Real Analysis MAA 6616 Lecture 8 Measurability in \mathbb{R}^n

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

\mathbb{R}^p and its topology

 \mathbb{R}^p denotes the *p*-dimensional Euclidean space

$$\mathbb{R}^p = \{x = (x_1, \cdots, x_p) : x_j \in \mathbb{R}, j = 1, \cdots, p\}.$$
 The norm in \mathbb{R}^p is $|x| = \sqrt{\sum_{j=1}^p x_j^2}$. The

distance between points $x, y \in \mathbb{R}^p$ is |y - x|. The open ball with center x and radius r is $B_r(x) = \{y \in \mathbb{R}^n : |y - x| < r\}$. If I_1, \dots, I_p are intervals in \mathbb{R} , then $I = I_1 \times \dots \times I_n$ is called an interval in \mathbb{R}^n .

A set $U \subset \mathbb{R}^p$ is said to be open if for every $x \in U$ there exists r > 0 such that the open ball $B_r(x)$ is contained in $U(B_r(x) \subset U)$. A set $F \subset \mathbb{R}^p$ is closed if its complement $F^c = \mathbb{R}^p \setminus F$ is open. A set $C \in \mathbb{R}^p$ is said to compact if every open cover of *C* has a finite subcover. We have the following properties:

- The union of any collection of open sets in R^p is open and the union of a finite collection of closed sets in R^p is closed.
- ► The intersection of a finite collection of open sets in ℝ^p is open and the intersection of any collection of closed sets in ℝ^p is closed.
- A nonempty open set $U \subset \mathbb{R}^p$ can be written as a disjoint union of a countable collection of partly open intervals. A partly open interval in \mathbb{R}^p is a set of the form $[a_1, b_1) \times \cdots \times [a_p, b_p)$ where $[a_j, b_j)$ is a semi closed interval in \mathbb{R} .
- ▶ Heine-Borel Theorem: A set $E \subset \mathbb{R}^p$ is compact if and only *E* is closed and bounded.
- ▶ Nested-Set Theorem: Let $\{F_n\}_n$ is a countable collection of closed and bounded sets such that $F_{n+1} \subset F_n \in \mathbb{R}^p$. Then $\bigcap_{n=1}^{\infty} F_n \neq \emptyset$.

Sequences and Functions in \mathbb{R}^p

A sequence $\{x_n\}_n \subset \mathbb{R}^p$ converges to a limit $x \in \mathbb{R}^p$ if for every $\epsilon > 0$ there exists $N \in \mathbb{N}$ such that $x_n \in B_{\epsilon}(x)$ (i.e. $|x_n - x| < \epsilon$) for every $n \ge N$. A sequence $\{x_n\}_n \subset \mathbb{R}^p$ is said to be Cauchy if for every $\epsilon > 0$, there exists $N \in \mathbb{N}$ such that $|x_n - x_m| < \epsilon$ for every $n, m \ge N$.

- ▶ Bolzano-Weierstrass Theorem: A bounded sequence in ℝ^{*p*} has a convergent subsequence.
- Cauchy criterion: A sequence $\{x_n\}_n \subset \mathbb{R}^p$ is convergent if and only if it is Cauchy.
- ▶ A set $E \subset \mathbb{R}^p$ is compact if and only if every sequence $\{x_n\} \subset E$ has a convergent subsequence in *E*.

A function $f : E \subset \mathbb{R}^p \longrightarrow \mathbb{R}$ is continuous if for every open set $U \subset \mathbb{R}$, there exists an open set $V \subset \mathbb{R}^p$ such that $f^{-1}(U) = E \cap V$. This is equivalent to following: For every $x \in E$, for every $\epsilon > 0$ there exists $\delta > 0$ such that for every $y \in B_{\delta}(x) \cap E$ we have $|f(y) - f(x)| < \epsilon$. The function f is uniformly continuous on E if for every $\epsilon > 0$ there exists $\delta > 0$ such that for every $x, y \in E$ such that $|y - x| < \delta$, we have $|f(y) - f(x)| < \epsilon$.

- ▶ $f: E \subset \mathbb{R}^p \longrightarrow \mathbb{R}$ is continuous if and only if for every sequence $\{x_n\}_n \subset E$ that converges to a point $x \in E$ we have $\lim_{n \to \infty} f(x_n) = f(x)$.
- ▶ Let $C \subset \mathbb{R}^p$ be a compact set and $f : C \longrightarrow \mathbb{R}$ be a continuous function. Then f is bounded and uniformly continuous

Lebesgue measure in \mathbb{R}^p

Let $I = \prod_{j=1}^{d} [a_j \ b_j]$ be an interval in \mathbb{R}^p . The volume of I is $v(I) = \prod_{j=1}^{p} (b_j - a_j)$. Let $E \subset \mathbb{R}^p$ be any set. Define the outer measure of E as $m^*(E) = \inf \left\{ \sum_{j=1}^{\infty} v(I_j) : E \subset \bigcup_{j=1}^{\infty} I_j \right\}$. The outer measure is invariant under translation and is countably subadditive:

outer measure is invariant under translation and is countably subadditive: m^* ($\bigcup E_n$) $\leq \sum_n m^*$ (E_n). A set $E \subset \mathbb{R}^p$ is Lebesgue measurable or simply measurable if for every $S \subset \mathbb{R}^p$, we have

$$m^*(S) = m^*(S \cap E) + m^*(S \cap E^c)$$

As in the case of \mathbb{R} , the Lebesgue measure in \mathbb{R}^p satisfies the following: \emptyset and \mathbb{R}^p are measurable; *E* is measurable if and only if E^c is measurable; if *E* is measurable and $T \subset \mathbb{R}^p$ is disjoint from *E*, then $m^* (E \cup T) = m^* (E) + m^* (T)$; *E* is measurable if and only if for every set $S \subset \mathbb{R}^p$, $m^* (S) \ge m^* (S \cap E) + m^* (S \cap E^c)$; Any set *E* with outer measure 0 $(m^* (E) = 0)$ is measurable; a countable union of measurable sets is measurable; Let E_1, \dots, E_n be measurable sets that are mutually disjoint and let $S \subset \mathbb{R}^p$ be any set. Then

$$m^*\left(S \cap \left[\bigcup_{j=1}^n E_j\right]\right) = \sum_{j=1}^n m^*\left(S \cap E_j\right) \text{ and } m^*\left(\bigcup_{j=1}^n E_j\right) = \sum_{j=1}^n m^*\left(E_j\right)$$

Let $\{E_j\}_{j=1}^{\infty}$ be a countable collection of measurable sets. Then $E = \bigcup_{j=1}^{\infty} E_j$ is measurable.

Let $A \subset \mathbb{R}^p$. The following properties are equivalent

- A is measurable;
- For every $\epsilon > 0$, there exists an open set U, with $A \subset U$ such that $m^*(U \setminus A) < \epsilon$ (Approximation by open sets);
- There exists a G_{δ} set G, with $A \subset G$ such that $m^*(G \setminus A) = 0$ (Approximation by G_{δ} sets);
- For every $\epsilon > 0$, there exists a closed set *V*, with $V \subset A$ such that $m^*(A \setminus V) < \epsilon$ (Approximation by closed sets);
- There exists an F_{σ} set F, with $F \subset A$ such that $m^*(A \setminus F) = 0$ (Approximation by F_{σ} sets);

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Let \mathcal{M} be the σ -algebra of measurable sets in \mathbb{R}^d . The Lebesgue measure or simply measure of a set $E \in \mathcal{M}$ is defined as $m(E) = m^*(E)$.

- If $I \subset \mathbb{R}^p$ is an interval m(I) = v(I).
- ▶ The Lebesgue measure *m* is translation invariant: For every $E \in M$ and $s \in \mathbb{R}$, m(E + s) = m(E).
- ► The Lebesgue measure *m* is countably additive: If $\{E_j\}_{j=1}^{\infty} \subset \mathcal{M}$ is disjoint, then $m\left(\bigcup_{j=1}^{\infty} E_j\right) = \sum_{j=1}^{\infty} m(E_j).$