that m* (A U B) < m* (A) + m* (B).

Proof.
Let E and C be arbitrary subsets of R. LetA = C N Eand B = C N E. Then A N B = (. If the assertion of the theorem is
not true, then m* (A U B) = m™ (A) + m* (B). Since A U B = C this means m* (C) = m* (CNE) + m™ (C N E°)

for every C and E and the definition of measurability implies that all subsets of R are measurable which a contradiction. O



The Cantor Set: An Uncountable Set of Measure 0

Let Cp = [0, 1]. Remove the middle third open interval Uy = (1/3, 2/3) from Cy to obtain
C) = Cp\Uj as a union of two closed intervals [0, 1/3] and [2/3, 1] each of length 1/3; From
each component interval of C; remove the middle third open intervals U;,; = (1/9, 2/9) and
Uip = (7/9, 8/9) to obtain C = C;\(Uj,; U Uj ») as a union of 22 closed intervals [0, 1/9],
[2/9, 3/9], [6/9, 7/9], [8/9, 9/9], each of length 1/32. Repeat this removal of "the middle
third open intervals" so that at the n-th step we get a closed set C, C C,—; as a union of 2"

o0
closed intervals each with length 1/3". The set C = m C,, (which is not empty by the
n=1

Nested-Set Theorem) is called the Cantor set.
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Proposition (4)

The Cantor set C is uncountable and m(C) = 0.

Proof.

Since C is a countable intersection of closed sets, then it is measurable. Furthermore since C C C, and Cj, is the disjoint union
2 n
of 2" intervals of length 1 /3", then m(C) < m(C,) = (E) for all n. Hence m(C) = 0.

Now we show that C is uncountable. By contradiction, suppose that C = {c, },,2; is countable. Since ¢; € Cj and Cy is the
disjoint union of two closed intervals. Let | be the component of C (on of the closed interval)that does not contain ¢;. Note
that F} N C; consists of two disjoint closed intervals each of length 1/32, Let F be one of the intervals of F| N C, that does
not contain ¢;. Hence F, C Fj and ¢y, ¢y ¢ F5. Suppose that we have constructed a descending family of closed intervals

Fi DFy D -+ D Fysuchthatc; € Fjforj=1,--- ,nand F; acomponent of C; with length 37/ The set Fn N Cyyy
consists of two disjoint closed interval of length 3™ G+ The point ¢, 11 € Cyq 1. Let F,, 1 be one of the intervals of

Fy N Cpyqy that does not contain ¢, 1. We have then a countable collection of nested intervals {F, }, with F, C C,. By the
nested set Theorem ()72 F, 7# 0. Letc € (72, F, C C. Since we assumed that C is countable, then there exists m € N
such that ¢ = ¢, and this would mean that ¢, € F,;, which is contradiction. O



The Cantor-Lebesgue Function

We construct an increasing piecewise linear continuous function on [0, 1] with zero derivative
almost everywhere.

First for a linear function f(x) = mx + b we define the average on the interval I = [a, D], as
Ja(I) = (f(a) + (b)) /2. We use the nested collection {C,, },ecn to define the Cantor set set C
and define a sequence of functions on Cyp = [0, 1] as follows.

> o) =

> f1(x) = f9(Co) on the middle third interval (1/3, 2/3) = Cy\C; and f'(x) continuous
on Cp linear on each interval [0, 1/3] and [2/3, 1] such that f1(0) = 0 and f'(1) = 1.

> Suppose that f0, - - - , f" are defined on Cy. Define f"t! as follows. Let f"T1(x) = f"(x)
on Cy\Cp. Let I be one of the 2" closed intervals of length 1/3" obtained at the n-th step
in the construction of C. Let U be open middle third interval of / sothat/ = J; U U U J,
where J; and J; are the closed intervals (of length 1/ 3711y contained in Cp+1. Define
F"TH(x) = £2.(I) on U; "+ linear in each subinterval J;, J, and such that f*+1 is
continuous on / and f"*+1 = f" at the extremities of I.

The sequence {f™}, satisfies the following properties (proofs left as exercises)
> f"is constant on each interval of Cp\Cy;

» " continuous and increasing on [0, 1] with /"(0) = 0,"(1) =1






Proposition (5)

1
For every x € [0, 1] and n € N we have V'H'l(x) - < TS

. In particular the

sequence {f"} converges uniformly on [0, 1].

Proof.

Consider an interval / = [a, b] = J; U U U J;, where U is the open middle third interval and J; and J, are remaining two
closed intervals after removal of U. Consider a linear function g(x) = 2cwx + 8 on 1. Then the function /(x) defined by
h(x) = gav(I) continuous on /, linear on J; and J, and h(a) = g(a), h(b) = g(b) is given by

3ax + B — aa ifx € [a, (2a + b)/3]
W) =3 alatb)+B  ifx € [(2a+b)/3, (a+20)/3]
3ox+ B —ab  ifx € [(a+2b)/3, b]

A direct calculation shows that |h(x) — g(x)| < |a| (b — a)/3.
1

We can use this observation to show (induction) that the slope of f” in each interval of C,, is — . Since each interval of C,, has
271

length 1/3", then on each such interval we have.

1 1

3
n+1 _ . —
f (x) f (X) S on+1 3n on+1

Since /T = f" on Cy\ Gy, the estimate follows on [0, 1].
Finally, the uniform convergence follows directly from the above inequality. The sequence satisfies the uniform Cauchy
criterion: For every n, p € N and for every x € [0, 1] we have
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The limit function ¢ = lim f” is called the Cantor-Lebesgue function on the interval 1.
n—oo

Theorem (6)

The Cantor-Lebesgue function ¢ is continuous and increasing on [0, 1], maps [0, 1] onto
[0, 1), it is differentiable on the open dense set [0, 1]\C and ¢' = 0.

Proof.

The continuity of ¢ follows from the uniform convergence of the sequence {f" } and the monotonicity follows from the
monotonicity of each f". Furthermore since f ([0, 1]) = [0, 1] for all n, then ¢ ([0, 1]) = [0, 1]. Since each f" is
constant on each interval contained on [0, 1]\ Cy, then ¢ is constant on each interval contained in open set [0, 1]\ C. and the

conclusion follows. O



Now we use the Cantor-Lebesgue function ¢ to show that the image under a continuous
function of a set of measure zero could be a set of positive measure and that the image of a
measurable set could be a nonmeasurable set. For this consider the function ¢ on [0, 1] given

Y(x) = ¢(x) +x.
Proposition (7)

The function 1) satisfies the following properties:
1. ¢ : [0, 1] —> [0, 2] is an increasing homeomorphism.
2. Let C be the Cantor set. Then ¢(C) € M and m (¢(C)) > 0.

3. There exists a measurable set E C C such that ¢ (E) is not measurable.

Proof.

Since ¢ is increasing and the function x is strictly increasing, the function ) is strictly increasing with ¢ (0) = 0 and

1(1) = 2 and as a sum of two continuous functions, 1) is continuous. It follows from the strict increase of 1 that it is bijective
and w_l : [0, 2] — [0, 1] is also continuous (proof left as an exercise).

Consider the open set U = [0, 1]\C. Then [0, 1] = U U C, a disjoint union. It follows from the strict monotonicity of
that [0, 2] = ([0, 1]) = ¥ (U) U ¢ (C) and it follows from the fact that 1) is a homeomorphism that  (U) is open and
1(C) is closed. Therefore both ¢ (U) and ¢ (C) are measurable. Let {1, }, be the disjoint collection of all open middle third
intervals removed in the construction of the Cantor set C. Then U = Uj°:°I I,,. Since m(C) = 0, then

m(U) = 1= 32, €(I). Since the Cantor-Lebesgue function is constant on each I, and since % (x) = ¢(x) + x, then
for every n, 1 (I,,) is an interval with £(2)(1,)) = €(I,). We have 1 (U) = U2, ¥ (I,) a disjoint union. We deduce

m(yp(U)) = 302 m((Iy)) = 372 m(I,) = 1. This means that since [6,=]2] = ¢ (U) U ¢ (C), we have
m($(€)) =2 —m(p(W)) = L.

To prove the third point, let £ be a nonmeasurable set in 1 (C). Such a nonmeasurable set exists since m(2(C)) > 0 (Vitali’s
Theorem). The set A = ) -1 (E) C Cis measurable (as a subset of a set of measure 0). Therefore 1) (A) = E is not

measurable. O



